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An Optimization Problem in Heat Conduction

N.E. AGUILERA (*) - L.A. CAFFARELLI (**) - J. SPRUCK (**)

In this paper we discuss a classical optimization problem in heat
conduction that may briefly be described as follows (see for instance [D].)
Given a surface 0Q in R3, with prescribed temperature distribution 0, we
want to surround 0Q with a prescribed volume of insulating material so as to
minimize the loss of heat in a stationary situation.

Mathematically, we seek a function u, (the temperature in f2), which is
harmonic along the insulating material and vanishes outside of it. The quantity
to be minimized (the flow of heat) is proportional along or, what
amounts to the same thing, to the total mass of Au.

Our problem was inspired by the papers [A-C] and [A-A-C], which treat
the case 0 =- constant temperature distribution on (9f2. The quantity to be
minimized then reduces to the Dirichlet integral. The case of prescribed 0
presents several new difficulties due to the fact that the free boundary condition
now has a non-local character. This forces us to use non-local perturbations
to study the free boundary. Furthermore, once initial regularity of the free

boundary is established, the free boundary condition being non-local presents
a novel type of higher regularity in the spirit of [K-N-S].

In order to overcome the difficulties of the problem, we make essential
use of powerful new results of Jerison and Kenig ([J- K]) on the behavior
of harmonic functions in domains with some irregular geometry, and also a
monotonicity formula introduced in [A-C-F]. These are used to establish the
Holder continuity of Uv along the (reduced) free boundary.

Although the problem presented here is for bounded Q, there are no major
changes in solving it for unbounded n, perhaps a more interesting geometry
from the physical point of view.

It seems that the natural framework for our approach would be to

minimize, instead of the flux of heat, a general monotone operator A( uv),
like f uP or inf u, along an. We hope to expand this idea in future research

(*) Supported by CONICET, Argentina.
( * * ) Partially supported by N.S.F.

Pervenuto alla Redazione il 14 maggio 1986.
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since these problems arise in questions of domain optimization for electrostatic
configurations.

An outline of the paper is as follows. In Section 1 we formulate the
variational problem for the temperature u and in Section 2 we show the
existence of a weak solution to the variational problem. Section 3 contains
the preliminary regularity properties of the minimizer u in the spirit of [A-C].
In pahicular, it is shown (Corollary 3.9) that u is Lipschitz in f2, regular near
0Q and 

#8 ,

Denoting U = {x E 12 : u(x) &#x3E; 0} and F = f2 - U, we prove preliminary
regularity properties of the free boundary aF in Corollary 3.21. Section 4
contains a proof that U is a non-tangentially accessible domain in the sense of
[J-K]. In section 5 we make non-local perturbations to show that u, is Holder
continuous on the "reduced boundary" R of aF (Theorem 5.4). In the process
we derive the so-called free boundary relations (Theorem 5.5 and 5.5’). We
then go on to show in Section 7 that l~ is analytic.

1. - Statement of the problem

Suppose we are given

1) a bounded domain in whose boundary, an, is smooth
2) a function ø defined on 0Q positive and smooth and
3) a number it, 0  it ] (where I f2l denotes the Lebesgue measure of ~2).

Our purpose is to study the problem:
(P) Minimize

among all functions v that satisfy
i) v E H’ (f2), v &#x3E; 0 in f2 and v =  on an (in the sense).
ii) Av &#x3E; 0 in the distribution sense in n.

iii) 
We recall that if v satisfies ii) then we can interpret Ovdx as a non-

negative measure, so that J(v) makes sense.
We will show that a solution to P exists and we will study regularity

properties of the solution and the corresponding free boundary, i.e. the boundary
of the set where the solution vanishes.

However, we will not directly solv this problem but use a penalized
version, showing later (in section 6) that or small values of the penalization
parameter we have a solution to P.

The penalized problem is stated as follows:
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(P.) Minimize

among all functions v satisfying i) and ii) above where f, is defined as

and e &#x3E; 0 is a small number.

2. - Existence of a solution to problem P,

It is not difficult to obtain an a priori bound on the H1 norm of competing
functions:

where w is the harmonic function in n with boundary values and
M = supa n 0.

PRO©F. By the maximum principle 0  v  w  M. Since

we have

as required.

