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I

GÉOMÉTRIE TRANSCENDANTE.

De la courbure des courbes planes ;

Par M. G E R G O N N E.

ANALES

DE MATHÉMATIQUES

PURES ET APPLIQUÉES.

C’EST principalement dans les recherches relatives à la courbure
soit des courbes planes , soit des surfaces courbes, soit des cour-
bes à double courbure , que se montre dans tout son jour l’uti-
lité des notations différentielles, et il suffirait , pour s’en convain-

cre, de comparer ce que nous allons dire ici sur ce sujet avec
ce que nous en avons dit à la pag. I27 de notre IX.me volume , 
où nous nous étions imposés la loi de ne faire usage que des no-
tations de 1 analyse élémentaire. Nous n aurions donc pas hésité
Tom. XXI, n.° I, I.er juillet I830. 1
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à débuter par ce genre d’application, si nous n’eussions pensé
qu’en nous en occupant , nous pourrions avoir quelquefois besoin
de nous appuyer sur la théorie des maxima et minima, et si nous
n’avions désiré de n avoir alors qu à renvoyer à des principes déjà
établis.

Nous devons rappeler ici ce que nous avons déjà dit ailleurs ,
savoir , que nous ne saurions avoir le dessein d’écrire un traité

complet sur la matière , mais seulement de montrer à quel point
l’emploi des notations différentielles facilite les recherches de haute
géométrie et en généralise les résultats. Il ne sera question , au
surplus , dans le présent article , que des courbes planes ; d’autres

articles seront consacrés aux surfaces courbes et aux courbes à

double courbure.

I. Soit

une équation en x et y exprimant une courbe plane quelcon-
que, rapportée à deux axes de direction arbitraire; et soit (x’,y’)
un quelconque des points du périmètre de cette courbe ; de telle
sorte qu’on ait

Pour transporter en ce point 1 origine des coordonnées , sans chan-

ger la direction des axes , il faudra faire, comme l’on sait,

f et u étant les symboles des nouvelles coordonnées. Or , cela

revient évidemment it supposer que ; dans (2) , x’ et yI se chan-

gent respectivement en x’+t et y’+u, ce qui donnera ( tom.

XX , pag. 258); en ayant égaid à cette même équation (2),
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et telle sera conséquemment l’équation de la courbe (I), rappor-
tée aux nouveaux axes ; équation dans laquelle x’ et y’ sont deux
constantes indéterminées, équivalentes à une seule , attendu qu’elles
sont liées par la relation (2). On repassera , d’ailleurs, au sys-
tème primitif au moyen des équations (3) qui donnent

L’équation (4) peut être regardée comme fondamentale dans toute

la théorie qui va nous occuper.

II. Si l’on ne veut considérer qu’un très-petit arc de la courbe,
s’étendant fort peu de part et d autre de l’origine des t et. il ; pour
tous les points de cet arc, t et u seront de fort petites quantités ;
de sorte qu on pourra , sans erreur sensible, négliger, dans l’é-

quation (4), les termes de plus d’une dimension , par rapport à
ces variables ; la suppression de ces termes aura , au surplus , d au-
tant moins d Influence que l’arc considéré sera plus petit. Ainsi ,
plus il sera petit et plus il tendra à avoir pour équation
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cette équation représentera donc rigoureusement lare dont il s’agit,
lorsque cet arc se réduira à l’origine des t et u. On peut donc dire
que l’équation (6) est celle’de la droite qui. à l’origine des t et

u, a exactement la même direction que la courbe en ce point.
Une telle droite est dite une tangente à la courbe (I) au point
(x’,y’), qui est dit son point de contact avec elle.

La droite (I) tant qu’elle ne se confond pas avec 1 un des axes ,
passe nécessairement dans deux des quatre angles des coordon-

nées opposés par le sommet ; puis donc qu elle tend d autant plus
à se confondre avec un arc de la courbe, que ce arc s étend moins
de part et d autre de l’origine des t et u, il en faut conclure

que , quand aucun des deux axes n’est tangent à la courbe, on

peut toujours concevoir un arc s’étendant assez peu , de part et

d"auire , de l’origine des t et u, pour que les deux parties de cet
arc, déterminées par ce point, soieut situées dans deux angles des
coordonnées opposés par le sommet, et conséquemment pour que
t et M changent de signes, à la fois, en passsant dun côté à
l’autre de l’origine.

III. Pour mieux connaître la nature de cette droite que nous

avons nommée tangente, conduisons, par l’origine des t et u,

une droite arbitraire ayant pour équation

où M est une indéterminée. Pour avoir les intersections de cette

droite avec la courbe , il faudra, dans les équations (4) et (7),
considérer t et u comme les deux inconnues d’un même problème
déterminé. Or, la substitution de la valeur (y) de u, dans l’é-

quation (4), donne
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telle est donc l’équation qui donnera les valeurs de t qui répon-
t. dent aux intersections de la droite (7) avec la courbe (4) ; va-

leurs qui , substituées dans 1 équation (7) , feront connaître les va-
leurs correspondantes de u.

Or, l’équation (8) est d’abord satisfaite en posant t=0, d’où

résulte aussi u=0 ; et c’est là ce qu’on pouvait fort bien prévoir
à l’avance , puisque l’origine des t et ii est , par construction , un

point commun à la droite et à la courbe. L’équation (8) , délivrée
de cette racine , devient

et doit donner les valeurs de t qui répondent aux intersections,
autres que l’origine des t et u, de la droite (7) avec la courbe

(4) ; intersections qui pourront être plus ou moins nombreuses ,
et dont la situation , sur cette courbe , variera avec M, c’est-à-dire,
avec la direction de la droite (7).

Si l’on veut profiter de l’indétermination de M, pour faire

en sorte qu’un nouveau point d’intersection vienne se confon-

dre avec le premier , à 1 origine des / et u, il faudra faire en

sorle que l’équation (9) soit, comme l’équation (8) , satisfaite en

posant t=0 ; ce qui exigera qu on ait

équation qui déterminera la valeur de M qui satisfait à cette con-

dition. Or , cette valeur , substituée dans l’équation (7). fait re-

tomber de nouveau sur l’équation (6) de la tangente à l’origine
des t et u ; donc la tangente à une courhe, en l’un de ses points,
n’est autre chose que ce que deviendrait une corde qui, passant
par ce point , tournerait sur lui, jusqu’à ce que sa Se-
rait devenue tout à fait nulle; d’où il suit qu’une tangente aune
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courbe peut être considérée comme ayant, avec cette courbe , deux

points communs qui se confondent en un seul.
Puisque la tangente à une courbe a, en son point de contact,

même direction que la courbe en ce point , il s ensuit que , par
le point de contact d’une tangente , il est impossible de mener
une droite qui , à partir de ce point, passe entre elle et la courbe ;
car la direction d’une telle droite s’approchant plus alors de celle
de la courbe que ne le ferait la direction de la tangente , il ne

serait plus vrai de dire que cette dernière direction est , au point
de contact , celle de la courbe même.

