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THEOREME DE NEWTON, rog

GEOMETRIE DES COURBES.

Démonstration du théoréme de NewTon , sur les

)

quadrilatéres circonscrits & une méme seclion
conique ;

Par M. PonceLET , capitaine du génie , ancien éltve
de I'école polytechnique.

[ " Ph B V5. Ve T Vi V)

THE‘ OREME. Les centres de toutes les sections coniques inscrites
¢ un méme quadrilatére plan quelconque sont situés sur une iméme
- droite passant par les milieux des trois diagonales de ce qua-
drilatére (*). . :

Démonstration. Soit ABCD ( fig. ) un quadrilatére simple ,
. dont les. c6tés opposés AD, BC concourent en P et les cétés AB
et CD en Q, de sorte que P et Q sont les deux autres sommets
du quadrilatére complet ; soient I, K, L les milieux respectifs des
trois diagonales BD , AC, PQ; il est connu que ces trois points.
appartiennent & une méme ligne droite ; et il s'agit de prouver
que cette droite est le lieu des centres de toutes les sections coniques.
-qui touchent a la fois les quatre c6tés du quadrilatére dont il s’agit,

*) Voyez, pour- la. démonstration aﬁalitique de ce thégréme , la page 382

du XLe volume de: ce recueil..
J. D, G
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Seient E, F les points ou les diagonales BD , AG, qui partent
des denx extrémités de I'un quelconque AB des cétés du quedri-
latére , rencontrent la troisitme diagenale PQ. Spit Z le poirt de
contact de ce méme c6té avec I'une quelconque des sections coniques
dont il s’agit; en menant ZE , ZF, coupant les cétés adjacens.
AD, BC en Z/, Z, ces points seront ceux de contact de la
section conique avec ces wmémes cotés (*); done, si 'on divise les.
cordes de contact 22/, ZZ/ enm deux parties égales, aux points
G, H, et quon méne ensuite les droites AG, BH; leur peint
de concours X sera le centre de la section conique correspordant
au point de contact Z. Tout se véduit donc 4 preuver que ce
point X est sur la droite IKL.

Or, d'aprés la manitre dont le point X vient d’étre déterminé,
on voit que la direction de la droite AX est conjuguée & celle
de -ZZ/E , par rapport aux droites AB et AD ou AP; d’ou il suit
que , si 'on méne la parallele AY & ZZ/, elle sera conjugude har-
monique de AX ; c’est-a-dire que les quatre droites AB, AP, AY,
AX formeront entre elles un faisceau harmonique (**). Pareillement ,
si 'on méne BY , paralléle 3 ZZ/F , les quatre droites BP, BQ ,
BX, BY formeront aussi un falsceau harmonique.

H suit de la que si, parle point Y d'intersection des paralléles
AY,BY ¥ ZE, ZF et par le point P, on méne la droite PY,
elle passera par le point X car les points ou la droite PY ren-
contre les droites AX et BX doivent étre , 2 la fois , les quatriémes.
harmoniques des trois points P, Y, M (ce degnier étant celui ot
PY ceupe AB ) ; ce qni ne peut avoir lieu 2 moins que les deux
points dont il s'agit ne sc confondent en un seul et méme point
en X,

H suit .de 13 aussi que, si le point Y parcourait une droite, il

(*) Mémoire sur les lignes du second ardre ,ipac C. J. BRIANCHON , page
22 , art. XIX,

(**) Voyez le méme ouvrage, pag. g, art. V.
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en irait de méme de son conjugué X'; or, Cest ce ‘qu'il est trés-
facile de démontrer. o

"Menons , en effet par Y la paradllele YT a PQ, rencontrant AB’
prolengée en T , les triangles TBY et FQZ, TAY et EQZ,

respectivement semblables, donneront

' TBXFQ=TYXxQZ , TAXEQ=TYXQZ ,
d’od T
TBxFQ=TAXEQ ;

‘e qui démontre que le point T est invariable , ainsi que la pa-
xalléle TY a FQ, qui conséquemment sera parcourue toute enticre
par le point Y, lorsqu’on fera mouveir le point Z sur AB, Au
-surplus , on démontreraitla méine chose sans proportion, au moyen
de la propriété de lhexagone .inscrit & deux lignes droites.

