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EQUATIONS A DEUX TERMES. 101

ANALYSE BLEMENTAIRE.

Résolution de quelques cas de U'équation o
deux termes ;

Par M. Lextneric, docteur é&s sciences , professeur au
collége royal de Montpellier.
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1. ON a appelé éguation & deux termes toute équation i une in-
connue qui ne renferme qu'une seule puissance de cette inconnue ,
et dont la forme générale est conséquemment

Ay"+B=o ,

ou il est permis de supposer les nombres 4 et B entiers et le
premier positif, tandis que le second peut éire indistinctement po-
sitif ou négatif (¥).

(¥} Les équations a deux termes ont leurs analogues dans les problémes i
lasieurs inconnues ; ce que les -auteurs d’élémens ne devraient pas, ce nous
P >
semble , négliger de faire remarquer. On peut avoir , par exemple , entre x
el 7, les deux équations

aa™~4=by"4c=o0 , alam by =0 ;
Jesquelles , par I'élimination de y» , donnent 'équation a deux termes en
(at/=ba')am =—(b/—cl}=0 .
J. D. 6.
Tom. XXI, n.° 4, 1.° octobre 1830, 14
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o g . B .
2. Si Von fait — =P, de maniére que P raprésente constam-

.

ositif ,"et si p est la racine m.*™ arithmélique

e

meni un nomhre

(190

de ce nombre, 'équaiion prendra la forme

m T m
X 4p"=0 .
« 1 . . ..
Posant alors »—=pz , substituant et divisant par p™, on aura
ﬂ:‘m:{:[:O .

Equa!ion qui répond au probléme ou il s'agirait d'extraire la ra-
cine m. ™ de =41 ; de sorte que l'extraction de la racine m.*™ de
quelque nombre que ce soit, et par suite la résolution de toute
équation & deux termes, se réduit toujours finalement i extraire
une racine arithmétique d'un nombre positif, et & multiplier tour &
tour celte raline par toutes les valeurs de la racine m.*™ de 1.

3. On sait, par la théorie géndrale des équations, que ces ra-
cines , au nombre de m, sont toutes inégales. On sait méme ,
depuis long-temps, les exprimer, sous forme finie, par des fonc-
tions circulaires ; et celte maniére de les représenter prouve , quand
bien méme on ne le saurait pas dailleurs, que, lorsqu’elles sont
imaginaires , elles peuvent éire rangées par couples, comprises dans
la formule ¢ +by/ =7, o a et b sont des quantités réelles. Dans
des temps plus voisins de nous , Lagrange , mettant a profit les
savantes théories de M. Gauss , a prouvé ( Resolut. des équat. nu-
merigues, 2.™¢ édit., note X1V ) que ces mémes racines étaient
toujeurs exprimables algébriquement sous forme finie. Tout ce que
nous nous proposons ici est simplement d'indiquer des procédés élé-
menlaires et uniformes pour obteair les expressions de ces raci-
nes, dans les cas les plus aisés A traiter. Mais rappelons d’abord
quelques principes géaéraux propres a nous guider siurement dans
cette recherche.
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4. Lorsque m est un nombre impair , les racines des deux équa-
tions

" —1=0 , x"4-1=o0 ,

ne difitrent uniquement les unes des autres que par le signe: car
alors on peut passer d'une ¢quation A l'autre, en changeant sin-
p?cmem‘x en —x.

Si m _est un nombre impeairement pair , les racines de 1'une de
de ces é4uations mne seront que les racines de Pautre muliiplides
par / —1; car alors on passera d'une équation a lautre par le
simple changement de z en ay/ =1.

Si m est un nombre pair de la forme 4(2n--1), les racines de
I'une des équations ne différeront de celles de 1'autre que par le
facteur ' ¢ car alors le passage d'une équation a lautre pourra
s'opgrer par le simple changement de x en ay/=,.