IV. Si , continuant à représenter par t et u les deux coordon-

nées d un même point quelconque de la courbe , on représente
par uI la coordonnée de la tangente qui répond à t, on aura (6)

En retranchant cette équation de l’équation (4), il viendra

Or , on peut toujours supposer t et u assez petits , sans être nul,s ,
pour ne faire dépendre le signe du second membre que du signe,
de l’ensemble de ses termes de deux dimensions, lequel reste in-
variablement le même si t et ll changent de signes à la fois,
comine il arrive en passant d’un côté à l’autre de l’origine , d’a-
près la remarque qui a été faite ci-dessus ; donc aussi on peut tou-

jours concevoir un arc s’étendant assez peu de part et d autre de

1 origine des t et u, pour que , dans toute son étendue , u-uI
conserve invariablement le même signe ; ce qui revient à dire

qu on peut toujours concevoir un arc de courbe s’étendant assez

peu de part et d’autre de son point de contact avec une tangente ,
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pour que cet arc soit entièrement situé d’un même côté de cette

tangente. La tangente à une courbe , en un quelconque de ses

points , touche donc la courbe sans la couper en ce point.
Nous disons en un quelconque de ses points , car , si l’origine

des t et u ou le point (x’,y’), était tellement choisi sur la courbe,
qu’on eùt à la fois , 

ce qui ne saurait , au surplus , avoir généralement lieu , puisque
ces trois cquadons sont déjà généralement incompatibles , et qu’il
faut y joindre encore l’équation (2) S’=0 ; l’équation (12) deve-

nan t alors

comme on pourrait toujours prendre t et u assez petits , sans être
nuls , pour ne faire dépendre le signe de tout le second membre
que du signe de l’ensemble de ses termes de trois dimensions , le-
quel change , en passant d’un côté à l’autre de l’origine des t et

u , il s’ensuit qu’alors on pourrait toujours prendre un arc de la

courbe s’étendant assez peu de part et d’autre du point de contact
de la tangente , pour qu’en passant d’un côté à l’autre de ce point ,
u2013u, changeât de signe ; ce qui revient à dire que les deux par-
ties de cet arc, déterminées par le point de contact , se trouveraient
alors situées de différens côtés de la tangente qui , de la sorte ,

toucherait et couperait la courbe en ce point. Un tel point d’une
courbe est ce qu on appelle un point d’inflexion.
Dans la même hypothèse , en posant l’équation (I0), l’équa-

tion (9) deviendrait divisible par t’ ; il y aurait donc alors , ou-
tre l’origine des t et u, deux autres points communs à la droite

(6) et à la courbe (4) qui viendraient se confondre avec celui-là;
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ce qui revient à dire que la tangente à un point d’inflexion d’une
courbe peut être considérée comme ayant , avec cette courbe , trois

points communs qui se confondent en un seul.

Veut-en savoir si une courbe proposée a des points d’inflexion
et en assigner la situation, sur la courbe PU ne s’agira, pour
cela, que d’éliminer x’ et les équations (13) et l’équa-
tion (2) ; on obtiendra ainsi deux équations entre quantités con-
nues, lesquelles ne pourront être qu identiques ou absurdes ; si

elles sont toutes deux identiques , la courbe aura un ou plusieurs
points d’inflexion, dont la situation sera fixée par les systèmes de
valeurs de xl et y’ tirées de deux quelconques de ces quatre équa-
tions ; mais si une seule des équations entre quantités connues
est absurde, et , à plus forte raison , si elles le sont toutes deux,
on devra en conclure que la courbe n’a aucun point d’inflexion.

On se comporterait exactement de la même manière si , l’équa-
tion d une courbe contenant des coefficiens indéterminés, au nom-
bre de deux au moins , on voulait profiter de leur indétermina-
tion pour faire acquérir à la courbe un ou plusieurs points d’in-
flexion. Seulement les deux équations auxquelles on parviendrait
ne seraient proprement ni identiques ni absurdes ; ce serait des

équations de condition , exprimant les relations que devraient avoir
entre eux les coefficiens indéterminés pour que de tels points exis-
tassent. Ces relations ainsi admises , la situation des points d’in-

flexion se déterminerait comme il vient d’être dit ci-dessus.

En raisonnant dune manière analogue, on parviendra facilement
à démontrer que si pour l’un (x’,y’) des points dune courbe
outre les équations (13), on a encore

la courbe sera toute située d’un même côté de sa tangente en

ce point, laquelle conséquemment la touchera en ce même
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point , sans la couper , et pourra être considérée comme ayant ,
avec la courbe , quatre points communs se confondant en un seul ;
que si l’on a , en outre , pour ce point ,

la tangente touchera et coupera alors la courbe, et son point de
contact pourra être considéré comme cinq points communs à l’une
et à l’autre, se confondant en un seul, et ainsi de suite. La re-

cherche de ces points s’exécutera d’ailleurs comme celle des sim-

ples points d inflexion ; mais la chance d’en obtenir ira sans cesse

en diminuant , à raison du nombre toujours croissant des équations
de conditions auxquelles on aura à satisfaire.

V. En retournant aux coordonnées primitives , au moyen des

formules (5) , l’équation (6) . de la tangente au point (x- y’) , de-

viendra 

équation dans laquelle les deux constantes xl et y’ sont liées en-
tre elles par l’équation (2), et ne doivent ainsi compter que pour
une seule. Rien ne sera donc plus facile que d’obtenir l’équation
de la tangente à une courbe, par un point donné sur cette courbe.

Si le point (x’,y’) n’est pas donné , cette équation, en y met-
tant, pour x’, y’, tous les systèmes de valeurs compatibles avec
la relation (2) , pourra indistinctement exprimer toutes les tan-

gentes à la courbe. On pourra donc ainsi profiter de l’indétermi-
nation de x’ et y’ pour assujettir une tangente demandée à une
condition donnée.

