We consider the following Hamiltonian equation on the Hardy space on the circle,
On considère l’équation hamiltonienne suivante sur l’espace de Hardy du cercle
Keywords: nonlinear schrödinger equations, integrable hamiltonian systems, Lax pairs, Hankel operators
Mots-clés : Équations de schrödinger non linéaires, systèmes hamiltoniens intégrables, paires de Lax, opérateurs de Hankel
@article{ASENS_2010_4_43_5_761_0,
author = {G\'erard, Patrick and Grellier, Sandrine},
title = {The cubic {Szeg\H{o}} equation},
journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
pages = {761--810},
publisher = {Soci\'et\'e math\'ematique de France},
volume = {Ser. 4, 43},
number = {5},
year = {2010},
doi = {10.24033/asens.2133},
mrnumber = {2721876},
zbl = {1228.35225},
language = {en},
url = {https://www.numdam.org/articles/10.24033/asens.2133/}
}
TY - JOUR AU - Gérard, Patrick AU - Grellier, Sandrine TI - The cubic Szegő equation JO - Annales scientifiques de l'École Normale Supérieure PY - 2010 SP - 761 EP - 810 VL - 43 IS - 5 PB - Société mathématique de France UR - https://www.numdam.org/articles/10.24033/asens.2133/ DO - 10.24033/asens.2133 LA - en ID - ASENS_2010_4_43_5_761_0 ER -
%0 Journal Article %A Gérard, Patrick %A Grellier, Sandrine %T The cubic Szegő equation %J Annales scientifiques de l'École Normale Supérieure %D 2010 %P 761-810 %V 43 %N 5 %I Société mathématique de France %U https://www.numdam.org/articles/10.24033/asens.2133/ %R 10.24033/asens.2133 %G en %F ASENS_2010_4_43_5_761_0
Gérard, Patrick; Grellier, Sandrine. The cubic Szegő equation. Annales scientifiques de l'École Normale Supérieure, Serie 4, Volume 43 (2010) no. 5, pp. 761-810. doi: 10.24033/asens.2133
[1] , Mathematical methods of classical mechanics, Springer, 1978. | Zbl | MR
[2] , , , & , On the ill-posedness of the IVP for the generalized Korteweg-de Vries and nonlinear Schrödinger equations, J. London Math. Soc. 53 (1996), 551-559. | Zbl | MR
[3] & , Nonlinear Schrödinger evolution equations, Nonlinear Anal. 4 (1980), 677-681. | Zbl | MR
[4] , & , An instability property of the nonlinear Schrödinger equation on , Math. Res. Lett. 9 (2002), 323-335. | Zbl
[5] , & , Strichartz inequalities and the nonlinear Schrödinger equation on compact manifolds, Amer. J. Math. 126 (2004), 569-605. | Zbl
[6] , & , Bilinear eigenfunction estimates and the nonlinear Schrödinger equation on surfaces, Invent. Math. 159 (2005), 187-223. | Zbl
[7] , & , Multilinear eigenfunction estimates and global existence for the three dimensional nonlinear Schrödinger equations, Ann. Sci. École Norm. Sup. 38 (2005), 255-301. | Zbl
[8] , & , High frequency solutions of the nonlinear Schrödinger equation on surfaces, Quart. Appl. Math. 68 (2010), 61-71. | Zbl
[9] , , , & , Weakly turbulent solutions for the cubic defocusing nonlinear Schrödinger equation, preprint arXiv:08081742.
[10] , Nonlinear Schrödinger equations in inhomogeneous media: wellposedness and illposedness of the Cauchy problem, in International Congress of Mathematicians. Vol. III, Eur. Math. Soc., Zürich, 2006, 157-182. | Zbl
[11] & , L'équation de Szegő cubique, Séminaire X-EDP, École polytechnique, 2008. | Zbl
[12] , & , Stability theory of solitary waves in the presence of symmetry. II, J. Funct. Anal. 94 (1990), 308-348. | Zbl
[13] & , KdV & KAM, Ergebnisse Math. Grenzg. 45, Springer, 2003.
[14] , Zur Theorie der Elimination einer Variablen aus zwei algebraischen Gleichungen, Monatsber. königl. preuss. Akad. Wiss. (1881), 535-600, reprinted in Mathematische Werke, vol. 2, 113-192, Chelsea, 1968. | JFM
[15] , Analysis of Hamiltonian PDEs, Oxford Lecture Series in Mathematics and its Applications 19, Oxford Univ. Press, 2000. | Zbl | MR
[16] , Integrals of nonlinear equations of evolution and solitary waves, Comm. Pure Appl. Math. 21 (1968), 467-490. | Zbl | MR
[17] , On bounded bilinear forms, Ann. of Math. 65 (1957), 153-162. | Zbl | MR
[18] , Bose-Einstein condensates in the lowest Landau level: Hamiltonian dynamics, Rev. Math. Phys. 19 (2007), 101-130. | Zbl | MR
[19] , Operators, functions, and systems: an easy reading. Vol. 1, Mathematical Surveys and Monographs 92, Amer. Math. Soc., 2002. | Zbl | MR
[20] , A proof of Trudinger's inequality and its application to nonlinear Schrödinger equations, Nonlinear Anal. 14 (1990), 765-769. | Zbl | MR
[21] , Hankel operators of class and their applications (rational approximation, Gaussian processes, the problem of majorization of operators), Math. USSR Sb. 41 (1982), 443-479. | Zbl
[22] , Hankel operators and their applications, Springer Monographs in Math., Springer, 2003. | Zbl | MR
[23] , Real and complex analysis, third éd., McGraw-Hill Book Co., 1987, Analyse réelle et complexe, Masson, 1980. | Zbl | MR
[24] , À la frontière entre EDP semi- et quasi-linéaires, HDR, Université Paris-Sud Orsay, 2003.
[25] , On the solvability of a mixed problem for a nonlinear equation of Schrödinger type, Sov. Math. Dokl. 29 (1984), 281-284. | Zbl | MR
[26] , Nonlinear Schrödinger equations and sharp interpolation estimates, Comm. Math. Phys. 87 (1982/83), 567-576. | Zbl | MR
[27] , Non-stationary flow of an ideal incompressible liquid, USSR Comput. Math. Math. Phys. 3 (1963), 1407-1456 (english), Zh. Vuch. Mat. 3 (1963), 1032-1066 (russian). | Zbl
[28] & , Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media, Soviet Physics JETP 34 (1972), 62-69. | MR
Cited by Sources:







