Topological quantum field theory and polynomial identities for graphs on the torus
Annales de l’Institut Henri Poincaré D, Tome 10 (2023) no. 2, pp. 277-298
We establish a relation between the trace evaluation in SO(3) topological quantum field theory and evaluations of a topological Tutte polynomial. As an application, a generalization of the Tutte golden identity is proved for graphs on the torus.
Accepté le :
Publié le :
DOI : 10.4171/aihpd/130
Publié le :
DOI : 10.4171/aihpd/130
Classification :
57-XX, 05-XX, 82-XX
Keywords: topological quantum field theory, graphs on surfaces, topological Tutte polynomial, the Tutte golden identity
Keywords: topological quantum field theory, graphs on surfaces, topological Tutte polynomial, the Tutte golden identity
@article{AIHPD_2023__10_2_277_0,
author = {Fendley, Paul and Krushkal, Vyacheslav},
title = {Topological quantum field theory and polynomial identities for graphs on the torus},
journal = {Annales de l{\textquoteright}Institut Henri Poincar\'e D},
pages = {277--298},
year = {2023},
volume = {10},
number = {2},
doi = {10.4171/aihpd/130},
mrnumber = {4581444},
zbl = {1530.57009},
language = {en},
url = {https://www.numdam.org/articles/10.4171/aihpd/130/}
}
TY - JOUR AU - Fendley, Paul AU - Krushkal, Vyacheslav TI - Topological quantum field theory and polynomial identities for graphs on the torus JO - Annales de l’Institut Henri Poincaré D PY - 2023 SP - 277 EP - 298 VL - 10 IS - 2 UR - https://www.numdam.org/articles/10.4171/aihpd/130/ DO - 10.4171/aihpd/130 LA - en ID - AIHPD_2023__10_2_277_0 ER -
%0 Journal Article %A Fendley, Paul %A Krushkal, Vyacheslav %T Topological quantum field theory and polynomial identities for graphs on the torus %J Annales de l’Institut Henri Poincaré D %D 2023 %P 277-298 %V 10 %N 2 %U https://www.numdam.org/articles/10.4171/aihpd/130/ %R 10.4171/aihpd/130 %G en %F AIHPD_2023__10_2_277_0
Fendley, Paul; Krushkal, Vyacheslav. Topological quantum field theory and polynomial identities for graphs on the torus. Annales de l’Institut Henri Poincaré D, Tome 10 (2023) no. 2, pp. 277-298. doi: 10.4171/aihpd/130
Cité par Sources :