Since the function w of Lemma 2.1 satisfies (1.1) i, ii problem P, is well
posed and if we set
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among all admissible functions v for Ps, then d,  oo. Using lemma 2.1 we
can find a minimizing sequence {vk} of admissible functions and a function
UB so that

(2.1) vk - ue weakly in Hl(f2), strongly in L’(f2) and
almost everywhere in H.

We conclude from (2.1) that 0, ue = ~ ’on an (in the sense of Hl) and
Aue &#x3E; 0 in the distribution sense. Moreover,

by the well known semicontinuity properties 6f these functionals. It follows
from (2.2) that

THEOREM 2.1. Given e &#x3E; 0, there exists a solution u, to problem P,, i.e

3. - Regularity properties of solutions to P,

In this section we derive regularity properties of minimizers analogous to
those in [A-C,§4] using similar techniques.
We use the notation B (x, r) for the open ball of radius r and center x

and B(x,r) for its closure.
We will keep c &#x3E; 0 fixed and write, for simplicity, u = u«.

LEMMA 3.1. For x and r &#x3E; 0 such that B(x, r) c f2, the average

is a increasing function of r for fixed x.

PROOF. Let be a sequence of functions such that as k -~ oo,
§k converges to the Dirac measure supported at the origin, in the sense of
distributions. Then u * Ok, the convolution of u and §k which is defined in an
appropriate subset of is a smooth subharnionic function, i.e. for r2 &#x3E; rI &#x3E; 0
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Since u * ~~ -&#x3E; u locally in Ll (Q), the lemma follows.
The previous lemma allows us to redefine u on a set of Lebesgue measure

zero so that

as r ~, 0, for any x E O.

LEMMA 3.2 Let 0 be a smooth bounded domain. Let 0 be a smooth
function defined in 0, which is positive in 0, harmonic near 80 and vanishing
on ao. Then for any v E subharmonic (in the distribution sense)

where V),6 = I min(,O, S ), Os - { z E fl : 0  0,6  1 ~ and v is the outward
normal. In the boundary integral, v is interpreted as its trace on a Ob .

PROOF. Since W, ~‘ 1 as 6 E 0, we have

But

The combination (3.1 ) (3.2) proves the lemma since AO,6 = 0 in Ob for 6 small
enough.

COROLLARY 3.3. Let 1j = B (z, r) and let HI (B) be subharmonic in
B. Then

PROOF. In the previous lemma we let B = 0 and ,p = log - if n = 2,
,p = p nl-2 - if n &#x3E; 3, (where p = p(y) = ]y - xl) near 8B and ,p smoothp" r" 

in B. A simple change of variables gives (3.3).
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LEMMA 3.4. Let 0 and 1/J be as in lemma 3.2. Let v E Hl(0) be a
non-negative subharmonic function, and choose a representative so that

everywhere in 0. Then f vavdx has a meaning and
0

PROOF. For any compact subset K of 0, f vavdx has a meaning since v
K

can be approximated by a decreasing sequence of smooth functions. We have

and, as in lemma 3.2,

and the lemma follows.
We will also need the following result from [A-C]

LEMMA 3.5. Suppose v E HI (0) is a non-negative semicontinuous

function. There exists a constant c &#x3E; 0, depending only on dimension, such that
whenever B(x, r) c 0,

where h is the harmonic function in B (x, r) taking boundary values equal to
v on 9B (x, r):



361

We can now prove

THEOREM 3.6. There exists a constant M. &#x3E; 0 such that if u is a solution
to P. and B ( z, r) with

then B (z, r) E {y E 11 : u(y) &#x3E; 0) and u is harmonic in B(z, r).
PROOF. Let B = B(x, r) and let v be the solution of the variational

problem

among functions in HI (0) which equal on af2 and are nonpositive on
{x u(x) = 0}BB. Such a solution exists since u itself is a competing
function. The minimizer v has the following properties:

a. Av &#x3E; 0 (this follows by taking arbitrary 6 &#x3E; 0 and non-negative
test functions ’1, and comparing v and v - 6’1)

(3.4) b. v &#x3E; 0 (compare v and max(v, -5) for 6 &#x3E; 0), and actually v &#x3E; u