Si , par exemple, on veut assujettir la tangente à passer par
un point donné (a, h) , il faudra exprimer que les coordonnées de
ce point satisfont à l’équation (17) , ce qui donnera
1 XXI.
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équation qui. combinée avec l’équation (2), fera connaître les points
de contact de toutes les tangentes qui peuvent être menées à la

courbe par le point (a, b).
Au lieu de résoudre les équations (2) et (18) , par rapport a

x’ et y’ , on peut chercher les intersections des deux courbes

qu’elles expriment, oa , ce qui revient au même, chercher les

intersections de la courbe (I) avec la courbe exprimée par l’équa-
lion 

cette dernière est donc celle d’une courbe qui coupe la proposée aux
points de contact de toutes les tangentes qui peuvent lui être me-

nées du point (a , b).
Si l’on demandait de mener à la courbe (I) une tangente pa-

rallèle à une droite donnée par l’équaion

la condition de parallélisme de cette droite avec la droite (17) se-
rait exprimée par 1 équation

d’où il suit, en raisonnant comme ci-dessus, que l’équation

est celle d’une courbe qui coupe la proposée aux points de con-
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tact de toutes les tangentes qui peuvent lui être menées parallè-
lement à la droite (20).
On peut encore se demander de mener une tangente commune

à deux courbes données , ou à deux branches dune même courbe.

Supposons d’abord qu’il soit question de deux courbes données par
les équations

soient (x’,y’), (x", y") les points de contact respectifs, sur les
deux courbes , ce qui donnera dabord

cette tangente commune pouvant être (17) indistinctement expri-
mée par tune ou 1 autre équation

lesquelles reviennent à

il faudra écrire que ces deux équations n’exprimcnt qu une seule
et même droite , ce clu’on fera en pesant la double équation

telles seront donc les deux équations qu’il faudra combiner avec
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les équations (24). pour obtenir. les divers systèmes de valeurs des
coordonnées des deux points de contact (x’, y’), (x", y").

S’il s’agissait des tangentes communes à deux branches d’une

même courbe , il faudrait remplacer S1 et S2 par S ; de sorte qu’en
désignant simplement par (x, y), (x’, y’) les deux points de con-
tact, les quatre équations à résoudre seraient

VI. Si l’on suppose les coordonnées rectangulaires, l’équation
de la perpendiculaire menée à la tangente (I7), par son point
de contact , c’est-à-dire, de la normale à la courbe en ce point ,
sera

équation dans laquelle , comme dans celle de la tangente, les deux

constantes x’ , y’ sont liées entre elles par la relation (2) ; et qui
couséquemment pourra Indistinctement exprimer toutes les norma-
les à la courbe , si ces deux constances ne sont liées l’une à l’au-

tre par aucune autre condition.

SI donc on veut particulariser une de ces normales, il faudra

établir une second relation entre les constantes , y’. On pourra
donc , en particulier , assujettir la normale à toutes les conditions

auxquelles nous venons tout à l’heure d’assujettir la tangente.
Comme cela ne saurait oirir de difficultés , d’après ce qui précède,
nous nous bornerons ici à donner les résultats.

L équation
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e.st celle- d’une courbe qui coupe la courbe (I) aux pieds de tou-
tes les normales qui peuvent lui étre menées du point (a, b).

L’équation

,est celle d’une courbe qui coupe la proposée aux pieds de tou-

tes les normales qui peuvent lui être menées parallèlement à la

droite (20).
Si l’on veut mener , aux deux courbes (23) , une normale com-

mune, les points (x’,y’), (x",y"), où se terminera la nor-

male sur les deux courbes , seront donnés par les équations (24).
combinées avec la double équation

mais s’il s’agit d’une normale commune à deux branches de la

courbe (I), les coordonnées des deux extrémités (x,y), (x’,y’)
de cette normale devront être déterminées par les quatre équations

VIT. Dans tout ce qui précède nous avons tacitement supposé
que le pont (x’,y’) était quelconque sur la courbe (I) ; mais ce
point pourrait être choisi de telle sorte , sur cette courbe , que
dS’ dx e t dS’ dy’ fussent tous deux nuls ; ce qui, au surplus, n sa u-
rait avoir lieu généralement , puisque est déjà nulle et que
les trois équations
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sont, en général ; incompatibles.
Alors l’équation (4) se réduit à

Or, si l’on veut ne considérer qu’un fort petit arc s’étendant très-
peu de part et d autre de l’origine des t et u , pour tous les points
de cet are , t et u seront de tort petites quanthés ; de sorte qu’on
pourra, sans erreur sensible , faire abstraction des termes de plus
de deux dimensions en t et u, dans le second membre de l’équa-
tion (33). On peut donc dire que, pour tare dont il s’agit, te-
quation sera sensiblement.

et représentera d’autant plus approximativement l’arc de courbe,
que cet arc sera plus petit , puisqu’alors les termes négligés en
auront des valeurs d autant moindres ; elle exprimera donc rigou-
rausement l’arc dont il s’agit, lorsqu’il se réduira à l’origine des t
et u , c’est-à-dire au point (x’ , y’).
Or, l’équation (34) exprime deux droites qui se coupent, deux
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droites qui se confondent , bu un simple point, suivant que ia fonc-
tion

est positive, nulle ou négative ; donc , dans les mêmes circonstan-
ces, la courbe, à l’origine des t et u, se réduira rigoureusement
à deux droites qui se couperont , à deux droites qui se confondront
ou à un simple point ; c’est-à-dire qu alors le point (x’,y’) sera

un point d intersection ou de contact de deux branches de la

courbe (f) , ou un point isolé, lié analytiquement avec cllc et

compris dans son équation. Dans les deux premiers cas , l’équa-
tion (34), ou bien , en repassant au système primitif , au moyen
des formules (5) , l’équation

sera l’équation commune aux tangentes aux deux branches de la

courbe au point (x’, y’).
On peut remarquer que , dans le cas où les équations (32) sont

satisfaites , l’équation (8) est immédiatement divisible par t2 ; et ,

qu’en ôtant ce diviseur et supposant ensuite t nul , on a , pour
déterminer M, l’équation

de laquelle éliminant M, au moyen de l’équation (7), on retombe

exactement sur l’équation (34). En conséquence les points d’une
courbe pour lesquels les équations (32) soi-it satisfaites, sont appe-
lés (les points doubles de cette courbe.

