[Rigidité des caractéristiques en géométrie symplectique]
The paper concerns a -rigidity result for the characteristic foliations in symplectic geometry. A symplectic homeomorphism (in the sense of Eliashberg-Gromov) which preserves a smooth hypersurface also preserves its characteristic foliation.
Cet article porte sur un résultat de rigidité du feuilletage caractéristique en géométrie symplectique. Un homéomorphisme symplectique (au sens d’Eliashberg-Gromov) qui préserve une hypersurface lisse préserve également son feuilletage caractéristique.
Keywords: symplectic geometry
Mots-clés : géometrie symplectique
@article{ASENS_2009_4_42_5_857_0,
author = {Opshtein, Emmanuel},
title = {$\mathcal {C}^0$-rigidity of characteristics in symplectic geometry},
journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
pages = {857--864},
year = {2009},
publisher = {Soci\'et\'e math\'ematique de France},
volume = {Ser. 4, 42},
number = {5},
doi = {10.24033/asens.2111},
mrnumber = {2571960},
zbl = {1186.53054},
language = {en},
url = {https://www.numdam.org/articles/10.24033/asens.2111/}
}
TY - JOUR
AU - Opshtein, Emmanuel
TI - $\mathcal {C}^0$-rigidity of characteristics in symplectic geometry
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2009
SP - 857
EP - 864
VL - 42
IS - 5
PB - Société mathématique de France
UR - https://www.numdam.org/articles/10.24033/asens.2111/
DO - 10.24033/asens.2111
LA - en
ID - ASENS_2009_4_42_5_857_0
ER -
%0 Journal Article
%A Opshtein, Emmanuel
%T $\mathcal {C}^0$-rigidity of characteristics in symplectic geometry
%J Annales scientifiques de l'École Normale Supérieure
%D 2009
%P 857-864
%V 42
%N 5
%I Société mathématique de France
%U https://www.numdam.org/articles/10.24033/asens.2111/
%R 10.24033/asens.2111
%G en
%F ASENS_2009_4_42_5_857_0
Opshtein, Emmanuel. $\mathcal {C}^0$-rigidity of characteristics in symplectic geometry. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 42 (2009) no. 5, pp. 857-864. doi: 10.24033/asens.2111
[1] & , Symplectic rigidity for Anosov hypersurfaces, Ergodic Theory Dynam. Systems 26 (2006), 1399-1416. | Zbl
[2] , Symplectic boundaries: creating and destroying closed characteristics, Geom. Funct. Anal. 7 (1997), 269-321. | Zbl
[3] , A theorem on the structure of wave fronts and its application in symplectic topology, Funktsional. Anal. i Prilozhen. 21 (1987), 65-72. | Zbl
[4] & , Convex symplectic manifolds, in Several complex variables and complex geometry, Part 2 (Santa Cruz, CA, 1989), Proc. Sympos. Pure Math. 52, Amer. Math. Soc., 1991, 135-162. | Zbl
[5] & , Towards the definition of symplectic boundary, Geom. Funct. Anal. 2 (1992), 211-220. | Zbl | MR
[6] & , Unseen symplectic boundaries, in Manifolds and geometry (Pisa, 1993), Sympos. Math., XXXVI, Cambridge Univ. Press, 1996, 178-189. | Zbl | MR
[7] , Periodic flows on three-manifolds, Ann. of Math. 95 (1972), 66-82. | Zbl | MR
[8] , Pseudoholomorphic curves in symplectic manifolds, Invent. Math. 82 (1985), 307-347. | Zbl | MR
[9] & , Symplectic invariants and Hamiltonian dynamics, Birkhäuser Advanced Texts: Basler Lehrbücher, 1994. | Zbl | MR
[10] & , Local non-squeezing theorems and stability, Geom. Funct. Anal. 5 (1995), 364-386. | Zbl | MR
[11] & , Hamiltonian disjunction and limits of Lagrangian submanifolds, Int. Math. Res. Not. 1994 (1994). | Zbl | MR
[12] & , Introduction to symplectic topology, second éd., Oxford Mathematical Monographs, Oxford Univ. Press, 1998. | Zbl | MR
[13] , Maximal symplectic packings in , Compos. Math. 143 (2007), 1558-1575. | Zbl | MR
[14] , & , Boundary rigidity for Lagrangian submanifolds, non-removable intersections, and Aubry-Mather theory, Mosc. Math. J. 3 (2003), 593-619, 745. | Zbl | MR
[15] , Cycles for the dynamical study of foliated manifolds and complex manifolds, Invent. Math. 36 (1976), 225-255. | Zbl | MR
Cité par Sources :