(compare v and v + s (u - v) + for 6 &#x3E; 0)
c. 
a

It follows that v is admissible for the problem Ps and so

We now use lemma 3.2 with 0 = f2 and a suitable o to obtain

Since u = v on an and U &#x3E; 0 on n n,
av -

Using (3.5) (3.6) and lemma 3.4 we obtain
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0 and f vOvdx = 0 (since for any 17 E Co (S~)), ~ &#x3E; 0 and I A I
n 0

small, the function v + is nonpositive on {x u(y) = 0} B B and takes
the same values as v on (9fl, so that

and since A is arbitrary

1 gives f vavdx = 0. Thus from (3.7) follows
n

Consider now the harmonic function h in B which equals u on aB, and
extend h by u outside B. Then h E &#x3E; 0, 0 h &#x3E; 0 so that h is
admissible for both P, and as a competitor against v. It follows that

and from (3.8)

Since J. (u)  J. (v) we obtain from (3.9)

Using lemma 3.5 (with v replaced by u) and (3.10) we obtain

and so if we must have
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This proves u is harmonic in B and thus u &#x3E; 0 in B.

We will now show that the zeros of u stay away 9f2 using a resuk whose
proof is similar to that of lemma 3.5 and can be found in [A-A-C].

LEMMA 3.7. There exists a positive constant c, depending on the

smoothness of 0 and an but not on E, such that for any p &#x3E; 0 small enough,

where D6 = {y E f2 : d(y, an)  b} and h is the harmonic function in D6
taking boundary values u on aD6.

As a consequence we have

THEOREM 3.8. With the notation of the previous lemma, there exists a

c5 = b(s) such that

PROOF. If h is as in lemma 3.7, but extended to 0 by u outside D~, we
have that

Let us find v minimizing f IVvp2d? among v E with v = 0 on 9f2 and
o

v  0 on f2: u(x) = 0} B D,6. Then as in Theorem 3.6,

and the proof follows as in that theorem using now lemma 3.7 in place of
lemma 3.5.

Combining Theorems 3.6 and 3.8 we can state

COROLLARY 3.9. The set {x_E ~ : u(x) &#x3E; 0} is open, u is harmonic there
and u is Lipschitz continuous in 0. Also, u is regular near an and

In the sequel, we will denote by U the set {x E f2 : &#x3E; 0 } and by
F the set f2 - U = {x e n : = 0}. We can now state a "non-degeneracy"
property of u, similar to that in [A-C]:
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THEOREM 3.10. For 0  r  1, there exists a constant ms (T) such that if
B (x, r) C fZ and 

~ -

then B (z, Tr) C F.

PROOF. Let us denote by v the fuqction minimizing / in H’ (11)
_ 

n 
I

subject to the constraints v = 0 on an and v  0 on B(ac, rr) UF. Then 0,
0  v  u and f vAvdz = 0. Since v competes with u in problem Ps, we find

n

Also

where m = infan 0. This follows as in the proof of Theorem 3.6.
Now define 

- -

and for y in .

where s = _max u and, p = P(y) = ly - Extending h by u outside B(x, Tr),
_

we see that h = 0 in F U B(x, rr) and h = u on Therefore h competes
with v and so from (3.12) (3.13) we get

Since h - 0 on B(x, rr) we may rewrite (3.9) as
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Since IVhl2 -IVuI2 = -2VhV(u - la) - IV(u - h) ~z we may estimate the
right hand side of (3.16) by

by the definition of h (see (3.14)). Here c (n, r) is constant depending only on
the dimension n and r. Therefore

On the other hand,

Since u is subharmonic,

It follows from (3.17) (3.18) (3.19) that if

and is sufficiently small depending on n, c, 7-, then necessarily u * 0 on
proving the theorem.

As a consequence aF has the following properties:

COROLLARY 3.11. There exists a constant c,, 0  c,  1, such that for
any x E aF and r &#x3E; 0 with B(x,r) C Q,

Moreover, given 6 &#x3E; 0 and x E aF with B (x, 6) c f2 there is a point y E U so
that y - x ~  6, u(y) &#x3E; c6 and in fact B(y,c’8) c U where c, c’ I are positive
constants depending on Ue.
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PROOF. By Theorems 3.6, 3.8, 3.10, if x E aF, B (x, r) c 0 and 0  r  1,
we always have

so that for fixed r &#x3E; 0 we may find y E aB (x, r /2) such that
If we now choose r small,

and we obtain - x  r, u ( y) &#x3E; cr and B ( y, c’r) c U.
Turning now to the density property (3.20), the previous argument gives

an upper bound for

To show the lower bound, let us use the notations of Theorem 3.6. Then
by (3.10)

By Poisson’s integral formula, we have for ly - xl  rR, 0  r  1

Also u(y) = lu(y) - u (x) I  Krr where K is the Lipschitz norm of u (Theorem
3.8). By Theorem 3.10 we may conclude

It should be clear that c(n, r) -~ 0 as T - 0 and ms (T) increases as T decreases,
so that for small r

where c depends on u. Using Poincare’s inequality
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and (3.21) (3.22) we obtain

which is the remaining bound.

