Dynamical stability and Lyapunov exponents for holomorphic endomorphisms of k
[Stabilité dynamique et exposants de Lyapunov pour les endomorphismes holomorphes de k ]
Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 51 (2018) no. 1, pp. 215-262

We introduce a notion of stability for equilibrium measures in holomorphic families of endomorphisms of k and prove that it is equivalent to the stability of repelling cycles and equivalent to the existence of some measurable holomorphic motion of Julia sets which we call equilibrium lamination. We characterize the corresponding bifurcations by the strict subharmonicity of the sum of Lyapunov exponents or the instability of critical dynamics and analyze how repelling cycles may bifurcate. Our methods deeply exploit the properties of Lyapunov exponents and are based on ergodic and pluripotential theory.

Nous introduisons une notion de stabilité pour les mesures d'équilibre des familles holomorphes d'endomorphismes de k et démontrons qu'elle est équivalente à la stabilité des cycles répulsifs et équivalente à l'existence d'un mouvement holomorphe mesurable des ensembles de Julia, appelé lamination d'équilibre. Nous caractérisons les bifurcations correspondantes par la sous-harmonicité stricte de la somme des exposants de Lyapunov ou par l'instabilité de la dynamique critique, nous analysons aussi comment les cycles répulsifs peuvent bifurquer. Nos méthodes reposent sur les propriétés des exposants de Lyapunov, sur la théorie ergodique et sur la théorie du pluripotentiel.

Publié le :
DOI : 10.24033/asens.2355
Classification : 32H50, 32U40, 37F45, 37F50, 37H15.
Keywords: Holomorphic dynamics, dynamical stability, positive currents, Lyapunov exponents.
Mots-clés : Dynamique holomorphe, stabilité dynamique, courants positifs, exposants de Lyapunov.
@article{ASENS_2018__51_1_215_0,
     author = {Berteloot, Fran\c{c}ois and Bianchi, Fabrizio and Dupont, Christophe},
     title = {Dynamical stability and {Lyapunov} exponents for holomorphic endomorphisms of~$\mathbb {P}^k$
            },
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     pages = {215--262},
     year = {2018},
     publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es},
     volume = {Ser. 4, 51},
     number = {1},
     doi = {10.24033/asens.2355},
     mrnumber = {3764042},
     zbl = {1454.32011},
     language = {en},
     url = {https://www.numdam.org/articles/10.24033/asens.2355/}
}
TY  - JOUR
AU  - Berteloot, François
AU  - Bianchi, Fabrizio
AU  - Dupont, Christophe
TI  - Dynamical stability and Lyapunov exponents for holomorphic endomorphisms of $\mathbb {P}^k$
            
JO  - Annales scientifiques de l'École Normale Supérieure
PY  - 2018
SP  - 215
EP  - 262
VL  - 51
IS  - 1
PB  - Société Mathématique de France. Tous droits réservés
UR  - https://www.numdam.org/articles/10.24033/asens.2355/
DO  - 10.24033/asens.2355
LA  - en
ID  - ASENS_2018__51_1_215_0
ER  - 
%0 Journal Article
%A Berteloot, François
%A Bianchi, Fabrizio
%A Dupont, Christophe
%T Dynamical stability and Lyapunov exponents for holomorphic endomorphisms of $\mathbb {P}^k$
            
%J Annales scientifiques de l'École Normale Supérieure
%D 2018
%P 215-262
%V 51
%N 1
%I Société Mathématique de France. Tous droits réservés
%U https://www.numdam.org/articles/10.24033/asens.2355/
%R 10.24033/asens.2355
%G en
%F ASENS_2018__51_1_215_0
Berteloot, François; Bianchi, Fabrizio; Dupont, Christophe. Dynamical stability and Lyapunov exponents for holomorphic endomorphisms of $\mathbb {P}^k$. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 51 (2018) no. 1, pp. 215-262. doi: 10.24033/asens.2355

Arnold, L., Springer Monographs in Math., Springer, Berlin, 1998, 586 pages (ISBN: 3-540-63758-3) | MR | Zbl

