@article{ASNSP_1997_4_25_3-4_757_0,
author = {Slodkowski, Zbigniew and Tomassini, Giuseppe},
title = {Evolution of subsets of $\mathbb {C}^2$ and parabolic problem for the {Levi} equation},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
pages = {757--784},
year = {1997},
publisher = {Scuola normale superiore},
volume = {Ser. 4, 25},
number = {3-4},
mrnumber = {1655541},
zbl = {1009.32008},
language = {en},
url = {https://www.numdam.org/item/ASNSP_1997_4_25_3-4_757_0/}
}
TY - JOUR
AU - Slodkowski, Zbigniew
AU - Tomassini, Giuseppe
TI - Evolution of subsets of $\mathbb {C}^2$ and parabolic problem for the Levi equation
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1997
SP - 757
EP - 784
VL - 25
IS - 3-4
PB - Scuola normale superiore
UR - https://www.numdam.org/item/ASNSP_1997_4_25_3-4_757_0/
LA - en
ID - ASNSP_1997_4_25_3-4_757_0
ER -
%0 Journal Article
%A Slodkowski, Zbigniew
%A Tomassini, Giuseppe
%T Evolution of subsets of $\mathbb {C}^2$ and parabolic problem for the Levi equation
%J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
%D 1997
%P 757-784
%V 25
%N 3-4
%I Scuola normale superiore
%U https://www.numdam.org/item/ASNSP_1997_4_25_3-4_757_0/
%G en
%F ASNSP_1997_4_25_3-4_757_0
Slodkowski, Zbigniew; Tomassini, Giuseppe. Evolution of subsets of $\mathbb {C}^2$ and parabolic problem for the Levi equation. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 4, Tome 25 (1997) no. 3-4, pp. 757-784. https://www.numdam.org/item/ASNSP_1997_4_25_3-4_757_0/
[AS] - , Level set approach to mean curvature flow in any codimension, J. Diff. Geom. 43 (1996), 693-737. | Zbl | MR
[B] , The motion of a surface by its mean curvature, Princeton Univ. Press, Princeton, NJ, 1978. | Zbl | MR
[D] , Cohomology of q-convex spaces in top degrees, Math. Zeit. 204 (1990), 283-295. | Zbl | MR
[ES] - , Motion of level sets by mean curvature. I, J. Differential Geometry 33, n. 4 (1991), 635-681. | Zbl | MR
[GS] - , Division et extension dans l'algèbre A∞(Ω) d'un ouvert pseudoconvexe à bord lisse de Cn, Math. Z. 189 (1985), 421-447. | Zbl
[H] , Flow by mean curvature of convex surfaces into spheres, J. Diff. Geom. 20 (1984), 237-266. | Zbl | MR
[LSU] - - , Linear and quasilinear equations ofparabolic type, Amer. Math. Soc., Providence, RI, 1968.
[S] , Some aspects of weakly pseudoconvex domains, "Several Complex Variables and Complex Geometry", Proc. of Symposia on Pure Math., 52, part I, 199-231. | Zbl | MR
[Si] , Every Stein subvariety has a Stein neighbourhood, Inv. Math. 38 (1977) 89-100. | Zbl
[S1] , Pseudoconvex classes of functions. II. Affine pseudoconvex classes on RN, Pac. J. Math. 141 (1990), 125-163. | Zbl | MR
[ST1] - , Geometric properties of solutions of the Levi curvature equation in C2, J. Funct. Anal. 138 (1996), 188-212. | Zbl | MR
[ST2] - , Levi equation and evolution of subsets of C2, Rend. Mat. Acc. Lincei s. 9, 7 (1996), 235-239. | Zbl | MR
[W] , Continuity of envelopes of plurisubharmonic functions, J. Math. Mech. 18 (1968), 143-148. | Zbl | MR





