@article{ASNSP_1973_3_27_1_53_0,
author = {Fu\v{c}ik, S. and Ne\v{c}as, J. and Sou\v{c}ek, J. and Sou\v{c}ek, V.},
title = {Upper bound for the number of eigenvalues for nonlinear operators},
journal = {Annali della Scuola Normale Superiore di Pisa - Scienze Fisiche e Matematiche},
pages = {53--71},
year = {1973},
publisher = {Scuola normale superiore},
volume = {Ser. 3, 27},
number = {1},
mrnumber = {372918},
zbl = {0263.58007},
language = {en},
url = {https://www.numdam.org/item/ASNSP_1973_3_27_1_53_0/}
}
TY - JOUR AU - Fučik, S. AU - Nečas, J. AU - Souček, J. AU - Souček, V. TI - Upper bound for the number of eigenvalues for nonlinear operators JO - Annali della Scuola Normale Superiore di Pisa - Scienze Fisiche e Matematiche PY - 1973 SP - 53 EP - 71 VL - 27 IS - 1 PB - Scuola normale superiore UR - https://www.numdam.org/item/ASNSP_1973_3_27_1_53_0/ LA - en ID - ASNSP_1973_3_27_1_53_0 ER -
%0 Journal Article %A Fučik, S. %A Nečas, J. %A Souček, J. %A Souček, V. %T Upper bound for the number of eigenvalues for nonlinear operators %J Annali della Scuola Normale Superiore di Pisa - Scienze Fisiche e Matematiche %D 1973 %P 53-71 %V 27 %N 1 %I Scuola normale superiore %U https://www.numdam.org/item/ASNSP_1973_3_27_1_53_0/ %G en %F ASNSP_1973_3_27_1_53_0
Fučik, S.; Nečas, J.; Souček, J.; Souček, V. Upper bound for the number of eigenvalues for nonlinear operators. Annali della Scuola Normale Superiore di Pisa - Scienze Fisiche e Matematiche, Série 3, Tome 27 (1973) no. 1, pp. 53-71. https://www.numdam.org/item/ASNSP_1973_3_27_1_53_0/
[1] , : Analytic operation8 in real Banaoh apaces, Studia Math. XIV, 1954, 57-78. | Zbl
[2] : An eigenvalue problem for nonlinear elliptic partial differential equations, Trans. Amer. Math. Soc., 120, 1965, 145-184. | Zbl | MR
[3] : Infinite dimensional ananifolds and nonlinear elliptic eigenvalue problems, Annals of Math. 82, 1965, 459-477. | Zbl | MR
[4] : Bxistence theorearas for minimax points in Banach apaces (in Russian) Trudy Mosk. Mat. Obšč. 2, 1953, 235-274. | MR
[5] Fredholnt alternative for nonlinear operators in Banach spaces and its applications to the differeaatial and integral equations, Cas. pro pest. mat. 1971, No. 4.
[6] Note on the Fredholm alternative for nonlinear operators, Comment. Math. Univ. Carolinae 12, 1971, 213-226. | Zbl | MR
[7] - : Ljusternik-,Sch,nirelmann theorem and nonlinear eigenvalue probletit8, Math. Nachr. 53, 1972, 277-289 | Zbl | MR
[8] -: Functional analysis and semigroups, Providence 1957. | Zbl
[9] : Topological methods in the theory of nonlinear integral equations, Pergamon Press, N. Y. 1964. | Zbl
[10] : Fredholm alternative for nonlinear operators, Comment. Math. Univ. Carolinae 11, 1970, 337-363. | Zbl | MR
[11] : On a class of nonlinear operators in Hilbert space (in Russian) Izv. Ak. Nank SSSR, ser. mat., No 5, 1939, 257-264.
[12] - : Application of topology to variationat problems (in Russian) Trudy 2. Vsesujuz, mat. sjezda 1, 1935, 224-237. | Zbl
[13] - : Topological methods in variational problems and their application to the differential geometry of surface (in Russian) Uspechi Mat. Nank II, 1947, 166-217.
[14] : Les methodes direcfes en thérie des équations elliptiques, Academia, Praha 1967.
[15] : Sur l'alternative de Fredholm pour les operateurs non lineairee avec applications aux problèmes aux limites, Ann. Scuola Norm. Sup. Pisa, XXIII, 1969, 331-345. | Zbl | MR | Numdam
[16] - : The Morse-Bard theorem for real-analytic functions, Comment. Math. Univ. Carolinae, 13, 1972, 45-51. | Zbl | MR
[17] : Variational methods for the study of nonlinear operators, Holden-Day, 1964. | Zbl
[18] : On the discreteneas of the spectrum of nonlinear Sturm-Liouville equation (in Russian) Dokl. Akad. Nank SSSR, 201, 1971, 1045-1048. | Zbl | MR
[19] - : On the dieoreteness of the speotrum of nonlinear Sturm-Liouville equation of the fourth order (in Russian) Comment. Math. Univ. Carolinae, 12, 1971, 639-653. | Zbl | MR
[20] : Fredholm alternative for nonlinear operators and applicationa to partial differeittial equations and integral equations (to appear). | Zbl
[21] : Remark on the Fredholm alternative for nonlinear operators with applioation to sntegrat equations of generalized Hammerstein type (to appear).





