[Stabilité dynamique et exposants de Lyapunov pour les endomorphismes holomorphes de ]
We introduce a notion of stability for equilibrium measures in holomorphic families of endomorphisms of and prove that it is equivalent to the stability of repelling cycles and equivalent to the existence of some measurable holomorphic motion of Julia sets which we call equilibrium lamination. We characterize the corresponding bifurcations by the strict subharmonicity of the sum of Lyapunov exponents or the instability of critical dynamics and analyze how repelling cycles may bifurcate. Our methods deeply exploit the properties of Lyapunov exponents and are based on ergodic and pluripotential theory.
Nous introduisons une notion de stabilité pour les mesures d'équilibre des familles holomorphes d'endomorphismes de et démontrons qu'elle est équivalente à la stabilité des cycles répulsifs et équivalente à l'existence d'un mouvement holomorphe mesurable des ensembles de Julia, appelé lamination d'équilibre. Nous caractérisons les bifurcations correspondantes par la sous-harmonicité stricte de la somme des exposants de Lyapunov ou par l'instabilité de la dynamique critique, nous analysons aussi comment les cycles répulsifs peuvent bifurquer. Nos méthodes reposent sur les propriétés des exposants de Lyapunov, sur la théorie ergodique et sur la théorie du pluripotentiel.
DOI : 10.24033/asens.2355
Keywords: Holomorphic dynamics, dynamical stability, positive currents, Lyapunov exponents.
Mots-clés : Dynamique holomorphe, stabilité dynamique, courants positifs, exposants de Lyapunov.
@article{ASENS_2018__51_1_215_0,
author = {Berteloot, Fran\c{c}ois and Bianchi, Fabrizio and Dupont, Christophe},
title = {Dynamical stability and {Lyapunov} exponents for holomorphic endomorphisms of~$\mathbb {P}^k$
},
journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
pages = {215--262},
year = {2018},
publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es},
volume = {Ser. 4, 51},
number = {1},
doi = {10.24033/asens.2355},
mrnumber = {3764042},
zbl = {1454.32011},
language = {en},
url = {https://www.numdam.org/articles/10.24033/asens.2355/}
}
TY - JOUR
AU - Berteloot, François
AU - Bianchi, Fabrizio
AU - Dupont, Christophe
TI - Dynamical stability and Lyapunov exponents for holomorphic endomorphisms of $\mathbb {P}^k$
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2018
SP - 215
EP - 262
VL - 51
IS - 1
PB - Société Mathématique de France. Tous droits réservés
UR - https://www.numdam.org/articles/10.24033/asens.2355/
DO - 10.24033/asens.2355
LA - en
ID - ASENS_2018__51_1_215_0
ER -
%0 Journal Article
%A Berteloot, François
%A Bianchi, Fabrizio
%A Dupont, Christophe
%T Dynamical stability and Lyapunov exponents for holomorphic endomorphisms of $\mathbb {P}^k$
%J Annales scientifiques de l'École Normale Supérieure
%D 2018
%P 215-262
%V 51
%N 1
%I Société Mathématique de France. Tous droits réservés
%U https://www.numdam.org/articles/10.24033/asens.2355/
%R 10.24033/asens.2355
%G en
%F ASENS_2018__51_1_215_0
Berteloot, François; Bianchi, Fabrizio; Dupont, Christophe. Dynamical stability and Lyapunov exponents for holomorphic endomorphisms of $\mathbb {P}^k$. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 51 (2018) no. 1, pp. 215-262. doi: 10.24033/asens.2355
, Springer Monographs in Math., Springer, Berlin, 1998, 586 pages (ISBN: 3-540-63758-3) | MR | Zbl
Bifurcation currents in holomorphic dynamics on , J. reine angew. Math., Volume 608 (2007), pp. 201-235 (ISSN: 0075-4102) | MR | Zbl
Deux caractérisations de la mesure d'équilibre d'un endomorphisme de , Publ. Math. IHÉS, Volume 93 (2001), pp. 145-159 erratum in Publ. Math. IHÉS 109 (2009), 295–296 (ISSN: 0073-8301) | MR | Zbl | Numdam | DOI
Une caractérisation des endomorphismes de Lattès par leur mesure de Green, Comment. Math. Helv., Volume 80 (2005), pp. 433-454 (ISSN: 0010-2571) | MR | Zbl | DOI
On stability and hyperbolicity for polynomial automorphisms of , Ann. Sci. Ecole Norm. Sup., Volume 50 (2016), pp. 449-477 | MR | Zbl | Numdam | DOI
Exposants de Liapounoff et distribution des points périodiques d'un endomorphisme de , Acta Math., Volume 182 (1999), pp. 143-157 (ISSN: 0001-5962) | MR | Zbl | DOI
Normalization of bundle holomorphic contractions and applications to dynamics, Ann. Inst. Fourier (Grenoble), Volume 58 (2008), pp. 2137-2168 http://aif.cedram.org/... (ISSN: 0373-0956) | MR | Zbl | Numdam | DOI