Bassanelli, G.; Berteloot, F. Bifurcation currents in holomorphic dynamics on k , J. reine angew. Math., Volume 608 (2007), pp. 201-235 (ISSN: 0075-4102) | MR | Zbl

Briend, J.-Y.; Duval, J. Deux caractérisations de la mesure d'équilibre d'un endomorphisme de Pk(𝐂) , Publ. Math. IHÉS, Volume 93 (2001), pp. 145-159 erratum in Publ. Math. IHÉS 109 (2009), 295–296 (ISSN: 0073-8301) | MR | Zbl | Numdam | DOI

Berteloot, F.; Dupont, C. Une caractérisation des endomorphismes de Lattès par leur mesure de Green, Comment. Math. Helv., Volume 80 (2005), pp. 433-454 (ISSN: 0010-2571) | MR | Zbl | DOI

Berger, P.; Dujardin, R. On stability and hyperbolicity for polynomial automorphisms of 2 , Ann. Sci. Ecole Norm. Sup., Volume 50 (2016), pp. 449-477 | MR | Zbl | Numdam | DOI

Briend, J.-Y.; Duval, J. Exposants de Liapounoff et distribution des points périodiques d'un endomorphisme de 𝐂Pk , Acta Math., Volume 182 (1999), pp. 143-157 (ISSN: 0001-5962) | MR | Zbl | DOI

Berteloot, F.; Dupont, C.; Molino, L. Normalization of bundle holomorphic contractions and applications to dynamics, Ann. Inst. Fourier (Grenoble), Volume 58 (2008), pp. 2137-2168 http://aif.cedram.org/... (ISSN: 0373-0956) | MR | Zbl | Numdam | DOI

Buff, X.; Epstein, A., Complex dynamics, A K Peters, Wellesley, MA, 2009, pp. 491-512 | MR | Zbl | DOI

Berteloot, F., Pluripotential theory (Lecture Notes in Math.), Volume 2075, Springer, Heidelberg, 2013, pp. 1-93 | MR | Zbl | DOI

Bedford, E.; Jonsson, M. Dynamics of regular polynomial endomorphisms of 𝐂k , Amer. J. Math., Volume 122 (2000), pp. 153-212 http://muse.jhu.edu/... (ISSN: 0002-9327) | MR | Zbl | DOI

Berteloot, F.; Loeb, J.-J. Une caractérisation géométrique des exemples de Lattès de k , Bull. Soc. Math. France, Volume 129 (2001), pp. 175-188 (ISSN: 0037-9484) | MR | Zbl | Numdam | DOI

Brjuno, A. D. Analytic form of differential equations. I, II, Trudy Moskov. Mat. Obšč., Volume 25 (1971) transl. in Trans. Moscow Math. Soc., 25 (1971), 131–288 (ISSN: 0134-8663) | MR | Zbl

Buzzard, G. T. Infinitely many periodic attractors for holomorphic maps of 2 variables, Ann. of Math., Volume 145 (1997), pp. 389-417 (ISSN: 0003-486X) | MR | Zbl | DOI

Cornfeld, I. P.; Fomin, S. V.; Sinaĭ, Y. G., Grundl. math. Wiss., 245, Springer, New York, 1982, 486 pages (ISBN: 0-387-90580-4) | MR | Zbl

de Thélin, H. Un phénomène de concentration de genre, Math. Ann., Volume 332 (2005), pp. 483-498 (ISSN: 0025-5831) | MR | Zbl | DOI

DeMarco, L. Dynamics of rational maps: Lyapunov exponents, bifurcations, and capacity, Math. Ann., Volume 326 (2003), pp. 43-73 (ISSN: 0025-5831) | MR | Zbl | DOI

Dinh, T.-C. Sur les applications de Lattès de k , J. Math. Pures Appl., Volume 80 (2001), pp. 577-592 (ISSN: 0021-7824) | MR | Zbl | DOI

Dinh, T.-C. Suites d'applications méromorphes multivaluées et courants laminaires, J. Geom. Anal., Volume 15 (2005), pp. 207-227 (ISSN: 1050-6926) | MR | Zbl | DOI

Dinh, T.-C. Attracting current and equilibrium measure for attractors on k , J. Geom. Anal., Volume 17 (2007), pp. 227-244 (ISSN: 1050-6926) | MR | Zbl | DOI