L’équation S=o d’une courbe étant donnée ; si l’on veut sa-
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voir si cette courbe a des points doubles, et en déterminer la

situation on éliminera x et y entre les trois équations

l’équation résultante , entre quantités connues , ne pourra être

qu’absurde ou Identique. Dans le premier cas, la courbe n’aura

aucun point double ; dans. le second , elle en aura un ou plusieurs
dont les coordonnées seront données par deux quelconques des

équations (38). Ces coordonnées étant mises ensuite tour à tour

à la place de x’ et y’ , dans l’équation (36), on connaîtra ainsi

les directions des deux tangentes en chacun de ces points.
On se comporterait exactement de la même manière si, l’équa-

tion S= o renfermant un ou plusieurs coefficiens arbitraires, on

voulait profiter de leur- indétermination pour lui faire exprimer u.ne
courbe ayant un ou plusieurs points doubles;. il arriverait seule-
ment qu’en éliminant x et r entre les trois équations (38) , l’é-

quation à laquelle on serait conduit ne serait ni Identique ni ab-
surde ; elle exprimerait la condition à laquelle les constantes ar-

bitranes devraient satisfaire pour que de tels points existassent ;
et , en supposant cette condition satisfaite , le calcul s achèverait
comme dans le premier cas. 

VIII. Des considérations analogues prouvent que , si le point
(x’,y’) était choisi sur la courbe (i) de telle sorte que , outre les

équations (32), on eùt encore celles-ci :

ce qui peut encore moins avoir lieu généralement ; l’équation
de la courbe , réduire au point (x’,y’), serait
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équation qui exprime trois droites qui se coupent, ou bien deux
droites qui se confondent et une troisième droite qui les coupe ,
ou enfin une droite unique et un point situé sur sa direction ,
suivant que la fonction

est négative , nulle ou positive ; et qui , en particulier, exprimera
trois droites qui se confondent , s si l’on a, à la fois,

la courbe aura donc , dans les mêmes circonstances, en son point
(x’,y’), ou trois branches qui se couperont , ou deux branches
qui se tou-cheront et une troisième qui les coupera toutes deux à

leur point de contact , ou trois branches qui se toucheront , ou
enfin une branche unique et un point sur sa direction , lié ana-

lytiquement avec elle ; et, comme alors l’équation (8) devient im-

médiatement divisible par il, on dit que le point (x’,y’) est un

point triple. Les tangentes aux diverses branches de la courbe qui
passent par ce point sont d’ailleurs données par l’équation (4o)..

Veut-on savoir si une courbe donnée par l’équation S=0 a des
points triples, et en déterminer la situation? Ou bien, cette équa-
tion contenant des coefficiens arbitraires , veut-on profiter de leur
indétermination pour faire acquérir des points triples à la courbe

qu’elle exprime ? Dans l’un comme dans l’autre cas il faudra
d’abord éliminer x et y entre les six équations

Tom. XXI. 3
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il en résultera quatre équations, soit entre quantités connues , soit
entre les coefficiens arbitraires. Dans le premier cas, il n’y aura
des points triples qu’autant que ces équations seront toutes qua-
tre identiques ; dans le second , si les coefficiens arbitraires ne

sont pas en moindre nombre que celles de ces équations qui ne
seront pas identiques d’elles-mêmes, ces équations exprimeront les
relations cherchées. Dans tous les cas , deux quelconques des équa-
tions (43) feront connaîtra les coordonnées des points triples ; et

la substitution des valeurs de ces coordonnées , à la place de x’
et y’, dans l’équation (40), fera connaître les tangentes aux diver-
ses branches de la courbe qui se couperont en ces différens points.
On voit aisément par là ce qu’il y aurait à dire sur la recher-

the des points quadruples, et, en général, sur la recherche des points
multiples , d’un ordre de multiplicité quelconquep 

IX. Pour qu’une courbe SI=0 passe par le point (x’,y’), il faut

qu’on ait S’I=0. Si l’on veut en outre que cette courbe ait , en
ce point (x’,y’), la même tangente que la courbe (i) en ce point
on voit (6) qu’il suffira pour cela qu’on ait

étant une constante quelconque.
Donc, en particulier, l’équation
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est , quelle que soit la constante C , l’équation d’un cercle qui ,.
non seulement passe , comme la courbe (i) , par l’origine des t
et u , c’est-à-dire , par le point (x’,y’), mais qui a , en outre,
en ce point , même tangente que cette courbe ; et qui a consé-

quemment son centre sur la normale à cette même courbe , en
ce point. Un tel cercle est dit tangent à la courbe (I) au point
(x’,y’); d’où l’on voit , à cause de l’indétermination de C, qu’une
courbe a , en chacun de ses points t une infinité de cercles qui
lui sont tangens , et qui ont tous leurs centres sur la normale en

ce point. Il est d’ailleurs manifeste qu’un cercle tangent à une

courbe , en un quelconque de ses points , peut être considéré comme
ayant avec cette courbe deux points communs qui se confondent
en un seul. Il peut avoir d’ailleurs avec la courbe un plus ou
un moins grand nombre d’autres points communs.

Ces derniers seront évidemment donnés par le système des équa-
tions (4) et (45) dans lesquelles il faudra considérer t et u comme

les deux inconnues d’un même problème déterminé. On pourra , au.
surplus , dans cette recherche , remplacer l’équation (4) par quelle
combinaison on voudra de l’une et de l’autre , par leur différence
par exemple, qui est

Cherchons à déterminer la constante C de telle sorte qu’un troi-
sième point , commun aux deux courbes, vienne se confondre avec
les deux premiers , à l’origine des t et u., c’est-à-dire, en ’)
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Pour cela remarquons d’abord qu’on peut toujours profiter de l’in-
détermination de C pour amener ce troisième point à être aussi

voisin de l’origine des t et u qu’on le voudra, et qu’alors on
pourra sensiblement , dans la rechercha de ce même point , né-

gliger les termes dp dimensions plus élevées en t et u, vis-à-vis
des termes de dimensions moindres , e’est-à-dire , remplacer les

équation s (45) et (46) par les deux suivantes ;

or, en eliminant ae la seconde, au moyen de m prmiere, une

quelconque des coordonnées t et u, l’autre disparaît d’elle-même,
et il vient

d’où on tire

donc, plus C approchera de cette valeur et plus aussi le troisième
point commun approchera de se confondre avec les deux autres ;
il se confondra donc rigoureusement avec eux , lorsque C aura exac-
tement cette valeur.