Géuéralement, si m est un nombre pair de la forme

2fen1) ,

les racines de la seconde équation se déduiront de celles de la
" R , . 2k ] .

premicre , en multipliant celles-ci par v/ <7 : car alors la premiere

équation devient la scconde en y changeant simplement & en

?k —_—
T v’.—, .
Le premier pas A faire dans la recherche qui nous occupe est

donc de savoir d'abord ce que valent les muliiplicateurs successifs

5 8 16 <k

—_— —— — ) —

v V=1 V=i V=1 V= s Y ema o, e

— 1

Pour y parvenir, remarguons d'ahord que chacun deux étant la
racine quarrée du précédent, tout se réduit a savoir passer de
ok 2ktr,

TRy =i
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Supposons donc qu'on ait trouvé

2t

v —i=a+by/ =
a et b diant deux quantités réelles, on aura

2l+r —

,/( --l———t/a-i-b,/
Posons done

VariN==z+r/ =1 3

d'oi, en quarrant,
atby S=(x*—) 22y 5 ;
ce qui donnera, en égalant séparément le réel et l'imaginaire;
2 2 ._b .
X —yt = > 2.15')"-—— ’

en extrayant la racine quarrée de la somme des quarrés de ces
deux équations, on aura

Py =y a2+ ;
cela donnera
ww=aby/THE ,  yr=a—y/FFD ;

et conséquemment

r=zV2atVett) , = 20—V atl)
ce qui donnera, en substituant,

}+x

y =y ateV=:

¢
Y s Y e RV VR
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au moyen de cette formule générale , et en observent que, pour
le premier terme de notre série de racines, on a a==—1 ¢i ¥=0,
tandis que, pour le second , on a 4=—o0 et b==3, on ‘rouvera suc-
cessiyement

V=Y =1,
Vo=V

V== (VarVitvVe—viv =) 3

36
V== 0 v ad iy 2= apyi/ 50) 3

au moyen de ces résultats , nous n’avons plus a nous occuper que
de la recherche des racines de l'équaiicn

A ——i =0 .

5. Si o est une racine de cette équation o en sera une aussi ,
quel que soit le nombre entier positif p. En effet, 4 cause que «
est racine

or=1 , dod a"==()"=1 et (F)"—1=0,

ce qui prouve la proposiiion arnoncée.
Si, de plus, m est ur: nombre premier, et que a soit différent
de l'unité , la totaliié des racines de la proposée sera

a, o , & , &t , iieeiee. ™ .

En effet, d’abord , par ce qui précide, chaque terme de cetie
suite sera une racine de l'équation dont il s’agit ; en outre elle
ne pourra renfermer deux ierimes égauy ; car si, par exemple,
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cn pouvait avoir =32’ , avee g<p et p<m, il en résulterait

o7 =1 , avec la condition p—g {m , et, coume on a aussl A" =1

il s'ensuivrait que les équations
" —1=—=0 , P —1=—=0 ,

devrait aveir une racine commune, autre que l'unité , et consé-
quemment un facteur commun différent de x—1, ce qui estim-
possible . lorsque m est premier et qu'on a p—g<m.

6. Si m esile produit de deux facteurs premiers a et b ¢t que

o et [5 solent respeciivement des raciues des équaiicus
X*—1=0 , r'—1—=o0 ,

différentes de l'unité; les racines de l'équation z"—1=0 seront

tous les termes du produit

(1ot et ) (G BB )

En effet, d’'abord, ces termes seront au nombre de ab=m; en
second licu , ils seront tous inégaux ; eunfin un quelconque des
termes de ce produit étant de la forme of.?; comme on a (5)

(F)r=ar'=1 , (ﬁ"f’:ﬁ‘?bzl
on aura aussi

a”*t =1 s ﬁ”“”:l

d'ott, en muliiplisnt,

pb hqud p fog ab g m o -

o 5 = (<l 2 _(a,P‘j/ =1 ;
ce qui prouve que o”.27 cst racine de I'équation.

En raisonnant de la mime manitre il sera facile de prouver
gue , géuéralement, si l'on a m=a.bc....., a,b,c, ..... étant
des nombres premiers tous différens les uns des autres, et que
@,B,7, ...... solent respeciivement des racines des équations

A—I==0 , a*~—1=0, I —I1=0 , seeeers
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différentes de l'unité, les racines de la proposée seront les ter-
mes du produit

(1-popar b= (B Bt b 5= (g ooy

7. Ces choses ainsi entendues , soit d’abord m=1 ; les équations
a résoudre seront

r—1=0 , r41=0 ;
lesquelles donnent immédiatement
r=+%1 , X m I .
8. Soit, eu second licu , m=2 ; les équations a résoudre seront

I—1=0 , z*1=0 ;

la premiére revient a
(r—1)(z+1)=o0 ,
qui donre (7)

r=-+1 , rT=—1I ;
les racines de l'autre seront donc (4)
r=4y =1, r=—y/ = .
9. Soit ensuite m=3; les équations & résoudre seront
23—1=0 , x341=0 ;

la premitre revient a
(r—1)(& HaFr)=o ;

et donne conséquemment
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r=—<1 , =3 (—1Fy3.¢v/) ;
les racines de l'autre seront donc (4)
Xozemt z=+(1ty3.v=)) S
ro. Soit m=4; les équations & résoudre seront
Tt—1—0 , att1=0 ;
la premidre revient &

