Geometric quantization and asymptotics of pairings in TQFT
[Quantification géométrique et asymptotique de produits scalaires en TQTC]
Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 51 (2018) no. 6, pp. 1599-1630

This paper presents an explicit mapping between the SU (2)-Reshetikhin-Turaev TQFT vector spaces Vr(Σ) of surfaces and spaces of holomorphic sections of complex line bundles on some Kähler manifold, following the approach of geometric quantization. We explain how curve operators in TQFT correspond to Toeplitz operators with symbols some trace functions. As an application, we show that eigenvectors of these operators are concentrated near the level sets of these trace functions, and obtain asymptotic estimates of pairings of such eigenvectors. This yields under some genericity assumptions an asymptotic for the matrix coefficients of quantum representations.

Dans ce papier, nous construisons un isomorphisme explicite entre les espaces vectoriels Vr(Σ) des TQTC de Reshetikhin-Turaev de groupe de gauge SU (2) et des espaces de sections holomorphes de fibrés en droites complexes sur une certaine variété kählerienne, suivant l'approche de la quantification géométrique. Les opérateurs courbes deviennent ainsi des opérateurs de Toeplitz de symboles principaux correspondant aux fonctions traces sur l'espace des modules. Nous en déduisons que les vecteurs propres de ces opérateurs se concentrent sur les lignes de niveaux de ces fonctions traces, et obtenons une formule asymptotique pour les produits scalaires de ces vecteurs propres. Ceci permet d'obtenir une asymptotique pour les coefficients de matrice des représentations quantiques satisfaisant une hypothèse de généricité.

DOI : 10.24033/asens.2382
Classification : 57M27, 57R56, 53D50.
Keywords: Quantum invariants, TQFT, geometric quantization, Witten's asymptotic expansion conjecture.
Mots-clés : Invariants quantiques, théories quantiques topologiques des champs, quantification géométrique, conjecture asymptotique de Witten.
@article{ASENS_2018__51_6_1599_0,
     author = {Detcherry, Renaud},
     title = {Geometric quantization and asymptotics of pairings in {TQFT}},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     pages = {1599--1630},
     year = {2018},
     publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es},
     volume = {Ser. 4, 51},
     number = {6},
     doi = {10.24033/asens.2382},
     mrnumber = {3940905},
     zbl = {1426.57034},
     language = {en},
     url = {https://www.numdam.org/articles/10.24033/asens.2382/}
}
TY  - JOUR
AU  - Detcherry, Renaud
TI  - Geometric quantization and asymptotics of pairings in TQFT
JO  - Annales scientifiques de l'École Normale Supérieure
PY  - 2018
SP  - 1599
EP  - 1630
VL  - 51
IS  - 6
PB  - Société Mathématique de France. Tous droits réservés
UR  - https://www.numdam.org/articles/10.24033/asens.2382/
DO  - 10.24033/asens.2382
LA  - en
ID  - ASENS_2018__51_6_1599_0
ER  - 
%0 Journal Article
%A Detcherry, Renaud
%T Geometric quantization and asymptotics of pairings in TQFT
%J Annales scientifiques de l'École Normale Supérieure
%D 2018
%P 1599-1630
%V 51
%N 6
%I Société Mathématique de France. Tous droits réservés
%U https://www.numdam.org/articles/10.24033/asens.2382/
%R 10.24033/asens.2382
%G en
%F ASENS_2018__51_6_1599_0
Detcherry, Renaud. Geometric quantization and asymptotics of pairings in TQFT. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 51 (2018) no. 6, pp. 1599-1630. doi: 10.24033/asens.2382

Atiyah, M. F.; Bott, R. The Yang-Mills equations over Riemann surfaces, Philos. Trans. Roy. Soc. London Ser. A, Volume 308 (1983), pp. 523-615 (ISSN: 0080-4614) | MR | Zbl | DOI

Andersen, J. E. The Witten invariant of finite order mapping tori I (preprint arXiv:1104.5576 ) | MR

Andersen, J. E. Asymptotic faithfulness of the quantum SU (n) representations of the mapping class groups, Ann. of Math., Volume 163 (2006), pp. 347-368 (ISSN: 0003-486X) | MR | Zbl | DOI

Andersen, J. E. The Nielsen-Thurston classification of mapping classes is determined by TQFT, J. Math. Kyoto Univ., Volume 48 (2008), pp. 323-338 (ISSN: 0023-608X) | MR | Zbl | DOI

Andersen, J. E. Asymptotics of the Hilbert-Schmidt norm of curve operators in TQFT, Lett. Math. Phys., Volume 91 (2010), pp. 205-214 (ISSN: 0377-9017) | MR | Zbl | DOI

Andersen, J. E., The many facets of geometry, Oxford Univ. Press, Oxford, 2010, pp. 177-209 | MR | Zbl | DOI

Andersen, J. E.; Ueno, K. Geometric construction of modular functors from conformal field theory, J. Knot Theory Ramifications, Volume 16 (2007), pp. 127-202 (ISSN: 0218-2165) | MR | Zbl | DOI

Boutet de Monvel, L.; Sjöstrand, J. Sur la singularité des noyaux de Bergman et de Szegő, Journées: Équations aux Dérivées Partielles de Rennes (1975) (Astérisque), Volume 34–35, Soc. Math. France (1976), pp. 123-164 | MR | Zbl