Remarquons présentement que l’équation (45) peut être écrite
comme il i
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de sorte que le cercle qu’elle exprime a, respectivement , pour les
coordonnées de son centre et pour son rayon,

en mettant donc pour C sa valeur, et repassant au système pri-
mitif, au moyen des formules (5), le cercle dont trois poi-nts se

confondent avec trois points de la courbe en (x’,y’), aura,

’pour les coordonnées de son centre , 

et pour son rayon

Ce cercle est ce qu’on appelle le cercle osculateur de la courbe au

point (x’,y’); son centre et son rayon sont dits le centre et le

rayon de courbure de cette même courbe, en ce même point.
Nous allons voir tout à 1 heure la raison de ces dénominations.

X. Pour abréger , désignons par 03A9 le second membre de l’é-
quation (4), et par 03A9’ ce que devient ce second membre, lors-
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qu’on y change respectivement t et u en t’ et u’; si (t’, u’) est
un point de la courbe (4) , de sorte qu’on ait 03A9’=0, l’équation
de la normale menée, par ce même point, à la courbe 03A9=0
tera (27)

les deux constantes- t’et u’ étant liées entre elles par l’équation
03A9’=0, c’est-à-dire , par l’équation

ce qui d’onne

au moyen de quoi l’équation (51) de la normale au point (t’,u’)
deviendra
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Si l’on Tout avoir l’intersection de cette normale avec celle qui
passe par l’origine des t et u, c’est-à-dire, par le point (x’,y’),
il faudra considérer t et u comme les deux inconnues d un même

problème déterminé, tant dans l’équation (54) que dans l’équa-
tion de la normale à l’origine des t et u, qui est (2y)

mais, si le point (t’,u’) est supposé très-voisin de l’origine des
l et u, on pourra , sans erreur sensible, remplacer , dans cette

recherche, l’équation (54) par l’équation plus simple

-et même remplacer cette dernière par telle combinaison qu’on en

voudra faire avec l’autre, de manière à n’en pas élever le degré ;
par leur différence, par exemple, qui est

Si l’on résout les deux équations (55) et (57), par rapport à t et
u, et que, dans les numérateurs des valeurs de ces deux Incon-
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nues , on néglige les termes de deux dimensions en t’ et u’, vis-
à-vis de ceux qui n’en ont qu’une seule,. il viendra

telles seront donc, approximativement , les coordonnées de l’in-

tersection des deux normales , et d’autant plus approximativement
que le point (t’, u’) sera plus voisin de l’origine des t et u; c’est-
à-dire, d’autant plus approximativement que tl et ul seront plus
petits. 

Mais, dans cette hypothèse, l’équation (53) se réduit sensible-
ment à

en employant donc cette dernière équation à chasser des formu-
les (57) l’une quelconque des coordonnées t’ et u’ , l’autre dis-

paraîtra d’elle-même, e t l’on obtiendra ainsi des formules qui con-
viendront rigoureusement au cas où le point (t’,u’) se confond

avec l’origine des t et u, puisque les coordonnées de ce point
(t’, u’) n’y. figureront plus. Or , on retombe ainsi de nouveau sur

les formules (50) qui donnent les coordonnées du centre de cour-
bure ; d’où résulte ce théorème : 

Si une normale mobile marche vers une normale fixe, leur point
d’intersection marchera sur cette dernière, de manière à s’arréter au
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centre de courbure qui lui répond, lorsque la seconde normale aura
atteint la première.

XI. Ce théorème nous met en mesure de donner une idée beau-

coup plus claire de ce que nous avons nommé cercle osculateur ,
centre et rayon de courbure d’unc courbe, en chacun de ses points.

Soit d’abord un polygone plan rectiligne ouvert quelconque
ABCD......, sur la convexité duquel soit appliqué un fil, fixé

par une extrémité à son dernier sommet , et venant se terminer

en A par son autre extrémité. Concevons qu’on développe ce fil ,
sans lui faire quitter le plan du polygone; son extrémité mobile

décrira d’abord, dans le supplément de l’angle B, un arc de cer-
cle ayant le point B pour centre et le côté BA pour rayon ;
mais , du moment que ce fil aura pris la direction du prolon-
gement de CB , toute sa portion d abord couchée le long de ce

côté s’cn détachera à la fois ; de sorte que le premier arc décrit
se prolongera , dans le supplément de l’angle C , suivant un se-

cond arc ayant le sommet C pour centre et CB+BA pour rayon.
On voit qu’en continuant ainsi le développement, dans le même
sens , l’extrémité mobile du fil décrira , sur le plan du polygone,
une courbe composée d’une suite d’arcs de cercles, ayant succes-
sivement pour centres les différens sommets du polygone, et des

rayons croissant subitement d’un arc à l’autre d une quantité égale
à la longueur d un côté du polygone ; et ces arcs seront consé-

cutivement tangens les uns aux autres, puisque le point commun
à deux arcs consécutifs quelconque sera constamment sur le pro-
longement d’un côté du polygone ; c’esi-à-dire , sur la droite qui
joindra leurs centres. Un tel système d arcs forme ce qu on ap-

pelle une anse de panier.
Les rayons de ces arcs étant ainsi continuellement croissans , du

premier au dernier , si on prolonge l’un d’eux, de part et d’au-

tre de ses points de contact avec les deux qui le comprennent ,
il enveloppera celui des deux dont le rayon sera plus petit que

Tom. XXI. 4
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le sien . et sera ; au contraire , enveloppe par celui dont le rayon
sera plus grand.

Ceci suppose , au surplus , que le polygone générateur de l’anse
de panier est convexe , dans toute sa longueur; car , dans le cas

contraire , suivant la manière dont s’exéculerait le développement
du fil , le rayon de certains arcs pourrait être , à la fois , tantôt

plus grand et tantôt plus petit que les rayons des arcs qui les

comprendaient ; de sorte que de tels arcs , prolongés de part et d’au-
tre, tantôt envelopperaient à la fois ces deux-là et tantôt en seraient
à la lois enveloppés.