We can therefore apply the results in [A-C, §4] to obtain:

COROLLARY 3.21 i) If denotes the (n-1) dimensional Hausdorff
measure of the set A, we have

Moreover, for some positive constants ce,Ce

for all x E aF and r &#x3E; 0, B (x, r) c o.

ii) There exists a Borel function q = qs such that for any r~ E Co (0)

iii) There exists positive constants c, and Os such that

for almost all points x in 8 F.

iv) For 11n.-I aln2ost all points in 8F, an outward normal v = v(x) to (9F
is defined and furthermore

4. - Regularity of the free boundary

In this section we show that U = {x E 0 : u(x) &#x3E; 0} is a non-tangentially
accessible domain and can therefore apply the results of [J-K].

Let us recall that u = u, in a solution to the problem Pg, where 6 &#x3E; 0 is
fixed but small. We introduce the notation

and

for any a &#x3E; 0.
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THEOREM 4.l. There exist constants A = ÅS &#x3E; 1 and u = Us  1 such that
whenever u(x) &#x3E; 0, 6 = d(x, F) and B(x, 6) C 0, then if 61 = d(x,Ftu(:¡;)), we
have 

2

PROOF. Let us denote by m the constant me ( 1 ) appearing in Theorem
3.10 and by K the Lipschitz norm of u (recall Theorem 3.8). If we define o-
by

then we have

.

Since u is harmonic in B (x, S ), we have with B, = B(x,6I) and

B = B (z, I o,6), that

Let us denote by a the quotient

1’hen 0  a  1 and

The constant on the left of (4.1) is a decreasing function
of a. Now ~l  6 and  1, so a is bounded above by
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which is a number less than 1, depending on the dimension and the constant
(T but not on x, z, 6 or 61. We therefore obtain 2) with u = 1 + 3 &#x3E; 1.

LEMMA 4.2. There exists and T = r, such that whenever

xo E F, x E and A is a connected component of fl B (xo, r)
containing x, then

1) For some yo E B(xo, r), B(Yo,1r) C A
2) .! &#x3E; Tr2 where p = p(y) = ly - 

A

PROOF. Starting with Xl = x, we use Theorem 4.1 to inductively define a
sequence of points X 1, x2, ... , xk, XA;+ 1 so that for j = 1,..., k,

By iii) and the Lipschitz character of u, we know that we cannot continue
this process indefinitely without stepping out of B(xo, r), so we stop at the
first k for which B(xo, r). Notice also that by ii) and iii), and
since 61 5 r, c A for j = 1,..., k. By Theorem 4.1 we know that

and therefore, with the notation of that theorem,

Now since &#x3E; Àlu(Xj), we must have (recall that

so

since A &#x3E; 1.

Also 2Sk and B(zo, r) and hence
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from which we derive 1) with yo and suitable 1.
Now we are going to use 1) in order to obtain 2). Since c

we must have

Introducing polar coordinates centered at xo, we may describe any point
in the convex hull of B (yo, U {xo } by py’ where 0  p  po ( y’) and y’
varies over a subset E of the unit sphere (ly’l = 1) For each y’ E E, consider
pl (y’) so that the segment py’ is inside A for PI  p  po and either pi = ~rr
or both pi &#x3E; ~r and p1 y’ E A. 

’

In either case we have

and therefore

and since pi &#x3E; ~r

Integrating this inequality for y’ E E we obtain

We now notice that the integral on the left is bounded below by a constant
depending only on the dimension and the quantity 1U. Also u ( yo ) &#x3E; m1r, so
that for some T &#x3E; 0 we have 2).

In [A-C-F] the following lemma is proved, although the statement there
differs slightly from ours.

LEMMA 4.3. Let v be a continuous function defined on B = 
Suppose that v is harmonic in the open setlx E B : v(x) 0 OJ. Let Al and A2
be two different connected components in B of the set ~x E B : v(x) 0 0~ and
define for 0  r  R

where p = p(x) = Ix - xol. Then
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1) ~ is a non-decreasing function of r

2) For almost all r, 0  r  R, 0’(r) ’ where

and g(a) is a convex and increasing function of a taking positive values for
positive a.