Dujardin, R.; Lyubich, M. Stability and bifurcations for dissipative polynomial automorphisms of 2 , Invent. math., Volume 200 (2015), pp. 439-511 (ISSN: 0020-9910) | MR | Zbl | DOI

de Melo, W.; van Strien, S., Ergebn. Math. Grenzg., 25, Springer, Berlin, 1993, 605 pages (ISBN: 3-540-56412-8) | MR | Zbl

Douady, A., Complex dynamical systems (Cincinnati, OH, 1994) (Proc. Sympos. Appl. Math.), Volume 49, Amer. Math. Soc., Providence, RI, 1994, pp. 91-138 | MR | Zbl

Dinh, T.-C.; Sibony, N. Dynamique des applications d'allure polynomiale, J. Math. Pures Appl., Volume 82 (2003), pp. 367-423 (ISSN: 0021-7824) | MR | Zbl | DOI

Dinh, T.-C.; Sibony, N. Geometry of currents, intersection theory and dynamics of horizontal-like maps, Ann. Inst. Fourier (Grenoble), Volume 56 (2006), pp. 423-457 http://aif.cedram.org/item?id=AIF_2006__56_2_423_0 (ISSN: 0373-0956) | MR | Zbl | Numdam | DOI

Dinh, T.-C.; Sibony, N., Holomorphic dynamical systems (Lecture Notes in Math.), Volume 1998, Springer, Berlin, 2010, pp. 165-294 | MR | Zbl

Dupont, C. Exemples de Lattès et domaines faiblement sphériques de n , Manuscripta Math., Volume 111 (2003), pp. 357-378 (ISSN: 0025-2611) | MR | Zbl | DOI

Dupont, C. Formule de Pesin et applications méromorphes, Bull. Braz. Math. Soc. (N.S.), Volume 37 (2006), pp. 393-418 (ISSN: 1678-7544) | MR | Zbl | DOI

Fornæss, J. E.; Sibony, N., Laminations and foliations in dynamics, geometry and topology (Stony Brook, NY, 1998) (Contemp. Math.), Volume 269, Amer. Math. Soc., Providence, RI, 2001, pp. 47-85 | MR | Zbl | DOI

Fornæss, J. E.; Sibony, N., Complex potential theory (Montreal, PQ, 1993) (NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci.), Volume 439, Kluwer Acad. Publ., Dordrecht, 1994, pp. 131-186 | MR | Zbl | DOI

Hubbard, J. H.; Papadopol, P. Superattractive fixed points in 𝐂n , Indiana Univ. Math. J., Volume 43 (1994), pp. 321-365 (ISSN: 0022-2518) | MR | Zbl | DOI

Lyubich, M. Some typical properties of the dynamics of rational mappings, Uspekhi Mat. Nauk, Volume 38 (1983), pp. 197-198 transl. in Russian Math. Surveys 38 (1983), 154–155 (ISSN: 0042-1316) | MR | Zbl

Lyubich, M. Investigation of the stability of the dynamics of rational functions, Teor. Funktsiĭ Funktsional. Anal. i Prilozhen., Volume 42 (1984), pp. 72-91 transl. in Selecta Math. Sovietica 9 (1990), 69–90 (ISSN: 0321-4427) | MR | Zbl

Mañé, R.; Sad, P.; Sullivan, D. On the dynamics of rational maps, Ann. Sci. École Norm. Sup., Volume 16 (1983), pp. 193-217 (ISSN: 0012-9593) | MR | Zbl | Numdam | DOI

Pham, M. Lyapunov exponents and bifurcation current for polynomial-like maps (preprint arXiv:math/0512557 )

Przytycki, F. Hausdorff dimension of harmonic measure on the boundary of an attractive basin for a holomorphic map, Invent. math., Volume 80 (1985), pp. 161-179 (ISSN: 0020-9910) | MR | Zbl | DOI

Ueda, T. Critical orbits of holomorphic maps on projective spaces, J. Geom. Anal., Volume 8 (1998), pp. 319-334 (ISSN: 1050-6926) | MR | Zbl | DOI

Cité par Sources :