@article{ASNSP_1975_4_2_4_497_0,
author = {Caffarelli, Luis A.},
title = {Surfaces of minimum capacity for a knot},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
pages = {497--505},
year = {1975},
publisher = {Scuola normale superiore},
volume = {Ser. 4, 2},
number = {4},
mrnumber = {393523},
zbl = {0313.31014},
language = {en},
url = {https://www.numdam.org/item/ASNSP_1975_4_2_4_497_0/}
}
TY - JOUR AU - Caffarelli, Luis A. TI - Surfaces of minimum capacity for a knot JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 1975 SP - 497 EP - 505 VL - 2 IS - 4 PB - Scuola normale superiore UR - https://www.numdam.org/item/ASNSP_1975_4_2_4_497_0/ LA - en ID - ASNSP_1975_4_2_4_497_0 ER -
Caffarelli, Luis A. Surfaces of minimum capacity for a knot. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 4, Tome 2 (1975) no. 4, pp. 497-505. https://www.numdam.org/item/ASNSP_1975_4_2_4_497_0/
[1] - , Methods of Mathematical Physics, vol. II.
[2] , Surfaces of Minimum Capacity, Proc. Nat. Acad. Sci., 26 (1940), 664-667. | Zbl | MR
[3] , Lectures on Multiple Valued Functions in Space, Univ. Calif. Publ. Math., N. S. I (1951), 281-340. | Zbl | MR
[4] , Kellogg's Uniqueness Theorem and Applications, Courant Anniversary Volume (1948), 95-104. | Zbl | MR
[5] , A Quick Trip through ffinot Theory, Topology of 3-Manifolds, Proc. Univ. of Georgia (1962).
[6] , Homotopy Theory, Academic Press (1959). | Zbl | MR
[7] , Foundations of Potential Theory, Berlin (1929). | JFM






