@article{ASNSP_2001_4_30_3-4_499_0,
author = {Grunau, Hans-Christoph and Sweers, Guido},
title = {Optimal conditions for anti-maximum principles},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
pages = {499--513},
year = {2001},
publisher = {Scuola normale superiore},
volume = {Ser. 4, 30},
number = {3-4},
mrnumber = {1896075},
zbl = {1072.35066},
language = {en},
url = {https://www.numdam.org/item/ASNSP_2001_4_30_3-4_499_0/}
}
TY - JOUR AU - Grunau, Hans-Christoph AU - Sweers, Guido TI - Optimal conditions for anti-maximum principles JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2001 SP - 499 EP - 513 VL - 30 IS - 3-4 PB - Scuola normale superiore UR - https://www.numdam.org/item/ASNSP_2001_4_30_3-4_499_0/ LA - en ID - ASNSP_2001_4_30_3-4_499_0 ER -
%0 Journal Article %A Grunau, Hans-Christoph %A Sweers, Guido %T Optimal conditions for anti-maximum principles %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2001 %P 499-513 %V 30 %N 3-4 %I Scuola normale superiore %U https://www.numdam.org/item/ASNSP_2001_4_30_3-4_499_0/ %G en %F ASNSP_2001_4_30_3-4_499_0
Grunau, Hans-Christoph; Sweers, Guido. Optimal conditions for anti-maximum principles. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 4, Tome 30 (2001) no. 3-4, pp. 499-513. https://www.numdam.org/item/ASNSP_2001_4_30_3-4_499_0/
[1] , "Sobolev Spaces", Academic Press, New York etc., 1975. | Zbl | MR
[2] , Hopf's lemma and anti-maximum principle in general domains, J. Differ. Equations 119 (1995), 450-472. | Zbl | MR
[3] , Sullefunzioni di Green d'ordine m, Rend. Circ. Mat. Palermo 20 (1905), 97-135. | JFM
[4] - , An anti-maximum principle for second order elliptic operators, J. Differ. Equations 34 (1979), 218-229. | Zbl | MR
[5] - , Uniform anti-maximum principles, J. Differential Equations 164 (2000), 118-154. | Zbl | MR
[6] - , Uniform anti-maximum principles for polyharmonic operators, Proc. Amer. Math. Soc. 129 (2001), 467-474. | Zbl | MR
[7] - H.-CH. GRUNAU, Critical dimensions and higher order Sobolev inequalities with remainder terms, NODEA 8 (2001), 35-44. | Zbl | MR
[8] - , Positivity for equations involving polyharmonic operators with Dirichlet boundary conditions, Math. Ann. 307 (1997), 589-626. | Zbl | MR
[9] - , Positivity for perturbations of polyharmonic operators with Dirichlet boundary conditions in two dimensions, Math. Nachr.179 (1996), 89-102. | Zbl | MR
[10] - , The maximum principle and positive principal eigenfunctions for polyharmonic equations, In: G. Caristi, E. Mitidieri (eds.), "Reaction Diffusion Systems", Marcel Dekker Inc., New York, Lecture Notes in Pure and Appl. Math. 194 (1998), 163-182. | Zbl | MR
[11] - , Positivity properties of elliptic boundary value problems of higher order, Proc. 2nd World Congress of Nonlinear Analysts, Nonlinear Analysis, T.M.A. 30 (1997), 5251-5258. | Zbl | MR
[12] - , Sharp estimates for iterated Greenfunctions, to appear in: Proc. Roy. Soc. Edinburgh Sect. A. | MR | Zbl
[13] , Über Integralgleichungen mit positivem Kern, Math. 141 (1912), 235-244. | JFM | EuDML
[14] - - , "Positive Linear Systems- The Method of Positive Operators", Heldermann Verlag, Berlin, 1989. | Zbl | MR
[15] - , "Non-homogeneous Boundary Value Problems and Applications I", Springer, Berlin, 1972. | Zbl
[16] , Maximum and anti-maximum principles and eigenfunctions estimates via perturbation theory of positive solutions of elliptic equations, Math. Ann. 314 (1999), 555-590. | Zbl | MR
[17] , On the maximum and anti-maximum principles, Differential equations and mathematical physics (Birmingham, AL, 1999), 323-338, AMS/IP Stud. Adv. Math., 16, Amer. Math. Soc., Providence,RI, 2000. | MR | Zbl
[18] , LN is sharp for the antimaximum principle, J. Differential Equations 134 (1997), 148-153. | Zbl | MR
[19] , An abstract form of maximum and anti-maximum principles of Hopf's type, J. Math. Anal. Appl. 201 (1996), 339-364. | Zbl | MR






