Hölder regularity for stochastic processes with bounded and measurable increments
Annales de l'I.H.P. Analyse non linéaire, Tome 40 (2023) no. 1, pp. 215-258
Le texte intégral des articles récents est réservé aux abonnés de la revue. Consultez l'article sur le site de la revue.

We obtain an asymptotic Hölder estimate for expectations of a quite general class of discrete stochastic processes. Such expectations can also be described as solutions to a dynamic programming principle or as solutions to discretized PDEs. The result, which is also generalized to functions satisfying Pucci-type inequalities for discrete extremal operators, is a counterpart to the Krylov–Safonov regularity result in PDEs. However, the discrete step size ε has some crucial effects compared to the PDE setting. The proof combines analytic and probabilistic arguments.

Accepté le :
Publié le :
DOI : 10.4171/aihpc/41
Classification : 35J15, 60H30, 60J10, 91A50, 35B65
Keywords: dynamic programming principle, local Hölder estimates, stochastic process, equations in nondivergence form, p-harmonious, p-Laplace, tug-of-war games
@article{AIHPC_2023__40_1_215_0,
     author = {Arroyo, \'Angel and Blanc, Pablo and Parviainen, Mikko},
     title = {H\"older regularity for stochastic processes with bounded and measurable increments},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {215--258},
     year = {2023},
     volume = {40},
     number = {1},
     doi = {10.4171/aihpc/41},
     language = {en},
     url = {https://www.numdam.org/articles/10.4171/aihpc/41/}
}
TY  - JOUR
AU  - Arroyo, Ángel
AU  - Blanc, Pablo
AU  - Parviainen, Mikko
TI  - Hölder regularity for stochastic processes with bounded and measurable increments
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2023
SP  - 215
EP  - 258
VL  - 40
IS  - 1
UR  - https://www.numdam.org/articles/10.4171/aihpc/41/
DO  - 10.4171/aihpc/41
LA  - en
ID  - AIHPC_2023__40_1_215_0
ER  - 
%0 Journal Article
%A Arroyo, Ángel
%A Blanc, Pablo
%A Parviainen, Mikko
%T Hölder regularity for stochastic processes with bounded and measurable increments
%J Annales de l'I.H.P. Analyse non linéaire
%D 2023
%P 215-258
%V 40
%N 1
%U https://www.numdam.org/articles/10.4171/aihpc/41/
%R 10.4171/aihpc/41
%G en
%F AIHPC_2023__40_1_215_0
Arroyo, Ángel; Blanc, Pablo; Parviainen, Mikko. Hölder regularity for stochastic processes with bounded and measurable increments. Annales de l'I.H.P. Analyse non linéaire, Tome 40 (2023) no. 1, pp. 215-258. doi: 10.4171/aihpc/41

Cité par Sources :