(@F—n)F+1)=03
¢t donne (8)

p=t1,  w=ty/TE
les racines de Vautre seront done (4)
s=+i(V2EViv=) . r=E—i(VEEVEV =) -
11. Soit m=5; les équatioﬁs a résoudre scront
xdb—1=—0 , aS41=0 ;
la premitre revient
(x=—1)(z¢+ 2’ F2"Far+1)=0 ;

qui donne d’abord la racine —+1, tandis que ses quaire aulres ra=
cines sont données par une équation réciproque qui peut €ire
écrite ainsi

(s 2 ) (e Do

posant alors
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x+i—=y, d'ou x'+:‘;=f—2;

il viendra, en substituant ,

rtr—1=o0,

d’ot on tirera

—5==Vs 3=
o=, rte= :ﬁ ’

et par suite

r—t=(—2)(t2)= =EV

mais 1'équation de relation enire z et y donune

r= YEVr—{
2

?

en substituant donc pour y et »*—4 leurs valeurs, on trouvera
finalement , pour les cinq racines de la proposée,

= {(=1+v5) XV 2(5+Vi)-vV =5} »
= {((—1—V35)EV2(E-V5)-v =1} ;

les cinq racines de l'autre équation seront donc (4)

=<1 ,

=H{(—vB) VGV V=)
=3 {(1+vB) v 26—V5)-V =1} «

12. Soit m=6; les équations A résoudre seront

T=e—I ,

z8—1=20 , a541=o0 ;

Ia premiére revient a
om. XXI1. 15
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@P=1)(*+41)=0 ,
et donne (9)
r=3(—1XyIv=)

r=3(+1Ty3I.Vv) s

x:il ’

les racines de l'autre seront donc (4)
. r=+1(V3EV=1)
r=1y =1 , L
r=—3(3Lty=) .

13. Dans le dessein ou nous sommes de ne considérer que les
formules qui ne contiennent pas de radicaux des degrés supérieurs
au second , nous passcrons de suite & la supposition de m=8;
les €quations A résoudre seront ainsi

2—1=0 , al41=0;
la premiére revient a
(x¥—r1)(2*+1)=0 ,
et donne (10) pour ses racines
r=Fr, r=t+3(V2Evzv=1) 5
s=HyYS,  a=—i(/IEYTYE)

les racines de l'autre seront donc (%)

r= (VIR RV IR YD)
= L (Y TRV VR T
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=10 LY AN =0
r=—i(V 2—vi T ) i) —1) -

. j .
14. Pour les mémes raisons que ci-dessus , nous passerons de
suite a la supposition m=10 ; les équations a résoudre seront ainsi

xV—i=0 , I'H1=0;
la premiére revient 3
(@—r1)(a’41)=0 ;

et donne (rr) pour ses racines

=45 (14 B) XV 26—\5) =1} 3
r=— (11 5) YV 2G=V5) =1}
x==1 ,
x:+%{(x—[/§)1"[/2(5+§2§)-[/:} ’
=—3 (= B) Y 26+V5) V=1

les racines de l'autre seront donc (4)

=441 {25V E(— ) =1}
—'—-——’[/2(0-1-\/;)_*—(1"”/5) =1}

-

r=t) =1,

x=+-}{i/2(5—\/s)i(l+l/g)'l/:}
= (V2= V5) T (1 5) =)

15. Soit m=12; les équations & résoudre seront
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Z't'=—1=0 , ZP41=0 ;
la premiére revient a
(z*—1)(=*+1)=0 ,

donc les racines sont (12)

=+t 3.p=y)

r=z=r , x:—':'(li}/f_}‘/——l) 3
P — e= 1))

r=—3 (V3E) =) ;
les racines de l'autre seront donc ()
r=4-5{V 218G — 6 =1}
=412V =), a=— (B e =1}
r=—10/GEVEVED) . e=H 0 R aH Y =i
w=m (A DY 2tV Oy =i} 5
16. Soit m=15; les équations & résoudre seront
xV¥—1—0 , V¥ 41=0 .