Si l’on conçoit présentement que les côtés du polynome devien-
nent de plus en plus petits , de plus en plus nombreux et de

moins en moins inclinés les uns aux autres , les arcs de cercles ,
dont se composera l’anse de panier , deviendront eux-mêmes de

plus en plus petits et plus nombreux et de rayons de moins en
moins digérons.

Si, enfin , on remplace le polygone par une courhe continue , la-
quelle peut être considérée comme un polygone d’une infinité de
côtés infiniment petits et infiniment peu inclinés les uns aux au-

ires l’anse de panier deviendra également une courbe continue
composée d une infinité d arcs de cercles infiniment petits , dont

les rayons croîtront ou décroîtront par degré insensibles, et dont

les centres seront les différens points de la courbe d’abord envelop-
pée par le fil ; les tangentes à cette dernière courbe seront tou-

tes normales à 1 autre ; le point de contact de l’une quelconque
sera le centre de l’arc infiniment petit de 1 autre qui répondra au
pied de la normale , et la distance entre ces deux points sera le

rayon de cet arc.

Réciproquemment, une courbe continue étant tracée sur un

plan , si on mène les normales de tous ses points , toutes ces

normales seront tangentes à une seconde courbe qui sera évidem-
ment celle qu’il faudrait prendre pour base de développement d’un
fil dont l’extrémité mobile devrait décrire la première. Chacun des
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points de la seconde courbe sera le centre de l’un des arcs de cercles
infiniment petits dont la première pourra être réputée l’assemblage;
cet arc se trouvant situé à l’intersection de la première courbe
avec la tangente menée à la seconde par ce même point ; et la

longueur de cette tangente , terminée à ces deux points , sera le

rayon de cet arc.

Ainsi , en résumé , toute courbe donnée peut être considérée

comme composée d’arcs de cercles infiniment petits , de rayons
continuellement croissans ou décroissans , se touchant consécuti-
vement ; le cercle dont un quelconque de ces arcs fait partie, et

qui a évidemment même courbure que cet arc lui-même , est ce

que nous avons appelé le cercle osculateur de la courbe en ce

point ; et l’on voit qu’en général il doit toucher et couper à la

courbe , c’est-à-dire qu’il doit l’envelopper dune part et en être,
au contraire , enveloppé de 1"autre. Le centre de ce cercle qui
est , en même temps , le centre de courbure de la courbe en ce

même point, n’est autre que le point de contact de la normale

en ce point avec la courbe à laquelle toutes les normales sont

tangentes ; courbe qui est dite la développée de la proposée , et

qui est évidemment le lieu géométrique des centres de courbure

de tous ses points ; enfin son rayon de courbure , en un point
quelconque , n’est autre que la normale qui répond à ce point ,
terminée à son point de contact avec la développée.
Dans les points où la courbure de la courbe après avoir cru ,

commence à décroître , c’est-à-dire , dans les points où cette cour-
bure est maximum, et, par suite , le rayon de courbure minimum,
le cercle osculateur est évidemment enveloppé par la courbe, de

part gt d’autre du point de contact ; mais dans les points où, au
contraire, cette courbure est minimum , et , par suite , le rayon de
courbure maximum, c est au contraire le cercle osculateur qui
enveloppe la courbe de part et d’autre du point de contact ; de

sorte que , dans l’un comme dans l’autre cas , le cercle osculateur

touche la courbe sans la couper.
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On peut encore envisager la chose sous un autre point de vue

qui conduit exactement aux mêmes conséquences.
Soit M l’un quelconque des points d’une courbe plane, par lequel

soit menée à cette courbe une normale indéfinie. De l’un quel-
conque C des points de cette normale pris pour centre . et avec

la distance CM pour rayon , soit décrit un cercle ; ce cercle aura

évidemment, au point M, même tangente que la courbe ; et, pour
cette raison , on dira qu’il lui est tangent en ce point ; d’où l’on
voit, à cause de l’indétermination du point C sur la normale, qu’une
courbe peut avoir, en chacun de ses points , une infinité de cer-
cles qui lui soient tangens en ce point , lesquels , comme l’on voit ,
ont tous leur centre sur la normale à la courbe au même point.
De tous les cerles qui touchent la proposée en M , ne consi-

dérons que la série de ceux qui ont leur centre du côté de la con-
cavité de cette courbe , et qui ont conséquemment leur courbure
dans le même sens que la sienne. On pourra toujours , pour l’un
d’eux, prendre le point C assez voisin du point M pour que ce

cercle, du moins dans le voisinage du point de contact, soit,
de part et d’autre de ce point , enveloppé par la courbe. On

pourra toujours , au contraire, pour un autre cercle , éloigner as-
sez le point C du point M pour que , de part et d’autre du point
de contact , ce soit le cercle qui enveloppe la courbe.

Si l’on conçoit ensuite que l’on fasse marcher le point C , sur

la normale , entre ces deux positions , on devra rencontrer une
position intermédiaire pour laquelle le cercle tangent aura , à la

fois, une courbure plus grande que celle de la courbe d’un côté

du point M, mais moindre que la courbure de cette courbe de

l’autre côté de ce point. Un tel cercle tangent sera donc enveloppé
par la courbe, d’un côté du point de contact , tandis qu’au con-
traire cc scn lui qui 1 enveloppera de 1 autre côté de ce point ; il

sera donc, à la fois , tangent et sécant à la courbure au point M,
et sera conséquemment le cercle osculateur de cette courbe en ce

point. Son centre et son rayon en seront donc, pour le même
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point M, le centre et le rayon de courbure de la courbe en ce

poin.t. Son centre sera donc le point de la développée correspon-
dant au point M ; et l’on voit même que ceci offrirait , au besoin,
un moyen graphique de déterminer, à peu près , tant de points
qu’on voudrait de la développée d’une courbe proposée.

Mais les choses ne se passeraient plus de la sorte si le point M
était choisi sur la courbe , de manière qu’en ce point sa courbure
fùt maximum ou minimum. Alors, dans la série des cercles dont

il vient d’être question , on passerait, sans intermédiaire , d’un cercle
enveloppé par la courbe des deux cûtés du point de contact à un autre
cercle qui l’envelopperait, au contraire, de part et d’autre de ce

point ; et la position du point C sur la normale où la transition

aurait lieu serait alors le centre de courbure du point correspon-
dant de la courbe propcsée.