We will also need the following result

LEMMA 4.4. With the notation of the previous lemma, suppose in addition
that for some constant c’ &#x3E; 0 and any r, 0  r  R

Then for some positive ~i depending only on the dimension and the constant

is a non-decreasing function of r.

PROOF. We are assuming now that for 0  r  R

where a(s) was defined in the previous lemma. Since 0  a  1, for small x
0  x  1 we must have

or

Let us fix K so that c’ = Then for some other constant c &#x3E; 0, and
for any r we must have

We want to show that for some ~3, if 0  ri  r2  R then
So let us consider rI and r2 fixed and assume that

0(ri) 0 0.
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We may choose k so that

Then

Since the function g in Lemma 4.3 is increasing,

and so

Using now that we have

proving the lemma.
We would like to use now results concerning the boundary behavior of

non-tangentially accessible domains [J-K], so let us first introduce the pertinent
definition and results:

DEFINITION 4.5. Suppose k is fixed positive constant and let D be an

open set in Rn. Then D satisfies a Harnack chain condition if for any 6 &#x3E; 0
and any points x, y E .D such that  c6 and B (x, b ), B(y, 5) are contained
in D, we can find points Xl, x2, ... , Xl. for which

1) Bi C D for i = 1, ... , ~
2) xi, xe = y and 
3) t (the length of the chain) may depend on c but not on b .

DEFINITION 4.6. A bounded open set D c Rn is a non-tangentially
accessible domain if there exist M &#x3E; 0 and ro &#x3E; 0 such that

1) For any x E D and any r, 0  r  ro, there exists y E D such that
 Ix - yl  r and B(y, k-’r) C D.

2) The Lebesgue density of Rn B D at any of its points is bounded below
uniformly by a positive constant, i.e. there exists &#x3E; 0 such that for
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THEOREM 4.7. Let D be a non-tangentially accessible domain and let V
be an open set, V and D contained in Rm. For any compact set K, K c V
there exists a constant a &#x3E; 0 such that for any positive harmonic functions v
and w which vanish continuously on f1 V, the quotient ’ is a Holder

continuous function of order a in K n 1(9D. In particular for any xo E K fl aD
the limit

exists.
We can now state one of the most important results in this section:

THEOREM 4.8. Let u = Us be a solution to the problem P,. Then the set
U = {x E f2: u(x) &#x3E; 0} is a non-tangentially accessible domain.

PROOF. Since 0Q is smooth, by Theorem 3.8 we see that it is enough to
study the properties of aF where F = {x e Q : u(x) = 0). By Corollary 3.11
we also know that the theorem will be proved if we can show that U satisfies
the Harnack chain condition.

Suppose then that x 1 and X2 are such that for some c &#x3E; 0 and 6 &#x3E; 0 we
have

1) IXI - X21  c6

2) B(x,5) c U, B (X2, 6) C U.
Suppose now that, without loss of generality, d(x2, F) = 50. If
2 cs then x 1 E c U and we can easily find the required chain.

Let us consider then only the case 50  2ab.
Let xo E F be such that xo - X21 = 50 and let ro = 456. Then for R &#x3E; ro,

x1 and X2 are in B(xp, R). Let 
We will presently show that if R &#x3E; cro, where c may depend on u but not

on Xl, X2, then the connected components A~ of B(xo, R) n U d which contain
xi, i = 1, 2, are actually the same. (Recall that Ud = {x E f2 : u(x) &#x3E; d}).

Let us suppose that A2 and let us use Lemmas 4.3 and 4.4 with
v = (u - d) +. We see that because of Corollary 3.11, for some exponent a &#x3E; 0

depending on u, but not on the particular points or radius, 
’

is non-decreasing, where l/J is defined in lemma 4.3. We now apply Lemma
4.2 and Schwartz’s inequality to obtain

if r &#x3E; ro.
Since u is Lipschitz, say with constant K, we also have the bound
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and so

or

Hence we must have A, = A2. Since A1 is open and connected we may
find a curve r inside A, having xl and x2 as end point. For each y E r we
know that

where m is the constant of Lemma 4.1. Therefore if y E r, d(y, F) &#x3E; d /m.
Let p = so that if y E r and ix - yi  p then u(x) &#x3E; 0. Since

we may find a sequence y1, ... , yf of points in r such that r c p),
and we may further ask that no y in r belong to more than c(n) of the balls
B (yi, p). 