Ainst, le Jlieu des centres X .des coniques inscrites -4 .un quedri-
Jatére ABCD est une droite .unique LX, laquelle passe évidemment
par le point T ,.en méme temps que sa conjuguée YT ; je dis de
plus qu'elle divise en deux 'parties égales chacune des trois .dia-
.gonales de -ce quadrilatére. En effet, si 'on suppose , par exemple,
que ‘EZ/Z se confond avec la diagonale :‘BD, le point'G, et par
-suite le point X ,sera confondu lui-méme avec le point I, milieu
.de cette diagonale; et il en sera de méme du point H ‘pour le
spoint K, milieu de la diagonale AC, si I'on suppose que le point
'Z tombe en A.

De 1a résulte donc ce ‘beau #théoréme de NEwTON - La droite
qui eontient les .milieux.des diagonales d'un quadrilatére circonscrit
@ une conigue contient aussi le .cenire de .la courbe.

COROLLAIRE. lLes centres de toutes -les conigues langenies aux
2rors mémes droites et _passant par un méme point donné , sur
-wn plan., sont sur une autre section conigue (*).

Démonstration. En éffet , soient AD , DC, ‘BC les trois tan-

(") Voyez, pour la démonstiration analitique de-ce théoréme., la page 385
-du XL.# volume du présent recueil, ‘ J..D. G,
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géntes et V le point dont il sagit. Tragons une droite indéfinie
LT queleconque, et proposons-nous de rechercher ious les points
ou elle rencontre la courbe , lien des centres des sections coniques,
ou, ce qui revient au méme, cherchons les -coniques qui , tou-
chant les droites AD., DG ; BC et passant par le point V auraient
leurs centres sur cette droite. « ;

Remarquons que , ponr l'une queleonque de ces coniques,ily
aura toujours une quatfiéme tangente AB qui.,"avec les trois autres ,
formera un quadrilatére ABCD par les milicux des diagonales duquel
passe la droite arbitraire LT. Or , on peut trouver, a. priori, cette
quatnéme tangente , indépendamment de la courbe dant il sagit 5
car si, par le milieu de la distance qui sépare le point ou sommet
D du c6té indéfini CB, on méne une parallele & ce coté, léqueHe
passera évidemment par le wilien de CD, cette paralléle devra
renferper le milieu T de la diagonale BD, correspondant avec:le
sommet D, et par conséquent le point oit elle ira rencontrer la
droite donnée LT sera le milieu I lui-méme, Tirant done DI, son
prolongement ira couper CB au sommet B du quadrilatére chercheé,
lequel sommet appartiendra au quatriéme e6té ou i la tangente AB.
La méme opération , par rapport au point € et aun c6té indelini
DA, donnera le point milieu K de la diagonale AG, et par suite
cette diagonale et le quatriéme sommet A du quadrilatere qui ainsi
sera complétement déterminé.

Ayant quatre tangentes a la conique que l'on considére, et cette
conique passant d’ailleurs par le point donné V, on obtiendra aisé-
ment la position de son centre sur la droite donnée LT ; mais il
existe, comme on sait , denx coniques fqui résolvent le probléeme ;
donc il y a, en général, deux centres sur la droite arbitraire en
question ; et, comme il ne peut y en avoir plus de deux , la
courbe des centres des coniques tangentes aux trois droites AD,
DC, CB et passant par V, ne peut étre coupée en plus de deux
points par une -droite arbitraire gnelconque LT ; donc cette courbe
est du second degré, et par conséquent une conique,



