We study the algebraic combinatorics of monomial degenerations of Plücker forms which is governed by matching fields in the sense of Sturmfels and Zelevinsky. We provide a necessary condition for a matching field to yield a SAGBI basis of the Plücker algebra for -planes in -space. When the ideal associated to the matching field is quadratically generated this condition is both necessary and sufficient. Finally, we describe a family of matching fields, called -block diagonal, whose ideals are quadratically generated. These matching fields produce a new family of toric degenerations of .
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/alco.77
Keywords: toric degenerations, SAGBI and Khovanskii bases, Grassmannians, tropical geometry
Mohammadi, Fatemeh 1 ; Shaw, Kristin 2
CC-BY 4.0
@article{ALCO_2019__2_6_1109_0,
author = {Mohammadi, Fatemeh and Shaw, Kristin},
title = {Toric degenerations of {Grassmannians} from matching fields},
journal = {Algebraic Combinatorics},
pages = {1109--1124},
year = {2019},
publisher = {MathOA foundation},
volume = {2},
number = {6},
doi = {10.5802/alco.77},
mrnumber = {4049839},
zbl = {07140426},
language = {en},
url = {https://www.numdam.org/articles/10.5802/alco.77/}
}
TY - JOUR AU - Mohammadi, Fatemeh AU - Shaw, Kristin TI - Toric degenerations of Grassmannians from matching fields JO - Algebraic Combinatorics PY - 2019 SP - 1109 EP - 1124 VL - 2 IS - 6 PB - MathOA foundation UR - https://www.numdam.org/articles/10.5802/alco.77/ DO - 10.5802/alco.77 LA - en ID - ALCO_2019__2_6_1109_0 ER -
Mohammadi, Fatemeh; Shaw, Kristin. Toric degenerations of Grassmannians from matching fields. Algebraic Combinatorics, Tome 2 (2019) no. 6, pp. 1109-1124. doi: 10.5802/alco.77
[1] On the f-vectors of Gelfand-Tsetlin polytopes, Eur. J. Comb., Volume 67 (2018), pp. 61-77 | Zbl
[2] Combinatorics of maximal minors, J. Algebr. Comb., Volume 2 (1993) no. 2, pp. 111-121 | Zbl | MR | DOI
[3] Oriented Matroids, Cambridge University Press, 1999 | Zbl
[4] Toric degenerations of Gr and Gr via plabic Graphs, Ann. Comb., Volume 22 (2018) no. 3, pp. 491-512 | Zbl | MR | DOI
[5] Computing toric degenerations of flag varieties, Combinatorial Algebraic Geometry, Springer-Verlag New York, 2017, pp. 247-281 | Zbl | DOI
[6] Sagbi bases with applications to blow-up algebras, J. Reine Angew. Math., Volume 474 (1996), pp. 113-138 | MR | Zbl
[7] Tropical convexity, Doc. Math., Volume 9 (2004), pp. 1-27 | Zbl | MR
[8] Cellular resolutions from mapping cones, J. Comb. Theory, Ser. A, Volume 128 (2014), pp. 180-206 | DOI | Zbl | MR
[9] degeneration of flag varieties, Sel. Math., New Ser., Volume 18 (2012) no. 3, pp. 513-537 | DOI | Zbl | MR
[10] Stiefel tropical linear spaces, J. Comb. Theory, Ser. A, Volume 135 (2015), pp. 291-331 | DOI | Zbl | MR
[11] How to draw tropical planes, Electron. J. Comb., Volume 16 (2009) no. 2, R6, 26 pages | MR | Zbl
[12] Distributive lattices, bipartite graphs and Alexander duality, J. Algebr. Comb., Volume 22 (2005) no. 3, pp. 289-302 | DOI | Zbl | MR
[13] Every affine graded ring has a Hodge algebra structure, Rend. Semin. Mat., Univ. Politec. Torino, Volume 44 (1986) no. 2, pp. 277-286 | Zbl | MR
[14] Distributive Lattices, Affine Semigroup Rings and Algebras with Straightening Laws, Commutative Algebra and Combinatorics (Adv. Stud. Pure Math.), Volume 11, Mathematical Society of Japan, Tokyo, Japan (1987), pp. 93-109 | MR | Zbl | DOI
[15] The symplectic geometry of polygons in Euclidean space, J. Differ. Geom., Volume 44 (1996) no. 3, pp. 479-513 | MR | Zbl | DOI
[16] Khovanskii bases, higher rank valuations and tropical geometry (2016) (arXiv preprint https://arxiv.org/abs/1610.00298) | Zbl
[17] Toric degeneration of Schubert varieties and Gelfand–Tsetlin polytopes, Adv. Math., Volume 193 (2005) no. 1, pp. 1-17 | DOI | Zbl | MR
[18] On the toric ideal of a matroid, Adv. Math., Volume 259 (2014), pp. 1-12 | MR | Zbl | DOI
[19] Introduction to tropical geometry, Grad. Stud. Math., 161, American Mathematical Society, Providence, RI, 2015, xii+363 pages | Zbl | MR
[20] Combinatorial commutative algebra, Grad. Texts Math., 227, Springer-Verlag, New York, 2005, xiv+417 pages | Zbl | MR
[21] Toric degenerations of Gelfand–Cetlin systems and potential functions, Adv. Math., Volume 224 (2010) no. 2, pp. 648-706 | MR | Zbl | DOI
[22] Toric ideals generated by quadratic binomials, J. Algebra, Volume 218 (1999) no. 2, pp. 509-527 | MR | DOI | Zbl
[23] Newton–Okounkov bodies, cluster duality, and mirror symmetry for Grassmannians (2017) (arXiv preprint https://arxiv.org/abs/1712.00447)
[24] Subalgebra bases, Commutative Algebra (Lect. Notes Math.), Volume 1430, Springer, Berlin, Heidelberg, 1990, pp. 61-87 | DOI | Zbl | MR
[25] The tropical Grassmannian, Adv. Geom., Volume 4 (2004) no. 3, pp. 389-411 | Zbl | MR
[26] Gröbner bases and convex polytopes, Univ. Lect. Ser., 8, American Mathematical Society, 1996 | Zbl
[27] Maximal minors and their leading terms, Adv. Math., Volume 98 (1993) no. 1, pp. 65-112 | MR | DOI | Zbl
[28] A unique exchange property for bases, Linear Algebra Appl., Volume 31 (1980), pp. 81-91 | DOI | Zbl | MR
[29] The degeneration of the Grassmannian into a toric variety and the calculation of the eigenspaces of a torus action, J. Algebr. Stat., Volume 6 (2015) no. 1, pp. 62-79 | MR | Zbl
Cité par Sources :