I mb,Furthermore, since p = ro = 4cs and yi E B (xo , cro) with c depen-
’ 

ding on u, f must be bounded by a constant depending only on the dimension,
the function u and the constant E, but not on Xl, X2 or b.

Using Theorem 4.7 we can state 
’

COROLLARY 4.9. Let u be a solution to the problem Pee Let U = {x E f2:
&#x3E; 0). Then

a) A (negative) Green’s function for the Dirichlet problem exists in U, let

us denote it by G.
b) There exists an exponent a &#x3E; 0 such that for any fixed y E U the quotient

is a ca function of x, for x away from y, taking values

at the regularity points of c3U where the normal v is defined. (Recall
Corollary (3.12)).

c) For any smooth function 1/J we have

where v denotes the normal pointing to the outside of U.
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COROLLARY 4.10. Let h be harmonic in U, h = 1 on h = 0 on 8F.
Then

a) C,u for positive constants c,, C. depending on u

b) The quotient is a Ca function on U, taking values at the regularu 

points of aF.

5. - Regularity of the normal derivative and the free boundary conditions

In this section we will show, using suitable perturbations of the free
boundary, that the normal derivatives Uv of a solution to P,, is Holder
continuous on most of the free boundary (Theorem 5.4). In the course of the
proof, we will also derive the so-called "free boundary conditions" (Theorem
5.5) that will be used in section 7 to prove higher regularity.

Recall that e &#x3E; 0 is fixed and small, u = u,, Uv = q as defined in
Corollary 3.12, U = {x u(x) &#x3E; 0} and F = 0 - U.

To fix the ideas, consider a function ip defined on Rn such that

1 ) w(z) depends only on lxi,
2) is non-increasing,
3) 1 if r  }, 0, if r &#x3E; !,
4) E Coo (Rn).

We denote by I the integral, I f O(x)do-, where x is in Rn:
x = (~1 ~ · .. , &#x3E; 

Consider for b small’ and positive the domains

where en = (0, ... , 0, 1).
The following lemma is a variant of the Hadamard variational formula;

we will prove it using "interior variations" (see e.g. [G, Chapter 15]).

LEMMA 5.l. Let v denote the harmonic function in D+ (respectively D-)
taking boundary values xn on IX = 1 and zero otherwise. Then as b ~,, 0

(respectively where Vv is the inward normal derivative

at aD-). 
’ -

PROOF. Let y = x - If 6 is small enough, the transforma-
tion x --~ y is a smooth change of variables. Let v*(x) = v(y(x)). Then (see
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[G, Chapter 15])

where

and

Since v* and Xn vanish for Xn = 0, we may use Green’s theorem for the

operator Lb to obtain

where v is the outward normal to aD.
Since L6V. = 0 and v* = v near aD n {x : xn &#x3E; 0}, we can rewrite this

equation as

Since zn and v are harmonic in D , we find

On the other hand,

and v, v* converge uniformly to zn in D, as 6 - 0 by the maximum principle.
We conclude that

Finally, by Green’s theorem

proving the result for D+. The proof of the corresponding result for D- follows
the same pattern.
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We will denote by R a subset of aF consisting of points for which iii)
and iv) of Corollary 3.12 apply and for which, furthemore

as r -~ 0. We know that R can be chosen so that Hn-l(8F B R) = 0.
For x E R, it is possible to find now a function ~ _ ~ (r) defined for r &#x3E; 0

so that 0 is non-decreasing, and if v = v(x) is the outward normal direction
toFatx

Suppose now that x E R and r &#x3E; 0. Without loss of generality we may
assume x = 0 and v = v (x) = en. We define the sets

where D+ and D- have the same meaning as in (5.1) and we take

Note that

LEMMA 5.2. Let w be the harmonic function in S = (D+ (x, r) UU) f1B (x, r),
taking boundary values u in (a,S) f1 aB (x, r) and zero otherwise. Then as r --+ 0,
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PROOF. Since u(y) c-- with error bounded by 0(r) (recall (5.2)),
we have by regularity theory that w(y) ~-- ru,(x)v(2) with error bounded by
a constant (depending on the dimension n and times where v

is the function defined in Lemma 5.1. Furthermore, since I --+ 0 and6 r

is bounded by Crn-1 (Corollary 3.12), we only have to
study the limits as r - 0 of

By dilations, and Lemma 5.1

Now lvvl is bounded depending only on V) and the Hausdorff distance
from S n 8F to B(x, r) yn = o) is bounded by 0(r) (condition 5.2b).

