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ANALYSE TRARNSCENDARTE.

Notes sur quelques points d'analyse ;

Par M. Garus, éleve a I'Ecole normale.

MLV VA VVVIAARLWMAWVY

5. L

Démontration d'un theoréme’d analyse.

TI[L'"ORE’ME. Soient Fo et fr deux fonctions quelconques don-
nées ; on aura, quels que soient x et A&,
Fla4-A=~Fx
EC=rai
¢ étant une fonction délerminée, et & une quantité intermédiaire
entre x et x-+h.

De. - onstration. Posons , en effet ,
Fladly—Fx
f(x4-h)—fz

on en déduira

F(x+h)—Pf(x+h)y=Fx—Pfr ,

d'ou l'on voit que la fonction Fo—Pfr ne change pas quand on
y change x en x+/A ; dou il suit qu'a moins qu'elle ne reste
constante entre ces limites , ce qui ne pourrait avoir lieu que dans
des cas particuliers, cette fonction aura , entre x et x+A, un
ou plusieurs maxima et minima. Soit k la valeur de x répondant
a2 l'un d’eux ; on aura évidemment

k=U(P)

¥ dtant une fonction déterminée ; donc on doit ayoir aussi
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P=o(f) ,

v ¢tant une autre fonction également déterminée ; ce qui démon-
tre le théoréime. '
De li on peut conclure , comme corollaire , que la quantité

=0 ()

pour =0, est nécessairement une fonction de x, ce qui démon-

. F(a4-2Y~Fx
Lim, ————
fa+tr)j—fu

tre, & priori, Vexistence des fonctions dérivées.

§. 11

Rayon de courbure des courbes dans I'espace.

Le rayon de courbure d'une courbe en I'un quelconque de¢ ses
points M est la perpendiculaire abaissée de ce point sur l'inter-
section du plan normal au poiat M avec le plan normal consé-
éutif , comme il est ais¢ de s’en assurer par des considérations géo;'
mélriques.

Cela posé , soit (2, y, =) un point de la courbe; on sait que
le plan normal en ce point aura pour équalion

dx dz

X)W () Lp(z—) =0, (™)

X , Y, Z étant les symholes des coordonndes courantes. L'inter-
section de ce plan normal avec le plan normal consécutif sera
donnée par le systémie de cetle équation et de la suivante

1’.; il
(x- x)d< ) (T >&'<de +(Z— )d\‘*“

attendu que
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Or, il est aisé de voir que le plan (I) est perpendiculaire au
plan (N); car t'on a

R dx )+ /(’Y +d_zd dz __' .

. \ ds ) ds (E)—O ’
donc la perpendiculaire abaissée da point (z, y, z) sur l'inter-
section des deux plans (N) et (I) n'est autre chose que la per-
pendiculaire abaissée du meme point sur le plan (I). Le rayonde
courbure est donc la perpendiculaire abaissé du point (x, y, 2)
sur le plan (I). Cetie considération donne, trés-simplement, les
théorémes connus sur les rayons de courbure des courbes dans
I'espace, \
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