, Complex dynamics, A K Peters, Wellesley, MA, 2009, pp. 491-512 | MR | Zbl | DOI
, Pluripotential theory (Lecture Notes in Math.), Volume 2075, Springer, Heidelberg, 2013, pp. 1-93 | MR | Zbl | DOI
Dynamics of regular polynomial endomorphisms of , Amer. J. Math., Volume 122 (2000), pp. 153-212 http://muse.jhu.edu/... (ISSN: 0002-9327) | MR | Zbl | DOI
Une caractérisation géométrique des exemples de Lattès de , Bull. Soc. Math. France, Volume 129 (2001), pp. 175-188 (ISSN: 0037-9484) | MR | Zbl | Numdam | DOI
Analytic form of differential equations. I, II, Trudy Moskov. Mat. Obšč., Volume 25 (1971) transl. in Trans. Moscow Math. Soc., 25 (1971), 131–288 (ISSN: 0134-8663) | MR | Zbl
Infinitely many periodic attractors for holomorphic maps of 2 variables, Ann. of Math., Volume 145 (1997), pp. 389-417 (ISSN: 0003-486X) | MR | Zbl | DOI
, Grundl. math. Wiss., 245, Springer, New York, 1982, 486 pages (ISBN: 0-387-90580-4) | MR | Zbl
Un phénomène de concentration de genre, Math. Ann., Volume 332 (2005), pp. 483-498 (ISSN: 0025-5831) | MR | Zbl | DOI
Dynamics of rational maps: Lyapunov exponents, bifurcations, and capacity, Math. Ann., Volume 326 (2003), pp. 43-73 (ISSN: 0025-5831) | MR | Zbl | DOI
Sur les applications de Lattès de , J. Math. Pures Appl., Volume 80 (2001), pp. 577-592 (ISSN: 0021-7824) | MR | Zbl | DOI
Suites d'applications méromorphes multivaluées et courants laminaires, J. Geom. Anal., Volume 15 (2005), pp. 207-227 (ISSN: 1050-6926) | MR | Zbl | DOI
Attracting current and equilibrium measure for attractors on , J. Geom. Anal., Volume 17 (2007), pp. 227-244 (ISSN: 1050-6926) | MR | Zbl | DOI
Stability and bifurcations for dissipative polynomial automorphisms of , Invent. math., Volume 200 (2015), pp. 439-511 (ISSN: 0020-9910) | MR | Zbl | DOI
, Ergebn. Math. Grenzg., 25, Springer, Berlin, 1993, 605 pages (ISBN: 3-540-56412-8) | MR | Zbl
, Complex dynamical systems (Cincinnati, OH, 1994) (Proc. Sympos. Appl. Math.), Volume 49, Amer. Math. Soc., Providence, RI, 1994, pp. 91-138 | MR | Zbl
Dynamique des applications d'allure polynomiale, J. Math. Pures Appl., Volume 82 (2003), pp. 367-423 (ISSN: 0021-7824) | MR | Zbl | DOI
Geometry of currents, intersection theory and dynamics of horizontal-like maps, Ann. Inst. Fourier (Grenoble), Volume 56 (2006), pp. 423-457 http://aif.cedram.org/item?id=AIF_2006__56_2_423_0 (ISSN: 0373-0956) | MR | Zbl | Numdam | DOI
, Holomorphic dynamical systems (Lecture Notes in Math.), Volume 1998, Springer, Berlin, 2010, pp. 165-294 | MR | Zbl
Exemples de Lattès et domaines faiblement sphériques de , Manuscripta Math., Volume 111 (2003), pp. 357-378 (ISSN: 0025-2611) | MR | Zbl | DOI
Formule de Pesin et applications méromorphes, Bull. Braz. Math. Soc. (N.S.), Volume 37 (2006), pp. 393-418 (ISSN: 1678-7544) | MR | Zbl | DOI
, Laminations and foliations in dynamics, geometry and topology (Stony Brook, NY, 1998) (Contemp. Math.), Volume 269, Amer. Math. Soc., Providence, RI, 2001, pp. 47-85 | MR | Zbl | DOI
, Complex potential theory (Montreal, PQ, 1993) (NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci.), Volume 439, Kluwer Acad. Publ., Dordrecht, 1994, pp. 131-186 | MR | Zbl | DOI
Superattractive fixed points in , Indiana Univ. Math. J., Volume 43 (1994), pp. 321-365 (ISSN: 0022-2518) | MR | Zbl | DOI
Some typical properties of the dynamics of rational mappings, Uspekhi Mat. Nauk, Volume 38 (1983), pp. 197-198 transl. in Russian Math. Surveys 38 (1983), 154–155 (ISSN: 0042-1316) | MR | Zbl
Investigation of the stability of the dynamics of rational functions, Teor. Funktsiĭ Funktsional. Anal. i Prilozhen., Volume 42 (1984), pp. 72-91 transl. in Selecta Math. Sovietica 9 (1990), 69–90 (ISSN: 0321-4427) | MR | Zbl
On the dynamics of rational maps, Ann. Sci. École Norm. Sup., Volume 16 (1983), pp. 193-217 (ISSN: 0012-9593) | MR | Zbl | Numdam | DOI
Lyapunov exponents and bifurcation current for polynomial-like maps (preprint arXiv:math/0512557 )
Hausdorff dimension of harmonic measure on the boundary of an attractive basin for a holomorphic map, Invent. math., Volume 80 (1985), pp. 161-179 (ISSN: 0020-9910) | MR | Zbl | DOI
Critical orbits of holomorphic maps on projective spaces, J. Geom. Anal., Volume 8 (1998), pp. 319-334 (ISSN: 1050-6926) | MR | Zbl | DOI
Cité par Sources :