Using that U had finite perimeter, we may "integrate by parts" to obtain

where vn(y) = en . v(y). Since v is differentiable in the Lebesgue sense with
respect to the n - 1 dimensional Hausdorff measure restricted to 0U (5.2c), the
result follows.

Similarly the following lemma can be proved:
LEMMA 5.3. Let w denote the harmonic function in ,S = U fl 

taking boundary values u in (05) f1 aB and zero otherwise. Then as r --~ 0,

where v is the inward normal to D- (x, r).
We now state and prove the principal result of this section

THEOREM 5.4. u, is a Hölder continuous function on R.

PROOF. Let be two points in R. Our plan is to perturb 8F so as
to obtain a bound for [ in terms of where a is the

exponent of Corollaries 4.9 and 4.10.
Associated to we have functions 01, 02 defined in (5.2); without

loss of generality we may suppose §1 = l/J2 = 0. Suppose then that

0  r  I IX1 - x2 ~, 0(r)  1 and consider the sets D+(a:i,r), 
defined by (5.3).
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We denote by V, Vl, V2 respectively, the continuous functions defined in H
by

By the maximum principle, v2  v, u  vl, and by the representation
formula of corollary 4.9:

where ri = D+(xi,r) n (cgu), r2 = B(x2,r) n (0 (U) BD-(x2,r)) and v is the
outward normal.

Basic to our analysis is the harmonic function h in U with h = 0 on c7F
and h = 1 on an (see Corollary 4.10). In terms of h we may express (here v
is the outward normal)

We will estimate from above, the terms on the right-hand side of (5.7).
From (5.6), for x E B(x1, r) f1 U, y E B(x2, r) n U

by Corollary 4.9 (x1 and x2 will be kept fixed, as r --~ 0).
If W2 denotes the harmonic function of Lemma 5.3 (with x = x2), we

have V2  W2 in U fl D- (x2, r). Therefore, (V2),, :5 (w2)~, on r2, so from (5.8)
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and Lemma 5.3 we obtain

In particular, if wl denotes the harmonic function of Lemma 5.2 (with x = x 1 ),
we have 

-

since v &#x3E; 1:2 and w1 = u on (8B(xl,r)) n U. Therefore,

From the proof of Lemma 5.2 we see that on ri, so that

We now estimate f from below.
r2

Since v (x) -5 M = supa n ~, we obtain from (5.5) that

It follows that

where w2 denotes the harmonic function of Lemma 5.3 (with x - X2)
and w is a non-negative harmonic function in S - taking
smooth non-negative boundary values equal to 1 on and 0
on (95’) f1 B(x2, r/2). Then Vv &#x3E; (W2), + crn-lwv on r2 by the maximum
principle and so

Using Corollary 4.10 we may write
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Inserting this into (5.10) and using Lemma 5.3 gives

combining (5.7) (5.9) (5.11) gives

Since the volume added to U with is I5r’+ with error 0 

0(Srn), and the volume taken away from U with D- (x2, r) is Isrn-1 with the
same error, we conclude

Dividing by ~rn and letting r -~ 0 gives

Reversing the roles of x1, x2, we conclude

To prove Theorem 5.4 we write

Recalling corollaries 4.10 and 3.12 we find

It follows from [A-C] that aF is a CI,01 surface in a neighborhood of any
point in R. The conclusion (5.12) is important enough to state as a separate

THEOREM 5.5. Let u, be a solution to Pe and let h be harmonic in U
with h = 1 on an and h = 0 on aF. Then

We can also restate Theorem 5.5 in an equivalent but possibly more glamorous
form:



382

THEOREM 5.5’. Let G(x, y) be the (negative) Green’s function for
Laplace’s equation in f2. There exists a constant A such that for any interior
point y of F

It is also possible to prove

THEOREM 5.6. Let xo E R and consider a suitable variation of OF near
xo. If U* denotes the set obtained from U and v is the harmonic function in
U* taking values u on and 0 U*, then

6. - Relation between solutions of P and Ps

So far we have considered e &#x3E; 0 small but fixed. Since we will not make
further perturbations of the free boundary, this is a good place to show that
for e small enough a solution u to the problem P, is actually a solution to P,
although we could have obtained this result earlier. We only need to show that
for c small enough, IUI where JL is the prescribed volume.