Blanchet, C.; Habegger, N.; Masbaum, G.; Vogel, P. Topological quantum field theories derived from the Kauffman bracket, Topology, Volume 34 (1995), pp. 883-927 (ISSN: 0040-9383) | MR | Zbl | DOI

Basu, S.; Pollack, R.; Roy, M.-F., Algorithms and Computation in Mathematics, 10, Springer, 2003, 602 pages (ISBN: 3-540-00973-6) | MR | Zbl | DOI

Charles, L. Quasimodes and Bohr-Sommerfeld conditions for the Toeplitz operators, Comm. Partial Differential Equations, Volume 28 (2003), pp. 1527-1566 (ISSN: 0360-5302) | MR | Zbl | DOI

Charles, L. Symbolic calculus for Toeplitz operators with half-form, J. Symplectic Geom., Volume 4 (2006), pp. 171-198 http://projecteuclid.org/euclid.jsg/1175790956 (ISSN: 1527-5256) | MR | Zbl | DOI

Charles, L. On the quantization of polygon spaces, Asian J. Math., Volume 14 (2010), pp. 109-152 (ISSN: 1093-6106) | MR | Zbl | DOI

Charles, L. Asymptotic properties of the quantum representations of the mapping class group, Trans. Amer. Math. Soc., Volume 368 (2016), pp. 7507-7531 (ISSN: 0002-9947) | MR | Zbl | DOI

Charles, L.; Marché, J. Knot state asymptotics I: AJ conjecture and Abelian representations, Publ. Math. Inst. Hautes Études Sci., Volume 121 (2015), pp. 279-322 (ISSN: 0073-8301) | MR | Zbl | DOI

Charles, L.; Marché, J. Knot state asymptotics II: Witten conjecture and irreducible representations, Publ. Math. Inst. Hautes Études Sci., Volume 121 (2015), pp. 323-361 (ISSN: 0073-8301) | MR | Zbl | DOI

Detcherry, R. Asymptotic formulae for curve operators in TQFT, Geom. Topol., Volume 20 (2016), pp. 3057-3096 (ISSN: 1465-3060) | MR | Zbl | DOI

Goldman, W. M. Invariant functions on Lie groups and Hamiltonian flows of surface group representations, Invent. math., Volume 85 (1986), pp. 263-302 (ISSN: 0020-9910) | MR | Zbl | DOI

Hikami, K. On the quantum invariant for the Brieskorn homology spheres, Internat. J. Math., Volume 16 (2005), pp. 661-685 (ISSN: 0129-167X) | MR | Zbl | DOI

Hitchin, N. J. Flat connections and geometric quantization, Comm. Math. Phys., Volume 131 (1990), pp. 347-380 http://projecteuclid.org/euclid.cmp/1104200841 (ISSN: 0010-3616) | MR | Zbl | DOI

Hansen, S. K.; Takata, T., Invariants of knots and 3-manifolds (Kyoto, 2001) (Geom. Topol. Monogr.), Volume 4, Geom. Topol. Publ., Coventry, 2002, pp. 69-87 | MR | Zbl | DOI

Jeffrey, L. C. Chern-Simons-Witten invariants of lens spaces and torus bundles, and the semiclassical approximation, Comm. Math. Phys., Volume 147 (1992), pp. 563-604 http://projecteuclid.org/euclid.cmp/1104250751 (ISSN: 0010-3616) | MR | Zbl | DOI

Jeffrey, L. C.; Weitsman, J. Bohr-Sommerfeld orbits in the moduli space of flat connections and the Verlinde dimension formula, Comm. Math. Phys., Volume 150 (1992), pp. 593-630 http://projecteuclid.org/euclid.cmp/1104251961 (ISSN: 0010-3616) | MR | Zbl | DOI

Lawrence, R.; Zagier, D. Modular forms and quantum invariants of 3-manifolds, Asian J. Math., Volume 3 (1999), pp. 93-107 (ISSN: 1093-6106) | MR | Zbl | DOI

Marché, J. Geometry of representations spaces in S U ( 2 ) (2009) (Strasbourg Master class of Geometry)

Marché, J.; Paul, T. Toeplitz operators in TQFT via skein theory, Trans. Amer. Math. Soc., Volume 367 (2015), pp. 3669-3704 (ISSN: 0002-9947) | MR | Zbl | DOI

Rozansky, L. Residue formulas for the large k asymptotics of Witten's invariants of Seifert manifolds. The case of SU (2) , Comm. Math. Phys., Volume 178 (1996), pp. 27-60 http://projecteuclid.org/euclid.cmp/1104286553 (ISSN: 0010-3616) | MR | Zbl | DOI

Ramadas, T. R.; Singer, I. M.; Weitsman, J. Some comments on Chern-Simons gauge theory, Comm. Math. Phys., Volume 126 (1989), pp. 409-420 http://projecteuclid.org/euclid.cmp/1104179858 (ISSN: 0010-3616) | MR | Zbl | DOI

Reshetikhin, N.; Turaev, V. G. Invariants of 3-manifolds via link polynomials and quantum groups, Invent. math., Volume 103 (1991), pp. 547-597 (ISSN: 0020-9910) | MR | Zbl | DOI

Shiffman, B.; Zelditch, S. Asymptotics of almost holomorphic sections of ample line bundles on symplectic manifolds, J. reine angew. Math., Volume 544 (2002), pp. 181-222 (ISSN: 0075-4102) | MR | Zbl | DOI

Cité par Sources :