Dans le cas particulier où le point M serait un point d’inflexion,
il est visible que le centre de courbure devrait être porté sur la

normale à une distance infinie , de part ou d autre de ce poin t ;
de sorte que la normale à un point d Inflexion d’une courbe est
une asymptote de sa développée qui a ainsi au moins deux fois

autant de branches infinies que cette courbe a de points d’inflexion,

XII. On voit, d’après ce qui précède, que , si l’on veut dé-.
terminer quels sont les points de la courbe ([) pour lesquels le

rayon de courbure a une longueur donnée r, il ne s’agira que
de considérer x’ et y’ dans les équations (4) et (5I), comme
les deux Inconnues d’un même problème déterminé. On peut dire ,
en conséquence , que l’équation

est celle d’une courbe qui coupe la proposée (I) aux points pour
lesquels son rayon de courbure est égal à r.
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La formule (5I) prouve d’ailleurs que , aux points d’inflexion de la

courbe (1) , pour lesquels les équations (I3)sont toutes trois satisfai-
tes , le rayon de courbure devient infini; de sorte qu alors le cercle
osculateur se confond avec la tangente. On voit aussi que la for-

mule (51) est en défaut pour tous les points où les deux coeffi-

ciens différentiels dS’ dx’ et dS’ dy’ sont nuls ; et on ne doit pas en être

surpris , puisqu’alors il peut passer par le point (x’,y’) au moins
deux branches de la courbe , dont chacune doit avoir son rayon
de courbure. Ce rayon r doit donc alors être donné par une équa-
tion d’un degré supérieur au premier, équation que l’on obtien-
drait facilement par l’application des principes qui nous ont cons-
tamment dirigés dans tout ce qui précède, mais à ïa poursuite de
laquelle nous ne nous arrêterons pas,
En éliminant x’ et y’ entre l’équation (2) et les équations (50)

du centre de courbure du point (x’,y’), l’équation résultante

en x et y sera celle du lieu des centres de courbure de tous les

points de la courbe (i) , c’est-à-dire? l’équation de la développée
de cette courbe. Au surplus , il revient au même et il est plus
simple de dire que l’équation de la développée de la courbe (i)
est le résultat de l’élimination de xl et y’ entre l’équation (2) et
la double équation.

Veut-on savoir enfin quels sont les points de courbe (i) pour
lesquels la courbure de cette courbe est maximum ou minimum?

La question se réduira à rendre l’un ou l’autre la fonction r des

deux variables xl et y’, liées entre elles par la relation (2) ; il

faudra donc , suivant ce qui a été expliqué ( tom. XX 1 pag. 337 )
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égaler d’abord à zéro la variation de la valeur (51) de r, prise
- à la fois par rapport à ces deux variables , ce qui donnera , en
supprimant les accens qui, dans cette rencontre , ne sont d’au-
cune utilité,

mais l’équation (1) donne

ce qui tait d’abord disparaître la seconde partie du premier mem-
bre de la précèdente ; substituant dans l’équation restante la va-

leur de 03B4x ou de 03B4y tirée de cette dernière , l’autre variation en

disparaîtra aussi , et 1 on obtiendra , pour solution du problème,
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c est a-dire que cette équation est celle d’une courbe qui coupe
la proposée (i) aux points où sa courbure est maximum ou mini-
mum. Ayant déterminé , par la combinaison de celle équation avec
l’équation (i) . les coordonnées des points pour lesquels cette cir-
constance a lieu. la substitution des valeurs de ces coordonnées,

pour x’ et y, dans la formule (5t) , fera connaître la grandeur
du rayon de courbure eu ces points.

XIII. En négligeant, dans l’équation (4), les termes de plus
d’une dimension en t et u , nous sommes parvenus à l’équation
(6) de la tangente à la courbe (r) , au point (x’,y’) de cette
courbe. On pourrait , pour plus de précision , ne rejeter, dans cette
équation (4) , que les termes de plus de deux dimensions en

et u , ce qui conduirait à l’équation

qui appartient conséquemment à celle de toutes les lignes du se-

cond ordre qui passent par l’origine des t et il qui se moule le

plus exactement sur la courbe (i) , en ce point. A cause de cette
propriété , une telle courbe est dite l’osculatrice du second ordre

de la proposée au point où elle la touche. En raisonnant comme

nous 1 avons fait pour la tangente que , par analogie , on pourrait
appeler osculairice du premier ordre, on s’assurera facilement qu’en
général l’osculatrice du second ordre d’une courbe , en l’un de

ses points , touche et coupe à la fois celle courbe en ce point.
En repassant au système rectangulaire , au moyen des formu-

les (5) , on pourra dire que l’équation de l’osculatricc du second

ordre de la courbe (I), en un quelconque x’ y’) de ses points,
est
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On voit, au surplus , que, si le point (x’, y’) était un point ou-
ble cette orculatrice ’se réduirait à deux droites ou à un point ;
et que , si ce même point (x’,y’) était un point d’inflexion ,
1 osculatrice ne serait autre que la tangente en ce point.
On pourrait aussi ne supprimer , dans l’équation (4), que les ter-

mes de plus de trois dimensions en t et u , et l’on obtiendrai
ainsi ce qu’on appelle 1 ’osculatrice du troisième ordre de la propo-
sée, en un quelconque de ses poin ts , c’est-à-dire, celle de tou-

tes les courbes du troisième ordre qui, en ce point, se moule le

plus exactement sur cette courbe en ce point, et de laquelle on
prouverait que , dans le voisinage du point de contact , el!e

est toute située d’un même côté de la proposée , qu’elle touche
ainsi sans la couper. On voit aisément par là ce que seraient les

osculatrices des ordres supérieurs , lesquelles couperaient et louche-

raient, à la fois , la proposée , ou bien seraient entièrement situées

d’un même côté de cette courbe , suivant qu’elles seraient d’un
ordre pair ou d’un ordre impair.