LEMMA 6.1. With the notation of the previous sections, there exists a

positive constant c independent such that

PROOF. Let K be a compact subset of 0 with smooth boundary so that
= JL. Let satisfy

Then w is an admissible function for both P and P, and therefore
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The right-hand side is independent of c where as both terms on the left
are positive (if e  1), so for some c &#x3E; 0, independent of E,

and

The last inequality implies that

so that if e is chosen small

and

The isoperimetric inequality shows that &#x3E; cl, for some ci

independent of e and therefore

proving the lemma.

COROLLARY 6.2. If s is small enough then it.

PROOF. Let us suppose that IUI and choose a point xo E R so that,
by the previous lemma, c. Let us decrease the size of U perturbing
the free boundary near xo. Using the notation and result of Theorem 5.6 we
have

Now the maximum principle yields on R where
m = minan u, M = maxan u and therefore

giving an upper bound for ~.
We now prove the converse inequality:

LEMMA 6.3. If e &#x3E; 0 is small enough then IUI &#x3E; JL.

PROOF. Let us suppose that IUI and let d be the distance from F to
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an. Let x* E 0F and Y* E 0Q be such that = d, and let z* = x* + * .
Using a suitable barrier it is not difficult to show that u(z) &#x3E; c for z E B(z*, d )
where c is indipendent of e since d  diam f2. If z is the point in the segment
[x* , z* ] at distance 6/2 from z* and 6 is small, we have, by Lemma 3.5,

where w is the harmonic function in B ( z, taking boundary values u.

If v is the harmonic function in with boundary values u,
the techniques in the proof of Theorem 3.6 show that

Since j, (u) :5 Jc (v) we have (recall we assume IUI  JL)

from which the lemma follows.

Summing up the two previous results we obtain

THEOREM 6.4. If g is small enough, depending on the data, then any
solution to problem P, is a solution to problem P.

7. - Analyticity of the free boundary

In section 5, we have shown that there is a subset R of the free boundary
aF (Hn-l(8F B R) = 0) so that near any point of R, aF can be represented
as a graph r. Using the "free boundary condition" Theorem 5.5, we now
show that r is analytic.

Introduce coordinates x = (x1, ... , xn) _ (x’, xn) with the origin 0 E r, so
that the positive xn direction is normal to r at 0, and points into U = {tz &#x3E; 0}.
We will work locally in a small ball B about 0, and let B+ = B n U. Our
free boundary condition says that there is positive harmonic function h in B+
satisfying h = 0, uw * c on r.

THEOREM 7.1. Let u, h be positive harmonic functions in B+ satisfying
u = h = 0, u~ h~ - c on r, r E Then r is analytic.
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PROOF. We follow the method of [K-N-S]. For x E B+ f1 r, let y = (x’, u).
The map x - y is then locally 1-1. We shrink B+ (if necessary) and transform
B+ into a region U in &#x3E; 0} and r into a flat boundary ,S c (yn = 0}.
The associated "partial Legendre transform" is zn = ~(~), which defines the
inverse mapping. Then

Define 0 (y) by 0 (y) = u(z), y E U. Using (7.1), we find that 1/J, l/J satisfy
the system

To find boundary conditions for ~, ~ we observe that since

parametrizes r,

Hence

Therefore 0, o satisfy the boundary conditions

We claim that the system (7.2) (7.3) (7.4) is elliptic and coercive in the
sense of Agmon-Douglas-Nirenberg (with the obvious choice of weights). To
see this, we compute the principal part of the linearization at y = 0, using that

= 0, a  n. We find:



386

where and

The system (7.5) is clearly elliptic since it has uncoupled into G = 0, L¢ = 0.
It is also coercive, for ~ = 0 is coercive for = 0, and 1/J", = 0 is coercive’
for L~ = 0.

.To establish the analyticity of r : xn = %b (yl, 0) we need to satisfy the
initial regularity assumptions to apply [M, Th. 6.8.2]. For a nonlinear system
of the type (7.2) (7.3) (7.4), it is normally required that l/J, 1/J E U S).
However, our system can be written in divergence fonn:

Using the divergence structure, one may show that if l/J, 1/J are initially
(this is the case here since r E tllen §, v are in 

so that Morrey’s theorem can be applied (for more details see [K-N-S. pp. 112-
113]) and the analyticity of r follows.
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