@article{ASCFPA_1988__92_7_83_0,
author = {Withers, C. S.},
title = {Asymptotic covariances of empirical processes},
journal = {Annales scientifiques de l'Universit\'e de Clermont-Ferrand 2. S\'erie Probabilit\'es et applications},
pages = {83--98},
year = {1988},
publisher = {UER de Sciences exactes et naturelles de l'Universit\'e de Clermont},
volume = {92},
number = {7},
mrnumber = {974876},
zbl = {0662.62022},
language = {en},
url = {https://www.numdam.org/item/ASCFPA_1988__92_7_83_0/}
}
TY - JOUR AU - Withers, C. S. TI - Asymptotic covariances of empirical processes JO - Annales scientifiques de l'Université de Clermont-Ferrand 2. Série Probabilités et applications PY - 1988 SP - 83 EP - 98 VL - 92 IS - 7 PB - UER de Sciences exactes et naturelles de l'Université de Clermont UR - https://www.numdam.org/item/ASCFPA_1988__92_7_83_0/ LA - en ID - ASCFPA_1988__92_7_83_0 ER -
%0 Journal Article %A Withers, C. S. %T Asymptotic covariances of empirical processes %J Annales scientifiques de l'Université de Clermont-Ferrand 2. Série Probabilités et applications %D 1988 %P 83-98 %V 92 %N 7 %I UER de Sciences exactes et naturelles de l'Université de Clermont %U https://www.numdam.org/item/ASCFPA_1988__92_7_83_0/ %G en %F ASCFPA_1988__92_7_83_0
Withers, C. S. Asymptotic covariances of empirical processes. Annales scientifiques de l'Université de Clermont-Ferrand 2. Série Probabilités et applications, Tome 92 (1988) no. 7, pp. 83-98. https://www.numdam.org/item/ASCFPA_1988__92_7_83_0/
[1] (1968). Convergence of Probability Measures. Wiley, New York. | Zbl | MR
[2] and (1971). Independent and stationary sequences of random variables. Wolters-Noordhoff, Groningen. | Zbl | MR
[3] (1975). Convergence of empirical processes of mixing rv's on [0,1]. Ann. Statist. 3, 1101-1108. | Zbl | MR
[4] - (1976). On the convergence of empirical processes of mixing variables. 18, No. 1. Austral. Jnl. Statist. | Zbl | MR
[5] -. Convergence of rank processes of mixing random variables on R. Submitted to Austral. Jnl. Statist.
[6] -. Convergence of linear rank statistics of mixing variables. Submitted.





