@article{ASNSP_1991_4_18_1_39_0,
author = {Cicognani, Massimo},
title = {The geometric optics for a class of hyperbolic second order operators with {H\"older} continuous coefficients with respect to time},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
pages = {39--66},
year = {1991},
publisher = {Scuola normale superiore},
volume = {Ser. 4, 18},
number = {1},
mrnumber = {1118220},
zbl = {0761.35055},
language = {en},
url = {https://www.numdam.org/item/ASNSP_1991_4_18_1_39_0/}
}
TY - JOUR AU - Cicognani, Massimo TI - The geometric optics for a class of hyperbolic second order operators with Hölder continuous coefficients with respect to time JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 1991 SP - 39 EP - 66 VL - 18 IS - 1 PB - Scuola normale superiore UR - https://www.numdam.org/item/ASNSP_1991_4_18_1_39_0/ LA - en ID - ASNSP_1991_4_18_1_39_0 ER -
%0 Journal Article %A Cicognani, Massimo %T The geometric optics for a class of hyperbolic second order operators with Hölder continuous coefficients with respect to time %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 1991 %P 39-66 %V 18 %N 1 %I Scuola normale superiore %U https://www.numdam.org/item/ASNSP_1991_4_18_1_39_0/ %G en %F ASNSP_1991_4_18_1_39_0
Cicognani, Massimo. The geometric optics for a class of hyperbolic second order operators with Hölder continuous coefficients with respect to time. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 4, Tome 18 (1991) no. 1, pp. 39-66. https://www.numdam.org/item/ASNSP_1991_4_18_1_39_0/
[1] - , Parametrix of infinite order on Gevrey spaces to the Cauchy problem for hyperbolic operators with one multiple characteristic, Ricerche Mat., suppl. (1987), 127-147. | Zbl | MR
[2] - , Fourier integral operators of infinite order on Gevrey spaces applications to the Cauchy problem for certain hyperbolic operators, J. Math. Kyoto 30 (1990), 149-192. | Zbl | MR
[3] , The propagation of Gevrey singularities for some hyperbolic operators with coefficients Hölder continuous with respect to time, Res. Notes in Math., Pitman Series 183, 38-58. | Zbl | MR
[4] - - , Sur les équations hyperboliques avec des coefficients qui ne dependent que du temp, Ann. Scuola Norm. Sup. Pisa, 6 (1979), 511-559. | Zbl | MR | Numdam
[5] - - , Well-posedness in the Gevrey classes for a non-strictly hyperbolic equation with coefficients depending on time, Ann. Scuola Norm. Sup. Pisa, 10 (1983), 291-312. | Zbl | MR | Numdam
[6] - - , Opérateurs pseudo-différentiels et classes de Gevrey, Comm. Partial Differential Equations 8 (1983), 1277-1289. | Zbl | MR
[7] , Opérateurs hypoelliptiques dans des éspaces de Gevrey, Bull. Soc. Sc. Math. R.S. Roumanil 27 (1983), 317-333. | Zbl | MR
[8] , Gevrey well-posedness for a class of weakly hyperbolic equation, J. Math. Kyoto Univ., 24(4), (1984), 763-778. | Zbl | MR
[9] , Fundamental solution of Cauchy problem for hyperbolic systems and Gevrey classes, Tsukuba OJ. Math. 1 (1977), 163-193. | Zbl | MR
[10] , Ultradistributions III-Vector valued ultradistributions and the theory of Kernels, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 29 (1982), 653-718. | Zbl | MR
[11] , Pseudo Differential Operators, M.I.T. press, 1981. | Zbl
[12] , Propagation de la regularité au sense de Gevrey par les opérateurs différentiels à multiplicité constante, J. Vaillant, Séminaire équations aux dériveés partielles hyperboliques et holomorphes, Hermann Paris, 1984, 106-133. | Zbl | MR
[13] , Fundamental solution for a hyperbolic equation with involutive characteristics of variable multiplicity, Comm. Partial Differential Equations, 4(6), (1979), 609-643. | Zbl | MR
[14] , Sur les équations hyperboliques à coefficients qui sont hölderiens en t et de la classe de Gevrey en x, Bull. Sci. Mat., 107 (1983), 113-138. | Zbl | MR
[15] , Parametrix du problème de Cauchy pour une classe de systèmes hyperboliques a caractéristiques involutives de multiplicité variable, Comm. Partial Differential Equations, 5(1), (1980), 1-22. | Zbl | MR
[16] - , Le problème de Cauchy a caractéristiques multiples dans la class de Gevrey; coefficients hölderiens en t, to appear.
[17] , Fourier Integral Operators in Gevrey Class on Rn and the Fundamental Solution for a Hyperbolic Operator, Publ. RIMS, Kyoto Univ. 20 (1984), 491-542. | Zbl | MR
[18] , Multi-products of Fourier integral operators and the fundamental solution for a hyperbolic system with involutive characteristics, Osaka J. Math. 21(1), (1984), 169-224. | Zbl | MR
[19] - , Propagation of wave front sets of solutions of the Cauchy problem for hyperbolic equations in Gevrey classes, Osaka J. Math., 23(4), (1986), 765-814. | Zbl | MR
[20] Pseudo-differential operators of infinite order and Gevrey classes, Ann. Univ. Ferrara, Sez. VII, 31 (1985), 197-219. | Zbl | MR





