@article{ASNSP_1997_4_25_1-2_217_0,
author = {Brezis, Ha{\"\i}m and Marcus, Moshe},
title = {Hardy's inequalities revisited},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
pages = {217--237},
year = {1997},
publisher = {Scuola normale superiore},
volume = {Ser. 4, 25},
number = {1-2},
mrnumber = {1655516},
zbl = {1011.46027},
language = {en},
url = {https://www.numdam.org/item/ASNSP_1997_4_25_1-2_217_0/}
}
TY - JOUR AU - Brezis, Haïm AU - Marcus, Moshe TI - Hardy's inequalities revisited JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 1997 SP - 217 EP - 237 VL - 25 IS - 1-2 PB - Scuola normale superiore UR - https://www.numdam.org/item/ASNSP_1997_4_25_1-2_217_0/ LA - en ID - ASNSP_1997_4_25_1-2_217_0 ER -
%0 Journal Article %A Brezis, Haïm %A Marcus, Moshe %T Hardy's inequalities revisited %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 1997 %P 217-237 %V 25 %N 1-2 %I Scuola normale superiore %U https://www.numdam.org/item/ASNSP_1997_4_25_1-2_217_0/ %G en %F ASNSP_1997_4_25_1-2_217_0
Brezis, Haïm; Marcus, Moshe. Hardy's inequalities revisited. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 4, Tome 25 (1997) no. 1-2, pp. 217-237. https://www.numdam.org/item/ASNSP_1997_4_25_1-2_217_0/
[1]] - , Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math. 36 (1983), 437-477. | Zbl | MR
[2] , The Hardy constant, Quart. J. Math. Oxford (2) 46 (1995), 417-431. | Zbl | MR
[3] , Note on a Theorem of Hilbert, Math. Zeit. 6 (1920), 314-317. | MR | JFM
[4] , An inequality between integrals, Messenger of Math. 54 (1925), 150-156.
[5] - - , On the best constant for Hardy's inequality in IRn, to appear in Trans. A.M.S. | Zbl
[6] - , The best possible constant in a generalized Hardy's inequality for convex domains in Rn, in "Proc. Conf. on Elliptic and Parabolic P. D. E's and Applications", Capri, 1994, to appear.
[7] - , "Hardy-type Inequalities", Pitman Research Notes in Math., Vol. 219, Longman, 1990. | Zbl | MR






