@article{ASNSP_1987_4_14_3_465_0,
author = {Attouch, H. and Buttazzo, G.},
title = {Homogenization of reinforced periodic one-codimensional structures},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
pages = {465--484},
year = {1987},
publisher = {Scuola normale superiore},
volume = {Ser. 4, 14},
number = {3},
mrnumber = {951229},
zbl = {0654.73017},
language = {en},
url = {https://www.numdam.org/item/ASNSP_1987_4_14_3_465_0/}
}
TY - JOUR AU - Attouch, H. AU - Buttazzo, G. TI - Homogenization of reinforced periodic one-codimensional structures JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 1987 SP - 465 EP - 484 VL - 14 IS - 3 PB - Scuola normale superiore UR - https://www.numdam.org/item/ASNSP_1987_4_14_3_465_0/ LA - en ID - ASNSP_1987_4_14_3_465_0 ER -
%0 Journal Article %A Attouch, H. %A Buttazzo, G. %T Homogenization of reinforced periodic one-codimensional structures %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 1987 %P 465-484 %V 14 %N 3 %I Scuola normale superiore %U https://www.numdam.org/item/ASNSP_1987_4_14_3_465_0/ %G en %F ASNSP_1987_4_14_3_465_0
Attouch, H.; Buttazzo, G. Homogenization of reinforced periodic one-codimensional structures. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 4, Tome 14 (1987) no. 3, pp. 465-484. https://www.numdam.org/item/ASNSP_1987_4_14_3_465_0/
[1] , Variational Convergence for Functions and Operators. Pitman, Appl. Math. Ser., Boston (1984). | Zbl | MR
[2] , Homogénéisation primale et duale par epi-convergence. Applications à l'élasticité. Publications A V AMAC 84-06, Université de Perpignan, Perpignan (1984).
[3] - , Averaged processes in periodic media. Moscow, Nauka 1984 (in russian). | Zbl
[4] - - , Asymptotic Analysis for Periodic Structures. North-Holland, Amsterdam (1978). | Zbl | MR
[5] , Su una definizione generale dei Γ-limiti. Boll. Un. Mat. Ital., 14-B (1977), 722-744. | Zbl
[6] - , Γ-limits of integral functionals. J. Analyse Math., 37 (1980), 145-185. | Zbl
[7] - , Singular perturbation problems in the calculus of variations. Ann. Scuola Norm. Sup. Pisa Cl. Sci., 11 (1984), 395-430. | MR | Numdam | EuDML
[8] - , Integral representation and relaxation of local functionals. Nonlinear Anal., 9 (1985), 515-532. | Zbl | MR
[9] , Etude de la conductivité stationnaire dans un domaine comportant une répartition périodique d'inclusions minces de grande conductivité. RAIRO Anal. Numér., 17 (1983), 137-159. | Zbl | MR | Numdam | EuDML
[10] - , Some properties of Γ-limits of integral functionals. Ann. Mat. Pura Appl., 122 (1979), 1-60. | Zbl
[11] , Homogénéisation de structures présentant de nombreuses inclusions (strates, fibres) fortement conductrices. Thèse, Université de Perpignan, Perpignan (1986).
[12] - , Reinforced and alveolar structures. Publication 85042 du Laboratoire d'Analyse Numérique Paris VI, Paris (1985).
[13] , Convergence problems for functionals and operators. Proceedings Recent Methods in Nonlinear Analysis", Rome 1978, edited by E. De Giorgi - E. Magenes - U. Mosco, Pitagora, Bologna (1979), 131-188. | Zbl | MR
[14] , G-operators and Γ-convergence. Proceedings of the International Congress of Mathematicians, Warszawa 1983. | Zbl
[15] - , Una presentazione sintetica dei Γ-limiti generalizzati. Portugal. Math., 41 (1982), 405-436. | Zbl
[16] - , A general theory of variational functionals. "Topics in Functional Analysis 1980-81", Scuola Normale Superiore, Pisa (1982), 149-221. | Zbl | MR
[17] , Some Methods in the Mathematical Analysis of Systems and their Control. Science Press, Beijing (China); Gordon Breach, New York (1981). | Zbl | MR
[18] , Periodic solutions and homogenization of nonlinear variational problems. Ann. Mat. Pura Appl., 117 (1978), 139-152. | Zbl | MR
[19] , Non Homogeneous Media and Vibration Theory. Lecture Notes in Phys., Springer-Verlag, Berlin (1980). | Zbl
[20] , Su alcune applicazioni di un tipo di convergenza variazionale. Ann. Scuola Norm. Sup. Pisa Cl. Sci., 2 (1975), 617-638. | Zbl | MR | Numdam
[21] - - , Thin inclusions in linear elasticity: a variational approach, J. Reine Angew, Math. (to appear). | Zbl | MR
[22] - , Homogenization of reinforced fibred structures. (Paper in preparation).