Les racines de la premiére s'obtiendront (6) er mu' tipliant deux
3 deux , de toules les maniéres possibles, les racines des deux
équalions

r3—1=0 , Xdem1=0 ,
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ee qui donnera (9) et (11), '

z=1, =i 3 )
=g {(thp ) p 3G=V5) =1} »
x=—%{(x_‘/§).i‘/z_(5_~}:7§_)-l/:"—l} :

=g {3+ 66—V LI+ 53— 35—Vl =1} »

= {1+ 55—/ 65—yl =[5 34 (5~ Vl V¥ =1},
=g {[t—=p 3+ 6G+Vs) £ [(1— B) 3— 2G+V)l =i},
r=

= 5= 6G VI E (= B 341 2G4 V)V =1} -

Quant aux racines de 'autre équation , comme elles ne différent (4)
de celles-ci que par le signe, nous nous dispenserons de les écrire.
17. Soit encore m=16; les équations & résoudre seront

IVmi=0 , x%41=0 ;
la premiére revient &

(@ —1)(@1)=0 ;

dont les racines sont (13)

r=+1, =41 2 ViEY 2=V =)
x=+py =, x=——;—(;/;+v;j:;/=—v;-/—-0 ,

r=4L(/aE =), a=F (Vi Vi =)

-e

=105 =), a=— (a2t Y =)

-
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les racines de l'autre seront donc (4)

==+ LV 2V 2 p Vit 2 — 1 aa i VD)

r=—(V 24V arVity 2—F ViV o)

e=+41(V 2=V STViky s F P i L )

r=—2(y 2= 24-Vidy 2+ ¥ s Vit —1) 5

r="4L(y 2+ b sty 2—F 2y V =1) 5

r=— (‘/'2-&—1/2_-:\/21\/2—“/;‘—\/3-’/3 3

=4 1(V 2=V amVity 244 iV =T)

® .

r=—(y 2—F 2—=\iky/ 24V 2=y ¥ =1)

18. Lorsque m=17 , les racines sont encore expn'mab[es par
des radicaux du second degré ; mais les moyens de les obtenir ,
dans ce cas , sortent tout a fait des élémens , et tout ce quon
peut faire alors en s’y renfermant, est de faire dépendre la re-
cherche de ces racines de la résolution d'une équation compléte
du huitiéme degré. 1l serait fort désirable que I'on découvrit quel-
que procédé bien simple et bien uniforme pour résoudre toutes
les équations a deux termes dans lesquelles I'exposant de l'incon-

nue est un quelconque des nombres de la série
1, 2, 3, 5, 17, =257, 65537, ...

¢'est-a-dire un des nombres de la série

1, 142, 142", 142, 12 , .7
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1g. Toutefois, avec les résultats que nous venons d'obtenir , il

est facile, sans beaucoup de calecul, d'en obtenir une maltitude

d’autres d'un ordre beaucoup plus élevé. Qu'il soit question, par
exemple , de résoudre I'équation

Z212%=1=—0 ;
on la mettra d'abord sous cette forme
(xso_l)(x60+l)=o :
ce qui ramenera la question a résoudre les deux équations
2%°—1=—0 , zf41=0 ,

ou plutét la premiére seulement ; les racines de 1'autre se dédui-
sant des siennes (4), en multipliant celles-ci par é(r-I—V:—.)V;.
Ceite premiére équation peut , a son tour , étre mise scus cette
forme.

(=1 ()= ;
ce qui réduit le probléme i résoudre les deux équations
r—1=0 , x¥°41—o0 ,
ou plutdt la premiére seulement ; les racines de l'autre se dédui-

sant des siennes en les multipliant (4) par p—i. Cette premiére
équation revient , i son tour , a

(@'5em 1) (@5 1) =0 ;
ce qui réduit le probléme a4 la résolution des deux ¢quaticns

zV¥—1=0 , ad41=o0 ,
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dont nous avons déja oblenu les racines (i16), lesquelles nous
avous vu ne dépendre que de ceiles des deux équations

P =—1=0 , xS—1=0 ;

de sorte que c'est 3 la résolution de ces deux derniéres que se
réduit finalement celle de l'équation

xl20_1=0 .

Les racines de cetle derniére , une fois obtenues , en les multi-
pliant (4) par

LWt raavitVe—raaviy=i)

on obtiendra celles de 1'égquation

z12%41=0 ;

on aura donc aussi celles de 1'équation

(xuo‘_l)(xuo_l__l}:__o ;

c'est-a-dire, celles de I'équation

#0100 7