XIV. Les formules auxquelles nous sommes parvenus dans tout
ce qui précède sont un peu plus compliquées que celles qu’on emploie
communément à la résolution des diverses questions que nous avons
traitées ; mais , outre quelles en sont aussi plus symétriques, leur
apparente complication en rend l’application plus facile. En ne sup-
posant pas , en effet, que l’équation proposée soit résolue par rap-
port à une des deux coordonnés .r et y, il sera toujours permis
de supposer que S est une fonction rationnelle et entière de ces

deux coordonnées ; ce qui rendra les divers coefficiens différen-

tiels très-faciles à obtenir. Au surplus, rien ne sera plus aisé que
de revenir de nos formules aux formules ordinaires ; il ne s’agira

Tom. XXI. 5
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pour cela que d’y changer d abord respectivement dS, dx, d2S dx2,

d3S dx3, ...... en 2013 dv dx, 2013d2y dx2, 2013 d3y dx3, ....., d’y poser ensuite

dS dy=0, et d’y faire enfin tous les autres coefficiens différentiels

nuls.

. XV. Terminons en appliquant ces généralités à la ligne du se-
cond ordre donnée par 1 équation

On aura d’abord , pour le point (x’, y’),

et de là

Cela posé, la formule (17) donnera, pour l’équation de la tan-

gente en (x’,y’),

ou bien

ou, en ajoutant l’équation (b) et réduisant,
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La formule (I9) donne pour l’équation de la corde de contact

de rangle circonscrit à la courbe (a) , ayant son sommet en ( a , b ) ,
en ayant égard à l’équation (a) ,

La formule (22) montre que si, à la courbe (a) , on mène deux
tangentes parallèles à une droite ayant pour équation

la droite qui joindra les deux tangentes aura pour équation

Si l’on Tout mener une tangente commune à deux branches de
la courbe (a) , on aura (26) , pour déterminer les deux points
de contact, outre les équations (a) et (b) , la double équation

laquelle devient simplement, au moyen des équations (a) et (b) ,

tirant de cette double équation les valeurs de xl et y’ pour les
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substituer dans l’équation (b) , et ayant égard à l’équation (a) ,
ou trouvera pour la courbe qui coupe la proposée aux points où
elle est touchée par des tangentes communes à deux de ses branches,

équation qui appartient aux deux asymptotes si la courbe est une

hyperbole , et qui n exprime rien dans le cas contraire. Les asymp-
toies d’une hyperbole sont , en effet, des tangentes communes à
ses deux branches.

La formule (27) donne , pour l’équation de la normale à la

courbe (a) , par le point (x’,y’), pris sur cette courbe ,

les deux constantes x’, y’ étant liées entre elles par la relation (b).
D’après la formule (28) , l’équation

est celle d’une courbe coupant la courbe (a) aux pieds de toutes
les normales qui peuvent lui être menées par le point (a, b ) de
son plan ; et comme cette équation du second degré n’est point ,
en général, susceptible d’abaissement , il s’ensuit que , de l’un

quelconque des points du plan d’une ligne du second ordre , on

peut , généralement parlant , abaisser jusqu’à quatre normales à

celle courbe. 

La formule (29) donne l’équation

pour celle d’une droite qui coupe la courbe (a) aux pieds de tou-
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tes les normales qui peuvent lui être menées parallélement à ure
droite donnée par l’équation

ces normales sont donc au nombre de deux seulement.

D’après la formule (3I), si l’on veut mener une normale com-

mune à deux branches de la courbe (a) , on aura , pour déiermi-
ner les deux points ( x y), (x’, y’) de cette courbe où elle

se termine, outre les équations (a) et (b) , la double équation

entre laquelle et l’équation (b), éliminant x’ et y’, et ayant égard
à 1 équation (a) , on obtiendra pour solution du problème l’équa-
tion

équation que l’on reconnaîtra facilement pour celle des deux dia-

mètres principaux de la courbe (a) ; lesquels sont, en effet , les

deux seules normales communes à deux branches de cette courbe.

Les formules (32) et (35) montrent que, pour que la courbe (a)
ait des points doubles , il faut qu’on ait à la fois

mais l’équation (a) pouvant être écrite ainsi,

les deux autres la réduisent simplement à
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éliminant donc x et y entre ces trois équations ; on trouvera , 

pour la condition qui fait acquérir des points doubles à la courbe (a) ,

cette équation étant supposée satisfaite , les points doubles seront
donnés par les équations (m) ; d’où 1 on voit qu’il n y en aura

jamais plus d’un. Il y aura d’ailleurs, en ce point , deux bran-
ches de courbe qui se couperont ou se toucheront , ou bien ce

point sera tout à fait isolé (35) suivant que la quantité

sera positive, nulle ou négative. On reconnaît , en effet, que les
équations (m) sont celles du centre de la courbe (a) et que la

condition (n) est celle qui exprime que cette courbe se réduit à

son centre ou à deux droites qui se coupent en ce point. Quant
aux points triples , il est visible qu’une ligne du second ordre
n’en saurait offrir. 

Les formules (50) donnent pour les équations du centre de cour-
bure de la courbe (a) , en un quelconque ’( x’,y’) de ses points ,

et pour son rayon de courbure en ( x, y ) ,
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sur quoi on peut remarquer que le dénominateur commun à ces

formules revient à

,dont la dernière ligne s’évanouit en vertu de l’équation (b); de
sorte que les coordonnées du centre de courbure de la courbe (a)
au point ( x’,y’) sont simplement

et son rayon de courbure au même point ,

Nous ne nous occuperons pas de la recherche de la développée
de la courbe (a) dont l’équation serait probablement fort com-

pliquée. Nous remarquerons seulement que , pour la courbe (a) ,
l’équation (62) de la courbe qui en coupe une autre proposée aux
points où la courbure de cette courbe est maximum ou minimum,
a son second membre nul ; et , comme son premier membre est
le produit de deux facteurs, on peut y satisfaire en égalant l’un
ou 1 autre de ces facteurs à zéro. Ou trouve alors, parles subs-
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titutions, ou l’équation (1) commune aux deux axes de la courbe
ou l’équation (g) commune à ses deux asymptotes, si toutefois

celle courbe est une hyperbole.
Quant à l’osculatrice du second ordre de la courbe (a), il est

manifeste qu’en chacun de ses points cette osculatrice n’est autre

que la courbe elle-même.

QUESTIONS PROPOSÉES.
Problème de Géométrie.

LES deux dérivées relatives à x et y de l’é q uation d’une courbe
quelconque, égalées à la fois à zéro, déterminent, sur son plan
un certain nombre de points ; lesquels , lorsque la courbe est une

ligne du second ordre , se réduisent à un point unique qui en

est le centre.

Quelles sont, dans les autres cas , les propriétés les plus remar-
quables de ces sortes de points ?


