@article{ASNSP_1992_4_19_3_451_0,
author = {Ottaviani, Giorgio},
title = {On 3-folds in $\mathbb {P}^5$ which are scrolls},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
pages = {451--471},
year = {1992},
publisher = {Scuola normale superiore},
volume = {Ser. 4, 19},
number = {3},
mrnumber = {1205407},
zbl = {0786.14026},
language = {en},
url = {https://www.numdam.org/item/ASNSP_1992_4_19_3_451_0/}
}
TY - JOUR
AU - Ottaviani, Giorgio
TI - On 3-folds in $\mathbb {P}^5$ which are scrolls
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1992
SP - 451
EP - 471
VL - 19
IS - 3
PB - Scuola normale superiore
UR - https://www.numdam.org/item/ASNSP_1992_4_19_3_451_0/
LA - en
ID - ASNSP_1992_4_19_3_451_0
ER -
%0 Journal Article
%A Ottaviani, Giorgio
%T On 3-folds in $\mathbb {P}^5$ which are scrolls
%J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
%D 1992
%P 451-471
%V 19
%N 3
%I Scuola normale superiore
%U https://www.numdam.org/item/ASNSP_1992_4_19_3_451_0/
%G en
%F ASNSP_1992_4_19_3_451_0
Ottaviani, Giorgio. On 3-folds in $\mathbb {P}^5$ which are scrolls. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 4, Tome 19 (1992) no. 3, pp. 451-471. https://www.numdam.org/item/ASNSP_1992_4_19_3_451_0/
[1] , On surfaces in projective 4-space, Thesis, Oslo 1987.
[2] - - - , Boundedness for non-general type 3-folds in P5, to appear in the Proceedings of CIRM Meeting "Analysis and Geometry X", Trento 1991.
[3] - - - , Classification of log-special 3-folds in P5, to appear.
[4] - , Comparing the classical and the adjunction theoretic definition of scrolls, to appear in the Proceedings of the 1990 Cetraro Conference "Geometry of Complex Projective Varieties". | Zbl | MR
[5] - , New properties of special varieties arising from adjunction theory, J. Math. Soc. Japan 43, 381-412 (1991). | Zbl | MR
[6] - - , Threefolds of degree 9 and 10 in P5, Math. Ann. 288, 613-644 (1990). | Zbl | MR
[7] , Ricerche di geometria della retta nello spazio a quattro dimensioni, Atti R. Ist. Veneto Sc., ser. VII, 2, 855-901 (1891). | JFM
[8] , A filtered Bertini-type theorem, J. Reine Angew. Math. 397, 214-219 (1989). | Zbl | MR
[9] , Classification of Buchsbaum subvarieties of codimension 2 in projective space, J. Reine Angew. Math. 401, 101-112 (1989). | Zbl | MR
[10] - , Sur les surfaces lisses de P4, Invent. Math. 95, 1-11 (1989). | Zbl | MR
[11] , Intersection theory, Springer, Berlin 1984. | Zbl | MR
[12] - , Una formula di geometria numerativa, Ann. Univ. Ferrara, Sez. VII, 27, 201-227 (1981). | Zbl | MR
[13] - , On the embeddings of Projective Varieties, Lecture Notes in Math. 1311, 118-146, Springer, Berlin 1988. | Zbl | MR
[14] , Geometry on Grassmannians and applications to splitting bundles and smoothing cycles, Publ. Math. IHES 36, 281-297 (1969). | Zbl | MR | Numdam
[15] , On the existence of scrolls in P4, Atti Accad. Naz. Lincei (8) 69, 223-227 (1980). | Zbl | MR
[16] - , Some formulas concerning nonsingular algebraic varieties embedded in some ambient variety, Atti Accad. Sci. Torino 116, 463-474 (1982). | Zbl | MR
[17] , Projective varieties defined by small number of equations are complete intersections, in "Topology and geometry", Rohlin Sem. 1984-1986, Lecture Notes in Math. 1346, 433-453, Springer, Berlin 1988. | Zbl | MR
[18] , Über 2-codimensionale Untermannigfaltigkeiten vom Grad 7 in P4 und P5, Math. Z. 187, 209-219 (1984). | Zbl | MR
[19] - - , Vector bundles on complex projective spaces, Birkhäuser, Boston 1980. | Zbl | MR
[20] , Sui sistemi lineari di complessi lineari di rette nello spazio a cinque dimensioni, Atti Ist. Veneto, 602, 371-383 (1900). | JFM
[21] - , Liaison des variétés algébriques I, Invent. Math. 26, 271-302 (1974). | Zbl | MR
[22] , Vector bundles and low-codimensional submanifolds of projective space: a problem list, Topics in algebra. Banach Center Publications, vol. 26, PWN Polish Scientific Publishers, Warsaw 1989. | Zbl | MR
[23] , On the adjunction theoretic structure of projective varieties, in "Complex Analysis and Algebraic Geometry", Proceedings Göttingen 1985, Lecture Notes in Math. 1194, 175-213, Springer, Berlin 1986. | Zbl | MR





