@article{ASNSP_2001_4_30_1_1_0,
author = {Chinburg, Ted and Friedman, Eduardo and Jones, Kerry N. and Reid, Alan W.},
title = {The arithmetic hyperbolic $3$-manifold of smallest volume},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
pages = {1--40},
year = {2001},
publisher = {Scuola normale superiore},
volume = {Ser. 4, 30},
number = {1},
mrnumber = {1882023},
zbl = {1008.11015},
language = {en},
url = {https://www.numdam.org/item/ASNSP_2001_4_30_1_1_0/}
}
TY - JOUR AU - Chinburg, Ted AU - Friedman, Eduardo AU - Jones, Kerry N. AU - Reid, Alan W. TI - The arithmetic hyperbolic $3$-manifold of smallest volume JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2001 SP - 1 EP - 40 VL - 30 IS - 1 PB - Scuola normale superiore UR - https://www.numdam.org/item/ASNSP_2001_4_30_1_1_0/ LA - en ID - ASNSP_2001_4_30_1_1_0 ER -
%0 Journal Article %A Chinburg, Ted %A Friedman, Eduardo %A Jones, Kerry N. %A Reid, Alan W. %T The arithmetic hyperbolic $3$-manifold of smallest volume %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2001 %P 1-40 %V 30 %N 1 %I Scuola normale superiore %U https://www.numdam.org/item/ASNSP_2001_4_30_1_1_0/ %G en %F ASNSP_2001_4_30_1_1_0
Chinburg, Ted; Friedman, Eduardo; Jones, Kerry N.; Reid, Alan W. The arithmetic hyperbolic $3$-manifold of smallest volume. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 4, Tome 30 (2001) no. 1, pp. 1-40. https://www.numdam.org/item/ASNSP_2001_4_30_1_1_0/
[Ad] , The noncompact hyperbolic 3-manifold of minimal volume, Proc. Amer. Math. Soc. 100 (1987), 601-606. | Zbl | MR
[At] , Lower bounds for discriminants of octic number fields having six real places, Preprint (1996).
[BMO] - - , The computation of sextic fields with a quadratic subfield, Math. Comp. 54 (1990), 869-884. | Zbl | MR
[Bo] , Commensurability classes and volumes of hyperbolic 3-manifolds, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 8 (1981), 1-33. | Zbl | MR | Numdam
[Ch] , A small arithmetic hyperbolic 3-manifold, Proc. Amer. Math. Soc. 100 (1987), 140-144. | Zbl | MR
[CF1] - , The smallest arithmetic hyperbolic three-orbifold, Invent. Math. 86 (1986), 507-527. | Zbl | MR
[CF2] - , Finite subgroups of maximal arithmetic subgroups of PGL(2, C), Ann. Inst. Fourier (Grenoble) 50 (2000), 1765-1798. | Zbl | MR | Numdam
[CF3] - , An embedding theorem for quaternion algebras, J. London Math. Soc. (2) 60 (1999), 33-44. | Zbl | MR
[CF4] - , Hilbert symbols, class groups and quaternion algebras, J. Théorie Nombres Bordeaux 12 (2000), 367-377. | Zbl | MR | Numdam
[Co] et al., PARI, Freeware available by anonymous FTP from megrez.math.u-bordeaux.fr, directory pub/pari.
