[Sur le nombre de Picard des diviseurs dans les variétés de Fano]
Let be a complex Fano manifold of arbitrary dimension, and a prime divisor in . We consider the image of in under the natural push-forward of -cycles. We show that . Moreover if , then either where is a Del Pezzo surface, or and has a fibration in Del Pezzo surfaces onto a Fano manifold such that .
Soient une variété de Fano lisse et complexe de dimension arbitraire, et un diviseur premier dans . Nous considérons l’image de dans par l’application naturelle de push-forward de -cycles. Nous démontrons que . De plus, si , alors soit où est une surface de Del Pezzo, soit et a une fibration en surfaces de Del Pezzo sur une variété de Fano lisse , telle que .
Keywords: Fano varieties, Mori theory, extremal rays
Mots-clés : variétés de Fano, théorie de Mori, rayons extrêmaux
@article{ASENS_2012_4_45_3_363_0,
author = {Casagrande, Cinzia},
title = {On the {Picard} number of divisors in {Fano} manifolds},
journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
pages = {363--403},
year = {2012},
publisher = {Soci\'et\'e math\'ematique de France},
volume = {Ser. 4, 45},
number = {3},
doi = {10.24033/asens.2168},
mrnumber = {3014481},
zbl = {1267.14050},
language = {en},
url = {https://www.numdam.org/articles/10.24033/asens.2168/}
}
TY - JOUR AU - Casagrande, Cinzia TI - On the Picard number of divisors in Fano manifolds JO - Annales scientifiques de l'École Normale Supérieure PY - 2012 SP - 363 EP - 403 VL - 45 IS - 3 PB - Société mathématique de France UR - https://www.numdam.org/articles/10.24033/asens.2168/ DO - 10.24033/asens.2168 LA - en ID - ASENS_2012_4_45_3_363_0 ER -
%0 Journal Article %A Casagrande, Cinzia %T On the Picard number of divisors in Fano manifolds %J Annales scientifiques de l'École Normale Supérieure %D 2012 %P 363-403 %V 45 %N 3 %I Société mathématique de France %U https://www.numdam.org/articles/10.24033/asens.2168/ %R 10.24033/asens.2168 %G en %F ASENS_2012_4_45_3_363_0
Casagrande, Cinzia. On the Picard number of divisors in Fano manifolds. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 45 (2012) no. 3, pp. 363-403. doi: 10.24033/asens.2168
[1] , On extremal rays of the higher-dimensional varieties, Invent. Math. 81 (1985), 347-357. | Zbl | MR
[2] , & , Vector bundles and adjunction, Internat. J. Math. 3 (1992), 331-340. | Zbl | MR
[3] & , A view on contractions of higher-dimensional varieties, in Algebraic geometry-Santa Cruz 1995, Proc. Sympos. Pure Math. 62, Amer. Math. Soc., 1997, 153-183. | Zbl | MR
[4] , Prym varieties and the Schottky problem, Invent. Math. 41 (1977), 149-196. | Zbl | MR
[5] , , & , Existence of minimal models for varieties of log general type, J. Amer. Math. Soc. 23 (2010), 405-468. | Zbl | MR
[6] , & , Variétés complexes dont l'éclatée en un point est de Fano, C. R. Math. Acad. Sci. Paris 334 (2002), 463-468. | Zbl | MR
[7] , , & , Sur une conjecture de Mukai, Comment. Math. Helv. 78 (2003), 601-626. | Zbl | MR
[8] , & , On covering and quasi-unsplit families of curves, J. Eur. Math. Soc. (JEMS) 9 (2007), 45-57. | Zbl | MR
[9] , Toric Fano varieties and birational morphisms, Int. Math. Res. Not. 27 (2003), 1473-1505. | Zbl | MR
[10] , Quasi-elementary contractions of Fano manifolds, Compos. Math. 144 (2008), 1429-1460. | Zbl | MR
[11] , On Fano manifolds with a birational contraction sending a divisor to a curve, Michigan Math. J. 58 (2009), 783-805. | Zbl | MR
[12] , Higher-dimensional algebraic geometry, Universitext, Springer, 2001. | Zbl | MR
[13] & , Mori dream spaces and GIT, Michigan Math. J. 48 (2000), 331-348. | Zbl | MR
[14] , Quasi-Gorenstein Fano -folds with isolated nonrational loci, Compositio Math. 77 (1991), 335-341. | Zbl | MR | Numdam
[15] , Rational curves on algebraic varieties, Ergebn. Math. Grenzg. 32, Springer, 1996. | Zbl
[16] & , Birational geometry of algebraic varieties, Cambridge Tracts in Mathematics 134, Cambridge Univ. Press, 1998. | Zbl
[17] , Positivity in algebraic geometry. I, Ergebn. Math. Grenzg. 48, Springer, 2004. | Zbl | MR
[18] , A characterization of products of projective spaces, Canad. Math. Bull. 49 (2006), 270-280. | Zbl
[19] , On conic bundle structures, Izv. Akad. Nauk SSSR Ser. Mat. 46 (1982), 371-408; English translation: Math. USSR Izvestia 20 (1982), 355-390. | Zbl
[20] , Classification of Fano manifolds containing a negative divisor isomorphic to projective space, Geom. Dedicata 123 (2006), 179-186. | Zbl
[21] , On contractions of extremal rays of Fano manifolds, J. reine angew. Math. 417 (1991), 141-157. | Zbl
Cité par Sources :







