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PLONGEMENT DE LOIS INDEFINIMENT DIVISIBLES

L. SCHMETTERER

Uiiiversité de Vienne (Autriche)

~-..Soit G un groupe localement compact. On désigne parÙ3 les 8oréliens

de G. Soit.y une loi indéfiniment divisible définie sur ~ , c’ est-â-dire :

pour tout n &#x3E; 1 existe une loi p telle que . un - u (où multiplica-’ 

1/n 
’ 

1/n-

tion désigne la convolution): Soit Q+ le monoide de nombres rationnels

positifs et soit P (G) le monoide de mesures de probabilités définies sur

(avec la convolution comme opération associative). a On considère des

homomorphismes de Q+ dens P (G) tels que L’existence
. 

+ 1

d’un tel homomorphisme r,’est pas’trivial- Au contraire : soit F 1 le groupe

libre abélien qui est engendré per les éléments [e, x1, x a .., où a

est l’élément neutre de F1 . En introduisar. t dans F1 les relations

x 
= xnn n &#x3E; 1 on obtient un groupe G . Il est facile à voir que la loi de

1 n 1

Dirac 6 

x1 
par 6 

x1 
1) qui est indéfiniment divisible

ne peut pas être plongée dans un homomorphisme (D de Q+ cfans P tG1 )
(satisfaisant à la condition T (1) = 6 .1 x1

Par une analyse plus soigneuse on obtient le résultat suivant : (voir il] 1 :

la condition nécessaire et suffisante pour que à pour un x E G1 soit

indéfiniment divisible est que x appartient au groupe cyclique engendré par

x1. Aucune loi 6x peut être plongée dans un homomorphisme (p de Q+ dans

P CG1)· °
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Le monoide Q est un monoide sous monogène engendré par 1, 1 21, 1 31,...
En considérant des autres semi-groupes sous monogènes b engendrés par de

éléments de la forme 1, 1 1 ... où &#x3E; 1 sont des nombres entiers
q 1 q 1 2

on est conduit dans une manière tout à fait naturelle au problème qu’il est

possible de plonger les mesures de Dirac ~x , x E G dans un homomorphisme

O de S+ dans P tG1) tel que ~ (1) = ô x Dans cette direction on a

obtenu dans le travail [1] le résultat suivant :

Il existe des monoides S+ tels que toutes les mesures de Dirac 

x E G1 peuvent être plongées dans un homomorphisme ~ de S. dans P (G1)
satisfaisant à ~ (1) = à x .

Sans donner des détails, je voudrais mentionner que le plongement des lois

indéfiniment divisibles définies sur lès Boréliens ~ d’un groupe G localement

compact dans un homomorphisme d’un monoide sousmonogène dans P (G) a quelque

intérêt en ce qui concerne la caractérisation des lois de Poisson sur ~

(Voir ~2~ ) .

Le problème, s’il est possible de plonger toute la loi indéfiniment divi-

sible définie sur les Boréliens ~ d’un groupe abélien G dans un homomorphisme

d’un monolde sousmonogène S+ convenablement choisi dans P (G) n’est pas

encore résolu.

En considérant la version non-commutative du groupe G1 il est possible

de montrer qu’il existe des lois indéfiniment divisibles qui ne peuvent jamais

être plongées dans un tel homomorphisme r1~.

Maintenant on considère un problème qui se trouve dans le cadre de cette

idée que nous venons d’étudier. Soit r ~ ~ r un homomorphisme non injectif

de 0 dans P (G) où G est un groupe localement compact. Alors il est

facile à voir qu’il existe un sous-groupe compact H de G et un nombre rationnel

ro 
&#x3E; 0 tel que v r 

o 

= 

eH où eH est la mesure normée de Haar restreinte
0

sur H. Il s’ensuit de plus que le support de ur , r E Q+ est contenu dans
r +
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une classe conjuguée x r Fi de H -où x r au normalisateur n (H)

de H. On peut conjecter que v r 6x eH pour tout r &#x3E; 0. Cette conjecture
. r

est vraie pour les groupes abéliens et poiir les groupes compacts (voir 

En utilisant la méthode développée dans [~J on obtient le résultat suivant :

soit A l ’eutomorphisme de H sur H défini pai h + x ’ h x-1 ~ x E n (H) .
r 

p 
r r r

S’il existe pour tout r &#x3E; 0 un yr E H tel que A r est aussi , donné par

h + y h y-1 , c’ est-à-dire si A est un automorphisme intérieur alors la
r r r 

p

conjecture est vraie.

D’autre part M. CARNAL a construit un groupe localement compact qui montre

que la conjecture n’est pas vraie en général . Cet exemple ainsi que d’ autr es

résultats ont été traités dans le travail [4J que nous venons de citer.
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