@article{ASENS_2006_4_39_3_415_0,
author = {Lysenko, Sergey},
title = {Moduli of metaplectic bundles on curves and theta-sheaves},
journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
pages = {415--466},
year = {2006},
publisher = {Elsevier},
volume = {Ser. 4, 39},
number = {3},
doi = {10.1016/j.ansens.2006.01.003},
mrnumber = {2265675},
zbl = {1111.14029},
language = {en},
url = {https://www.numdam.org/articles/10.1016/j.ansens.2006.01.003/}
}
TY - JOUR AU - Lysenko, Sergey TI - Moduli of metaplectic bundles on curves and theta-sheaves JO - Annales scientifiques de l'École Normale Supérieure PY - 2006 SP - 415 EP - 466 VL - 39 IS - 3 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.ansens.2006.01.003/ DO - 10.1016/j.ansens.2006.01.003 LA - en ID - ASENS_2006_4_39_3_415_0 ER -
%0 Journal Article %A Lysenko, Sergey %T Moduli of metaplectic bundles on curves and theta-sheaves %J Annales scientifiques de l'École Normale Supérieure %D 2006 %P 415-466 %V 39 %N 3 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.ansens.2006.01.003/ %R 10.1016/j.ansens.2006.01.003 %G en %F ASENS_2006_4_39_3_415_0
Lysenko, Sergey. Moduli of metaplectic bundles on curves and theta-sheaves. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 39 (2006) no. 3, pp. 415-466. doi: 10.1016/j.ansens.2006.01.003
[1] , , Conformal blocks and generalized theta functions, Comm. Math. Phys. 164 (1994) 385-419. | Zbl | MR
[2] , , Un lemme de descente, C. R. Acad. Sci. Paris Série I 320 (1995) 335-340. | Zbl | MR
[3] , Some theorems on actions of algebraic groups, Ann. of Math. (2) 98 (1973) 480-497. | Zbl
[4] , Hyperbolic localization of intersection cohomology, Transform. Groups 8 (3) (2003) 209-216. | Zbl | MR
[5] , , Geometric Eisenstein series, Invent. Math. 150 (2002) 287-384. | Zbl | MR
[6] , Bitorseurs et cohomologie non abélienne, in: The Grothendieck Festschrift, vol. 1, Progress in Math., vol. 86, Birkhäuser, Boston, 1990, pp. 401-476. | Zbl | MR
[7] , , Quantization of Hitchin's integrable system and Hecke eigen-sheaves, Available at:, http://www.math.uchicago.edu/~arinkin/langlands/.
[8] , Le déterminant de la cohomologie, in: Current Trends in Arithmetical Algebraic Geometry, Arcata, CA, 1985, Contemp. Math., vol. 67, Amer. Math. Soc., Providence, RI, 1987, pp. 93-177. | Zbl | MR
[9] Deligne P., Letter to D. Kazhdan, 6 March 1985.
[10] , , Tannakian categories, in: Hodge Cycles, Motives and Shimura Varieties, Lecture Notes in Math., vol. 900, Springer, Berlin, 1982. | Zbl | MR
[11] , , B-structures on G-bundles and local triviality, Math. Res. Letters 2 (1995) 823-829. | Zbl | MR
[12] , Algebraic loop groups and moduli spaces of bundles, J. European Math. Soc. 5 (2003) 41-68. | Zbl | MR
[13] , Construction of central elements in the affine Hecke algebra via nearby cycles, Invent. Math. 144 (2) (2001) 253-280. | Zbl | MR
[14] , Perverse sheaves on a Loop group and Langlands' duality, alg-geom/9511007.
[15] , θ-series and invariant theory, Proc. Sympos. Pure Math., Part 1 33 (1979) 275-285. | Zbl
[16] , Transformation de Fourier homogène, Bull. Soc. Math. France 131 (4) (2003) 527-551. | Zbl | MR | Numdam
[17] , Linearization of group stack actions and the Picard group of the moduli of -bundles on a curve, Bull. Soc. Math. France 125 (4) (1990) 529-545. | Zbl | MR | Numdam
[18] , , The Weil Representation, Maslov Index and Theta Series, Progress in Math., vol. 6, Birkhäuser, Boston, 1980. | Zbl | MR
[19] , Group extensions of p-adic and adelic linear groups, Publ. IHÉS 35 (1968) 5-70. | Zbl | MR | Numdam
[20] , , Geometric Langlands duality and representations of algebraic groups over commutative rings, math.RT/0401222, Ann. Math., in press.
[21] , , , Correspondence de Howe sur un corps p-adique, Lecture Notes in Math., vol. 1291, Springer, Berlin, 1987. | Zbl | MR
[22] , Weil Representation, Howe duality, and the Theta correspondence, (lectures given in Montreal), http://www.mri.ernet.in/mathweb/dprasad.html. | Zbl
[23] , Sur certains groupes d'opérateurs unitaires, Acta Math. 111 (1964) 143-211. | Zbl | MR
Cité par Sources :