[Cu] , Lifting representations to covering groups, Adv. Math. 59 (1986), 64-70. | Zbl | MR
[CS1] - , Paradoxical decompositions, 2-generator Kleinian groups and volumes of hyperbolic 3-manifolds, J. Amer. Math. Soc. 5 (1992), 231-288. | Zbl | MR
[CS2] - , Volumes of Haken manifolds, I, Invent. Math. 118 (1994), 285-329. | Zbl | MR
[CS3] - , Varieties of group representations and splittings of 3-manifolds, Ann. of Math. 117 (1983), 109-146. | Zbl | MR
[CHS] - - , The first betti number of the smallest closed hyperbolic 3-manifold, Topology 37 (1998), 805-849. | Zbl | MR
[EEK] - - , Torsion free subgroups of Fuchsian groups and tessellations of surfaces, Invent. Math. 69 (1982), 331-346. | Zbl | MR
[GMT] - - , Homotopy hyperbolic 3-manifolds are hyperbolic, To appear Ann. of Math. | Zbl | MR
[GMMR] - - - , Arithmeticity, discreteness and volume, Trans. Amer. Math. Soc. 349 (1997), 3611-3643. | Zbl | MR
[GM] - , Precisely invariant collars and the volume of hyperbolic 3-folds, J. Differential Geom. 49 (1998), 411-435. | Zbl | MR
[Gr] , "Hyperbolic Manifolds According to Thurston and Jørgensen", Séminaire Bourbaki 546, L.N.M. 842, Springer Verlag, Berlin, 1981. | Zbl | MR | Numdam
[HW] - , Symmetries, isometries, and length spectra of closed hyperbolic 3-manifolds, Experimental Math. 3 (1994), 101-113. | Zbl | MR
[JRI] - , Minimal index torsion-free subgroups of Kleinian groups, Math. Ann. 310 (1998), 235-250. | Zbl | MR
[JR2] - , Computational methods in arithmetic Kleinian groups, in preparation.
[MR1] - , Commensurability classes of arithmetic Kleinian groups and their Fuchsian subgroups, Math. Proc. Cambridge Philos. Soc. 102 (1987), 251-257. | Zbl | MR
[MR2] - , "The Arithmetic of Hyperbolic 3-Manifolds ", To appear Springer Verlag. | Zbl | MR
[Ma] , Petits discriminants des corps de nombres, In: "Armitage", J. V. (ed.), Proceedings of the Journeés Arithmétiques 1980. London Math. Soc. Lecture Notes series 56 Cambridge Univ. Press 1982, pp. 151-193. | Zbl | MR
[MV] - , Visualization of the isometry group action on the Fomenko Matveev Weeks manifold, J. Lie Theory 8 (1998), 51-66. | Zbl | MR
[Mo] , Quasi-conformal mappings in n-space and the rigidity ofhyperbolic spaceforms, Inst. Hautes Études Sci. Publ. Math. 34 (1968), 53-104. spaceforms, Inst. Hautes Etudes Sci. Publ. Math. 34 (1968), 53-104. | Zbl | MR | Numdam
[O1] , Corps sextiques primitifs, Ann. Inst. Fourier (Grenoble) 40 (1990), 757-767. | Zbl | MR | Numdam
[O2] , The computation of sextic fields with a cubic subfield and no quadratic subfield, Math. Comp. 58 (1992), 419-432. | Zbl | MR
[Po] , Sur les petits discriminants, Séminaire Delange-Pisot-Poitou, Exposé n° 6 Paris, (1976/ 77), 6-01-6-18. | Zbl | MR | Numdam
[Pr] , Q-rank one lattices, Invent. Math. 21 (1973), 255-286. | Zbl | MR
[Prz] , Cones embedded in hyperbolic 3-manifolds, Preprint (2000).
[RW] - , Non-Haken 3-manifolds are not large with respect to mappings of non-zero degree, Comm. Anal. Geom. 7 (1999), 105-132. | Zbl | MR
[Th] , "The Geometry and Topology of 3-Manifolds", Mimeographed Lecture Notes, Princeton Univ., 1977.
[Vi] , "Arithmétique des algèbres de Quaternions", L.N.M. 800, Springer Verlag, Berlin, 1980. | Zbl | MR
[We1] , "Hyperbolic Structures on 3-manifolds", Ph. D. Thesis, Princeton University, 1985.
[We2] , SnapPea: A computer program for creating and studying hyperbolic 3- manifolds, available by anonymous ftp from www.northnet.org/weeks/.






