@article{ASNSP_1992_4_19_1_69_0,
author = {Webster, S. M.},
title = {Holomorphic symplectic normalization of a real function},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
pages = {69--86},
year = {1992},
publisher = {Scuola normale superiore},
volume = {Ser. 4, 19},
number = {1},
mrnumber = {1183758},
zbl = {0763.58010},
language = {en},
url = {https://www.numdam.org/item/ASNSP_1992_4_19_1_69_0/}
}
TY - JOUR AU - Webster, S. M. TI - Holomorphic symplectic normalization of a real function JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 1992 SP - 69 EP - 86 VL - 19 IS - 1 PB - Scuola normale superiore UR - https://www.numdam.org/item/ASNSP_1992_4_19_1_69_0/ LA - en ID - ASNSP_1992_4_19_1_69_0 ER -
%0 Journal Article %A Webster, S. M. %T Holomorphic symplectic normalization of a real function %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 1992 %P 69-86 %V 19 %N 1 %I Scuola normale superiore %U https://www.numdam.org/item/ASNSP_1992_4_19_1_69_0/ %G en %F ASNSP_1992_4_19_1_69_0
Webster, S. M. Holomorphic symplectic normalization of a real function. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 4, Tome 19 (1992) no. 1, pp. 69-86. https://www.numdam.org/item/ASNSP_1992_4_19_1_69_0/
[1] - , Symplectic geometry, in "Dynamical Systems IV, EMS." vol. 4, Springer-Verlag, Berlin, 1990. | MR
[2] , Differentiable manifolds in complex Euclidean space, Duke Math. J. 32 (1965), 1-22. | Zbl | MR
[3] - , Real hypersurfaces in complex manifolds, Acta Math. 133 (1974), 219-271. | Zbl | MR
[4] , Symmetries and other transformations of the complex Monge-Ampere equation, Duke Math. J. 52 (1985), 869-885. | Zbl | MR
[5] - , Normal forms for real surfaces in C2 near complex tangents and hyperbolic surface transformations, Acta Math. 150 (1983), 255-296. | Zbl | MR
[6] - , "Lectures on Celestial Mechanics", Springer-Verlag, New York, 1971. | Zbl | MR
[7] , A normal form for a singular first order partial differential equation, Amer. J. Math. 109 (1987), 807-833. | Zbl | MR





