@article{ASNSP_2001_4_30_2_437_0,
author = {Dal Passo, Roberta and Giacomelli, Lorenzo and Gr\"un, G\"unther},
title = {A waiting time phenomenon for thin film equations},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
pages = {437--463},
year = {2001},
publisher = {Scuola normale superiore},
volume = {Ser. 4, 30},
number = {2},
mrnumber = {1895718},
zbl = {1024.35051},
language = {en},
url = {https://www.numdam.org/item/ASNSP_2001_4_30_2_437_0/}
}
TY - JOUR AU - Dal Passo, Roberta AU - Giacomelli, Lorenzo AU - Grün, Günther TI - A waiting time phenomenon for thin film equations JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2001 SP - 437 EP - 463 VL - 30 IS - 2 PB - Scuola normale superiore UR - https://www.numdam.org/item/ASNSP_2001_4_30_2_437_0/ LA - en ID - ASNSP_2001_4_30_2_437_0 ER -
%0 Journal Article %A Dal Passo, Roberta %A Giacomelli, Lorenzo %A Grün, Günther %T A waiting time phenomenon for thin film equations %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2001 %P 437-463 %V 30 %N 2 %I Scuola normale superiore %U https://www.numdam.org/item/ASNSP_2001_4_30_2_437_0/ %G en %F ASNSP_2001_4_30_2_437_0
Dal Passo, Roberta; Giacomelli, Lorenzo; Grün, Günther. A waiting time phenomenon for thin film equations. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 4, Tome 30 (2001) no. 2, pp. 437-463. https://www.numdam.org/item/ASNSP_2001_4_30_2_437_0/
[ 1 ] , On the pointwise behavior of the solutions of the porous medium equation as t approaches zero or infinity, Nonlinear Anal. 9 (1985), 1095-1113. | Zbl | MR
[2] , "The porous medium equation", In A. Dold and B. Eckmann, editors, Nonlinear Diffusion Problems. Lecture Notes in Mathematics, 1224, Springer-Verlag, 1985. | Zbl | MR
[3] - - , Nonnegative solutions of a fourth order nonlinear degenerate parabolic equation, Arch. Rat. Mech. Anal. 129 (1995), 175-200. | Zbl | MR
[4] , Viscous flows, fourth order nonlinear degenerate parabolic equations and singular elliptic problems, In:"Free boundary problems: theory and applications", J. I. Diaz - M. A. Herrero - A. Linan - J. L. Vazquez (eds.), Pitman Research Notes in Mathematics 323, Longman, Harlow, 1995, pp. 40-56. | Zbl | MR
[5] , Finite speed ofpropagation and continuity of the interfacefor thin viscous flows, Adv. Differential Equations 1 no. 3 (1996), 337-368. | Zbl | MR
[6] , Finite speed of propagation for thin viscous flows when 2 ≤ n < 3, C.R. Acad. Sci. Paris Sér. I Math. 322 (1996). | Zbl
[7] - , Higher order nonlinear degenerate parabolic equations, J. Differential Equations 83 (1990), 179-206. | Zbl | MR
[8] - - , Source-type solutions of a fourth order nonlinear degenerate parabolic equations, Nonlinear Anal. 18 (1992), 217-234. | Zbl | MR
[9] - , The lubrication approximation for thin viscous films: the moving contact line with a porous media cut off of van der waals interactions, Nonlinearity 7 (1994), 1535-1564. | Zbl | MR
[10] - , The lubrication approximation for thin viscous films: regularity and long time behaviour of weak solutions, Nonlinear Anal. 18 (1992), 217-234.
[11] - - - , The thin viscous flow equation in higher space dimensions, Adv. Differential Equations 3 (1998), 417-440. | Zbl | MR
[12] - , Solutions of a fourth order degenerate parabolic equation with weak initial trace, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 28 (1999), 153-181. | Zbl | MR | Numdam
[13] - - , On a fourth order degenerate parabolic equation: global entropy estimates and qualitative behaviour of solutions, SIAM J. Math. Anal. 29 (1998), 321-342. | Zbl | MR
[14] - - , The thin film equation with nonlinear diffusion, Preprint Me.Mo.Mat. Department 2/2000, to appear in Comm. Partial Differential Equations. | Zbl | MR
[15] - , On the motion of a fluid-fluid interface along a solid surface, J. Fluid Mech. 65 (1974), 71-95. | Zbl
[16] - , Source-type solutions to thin-film equations in higher space dimensions, European J. Appl. Math. 8 (1997), 507-524. | Zbl | MR
[17] , Ulteriori properità di alcune classi di funzioni in piú variabili, Ricerche di Mat. (1959), 24-51. | Zbl | MR
[18] , Degenerate parabolic equations of fourth order and a plasticity model with nonlocal hardening, Z. Anal. Anwendungen 14 (1995), 541-573. | Zbl | MR
[19] - , Nonnegativity preserving convergent schemes for the thin film equation, Numer. Mathematik 87 (2000), 113-152. | Zbl | MR
[20] - , Entropy consistent finite volume schemes for the thin film equation, In: "Finite volume schemes for complex applications II", R. Vilsmeier - F. Benkhaldoun - D. Hänel (eds.), Hermes Science Publications, Paris, 1999, pp. 205-214. | Zbl | MR
[21] - , The thin film equation with 2 ≤ n < 3: finite speed of propagation in terms of the l1-norm, Adv. Differential Equations 3 (1998), 625-642. | Zbl
[22] , The porous medium equation in one dimension, Trans. Amer. Math. Soc. 234 (1977), 381-415. | Zbl | MR
[23] , On elliptic partial differential equations, Ann. Scuola Norm. Sup. Pisa, Cl. Sci. 13 (1959), 115-162. | Numdam | Zbl | MR | EuDML
[24] - - , Long-scale evolution of thin liquid films, Reviews of Modem Physics 69 (1997), 932-977.
[25] , Lubrication approximation with prescribed non-zero contact angle: an existence result, Comm. Partial Differential Equations 23 (1998), 2077-2164. | Zbl | MR
[26] - , Higher order nonlinear diffusion, IMA J. Applied Mathematics 40 (1988), 73-86. | Zbl | MR
[27] , "Équations elliptiques du second ordre à coefficients discontinus", Les presses de l'université de Montréal, Montréal, 1966. | Zbl | MR
[28] , An introduction to the mathematical theory of the porous medium equation, In: "Shape Optimization and Free Boundaries", M. C. Delfour-G. Sabidussi (eds.), Kluwer Academic Publishers, Netherlands, 1992, pp. 347-389. | Zbl | MR





