@article{ASNSP_2001_4_30_2_285_0,
author = {Liskevich, Vitali and R\"ockner, Michael and Sobol, Zeev and Us, Oleksiy},
title = {$L^P$-uniqueness for infinite dimensional symmetric {Kolmogorov} operators : the case of variable diffusion coefficients},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
pages = {285--309},
year = {2001},
publisher = {Scuola normale superiore},
volume = {Ser. 4, 30},
number = {2},
mrnumber = {1895713},
zbl = {1072.35196},
language = {en},
url = {https://www.numdam.org/item/ASNSP_2001_4_30_2_285_0/}
}
TY - JOUR AU - Liskevich, Vitali AU - Röckner, Michael AU - Sobol, Zeev AU - Us, Oleksiy TI - $L^P$-uniqueness for infinite dimensional symmetric Kolmogorov operators : the case of variable diffusion coefficients JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2001 SP - 285 EP - 309 VL - 30 IS - 2 PB - Scuola normale superiore UR - https://www.numdam.org/item/ASNSP_2001_4_30_2_285_0/ LA - en ID - ASNSP_2001_4_30_2_285_0 ER -
%0 Journal Article %A Liskevich, Vitali %A Röckner, Michael %A Sobol, Zeev %A Us, Oleksiy %T $L^P$-uniqueness for infinite dimensional symmetric Kolmogorov operators : the case of variable diffusion coefficients %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2001 %P 285-309 %V 30 %N 2 %I Scuola normale superiore %U https://www.numdam.org/item/ASNSP_2001_4_30_2_285_0/ %G en %F ASNSP_2001_4_30_2_285_0
Liskevich, Vitali; Röckner, Michael; Sobol, Zeev; Us, Oleksiy. $L^P$-uniqueness for infinite dimensional symmetric Kolmogorov operators : the case of variable diffusion coefficients. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 4, Tome 30 (2001) no. 2, pp. 285-309. https://www.numdam.org/item/ASNSP_2001_4_30_2_285_0/
[1] - Y - , An approximate criterium of essential self-adjointness of Dirichlet operators, Potential Anal. 1 (1992), 307-317. | Zbl | MR
[2] - - , Addendum to: An approximate criterium of essential self-adjointness of Dirichlet operators, Potential Anal. 2 (1993), 195-198. | Zbl | MR
[3] - - , Dirichlet operators via stochastic analysis, J. Funct. Anal. 128 (1995), 102-138. | Zbl | MR
[4] - , Self-adjointness of some infinite dimensional elliptic operators and application to stochastic quantization, Prob. Th. Rel. Fields 118 (2000), 131-145. | Zbl | MR
[5] , "Uniqueness and non-uniqueness of singular diffusion operator", Lecture Notes in Mathematics, Springer-Verlag, Berlin, 1999. | MR
[6] - - , "Dirichlet forms and symmetric Markov processes", de Gruyter, Berlin- New York, 1994. | Zbl | MR
[7] - , Dirichlet operators and associated differential equations, Selecta Mathematica Sovetica 10 (1991), 345-397. | Zbl
[8] - , Strong uniqueness for a class of infinite dimensional Dirichlet operators and applications to stochastic quantization, Ann. Scuola. Norm. Sup. Pisa Cl. Sci (4) 27 (1998), 69-91. | Zbl | MR | Numdam
[9] - - , Dirichlet operators with variable coefficients in LP spaces of functions of infinitely many variables, Infinite Dim. Anal., Quantum Prob. and Related Topics, No.4, 2 (1999), 487-502. | Zbl | MR
[10] - , Dirichlet operators: a-priori estimates and uniqueness problem, J. Funct. Anal. 109 (1992) 199-213. | Zbl | MR
[11] , "Analytic Semigroups and Optimal Regularity in Parabolic Problems", Birkhäuser, Basel-Boston- Berlin, 1995. | Zbl | MR
[12] - , "Introduction to the theory of (non-symmetric) Dirichlet forms", Springer-Verlag, Berlin-Heidelberg -New-York-London- Paris-Tokio, 1992. | Zbl | MR
[13] R. NAGEL (editor), "One-parameter Semigroups of Positive Operators", Lecture Notes in Mathematics, vol. 1184, Sringer, Berlin, 1986. | Zbl
[14] , "Radon measures on arbitrary topological space and cylindrical measures", Oxford University Press, London, 1973. | Zbl | MR






