We study the effects of independent, identically distributed random perturbations of amplitude on the asymptotic dynamics of one-parameter families of smooth multimodal maps which are “predominantly expanding”, i.e., away from small neighborhoods of the critical set . We obtain, for any , a checkable, finite-time criterion on the parameter for random perturbations of the map to exhibit (i) a unique stationary measure and (ii) a positive Lyapunov exponent comparable to . This stands in contrast with the situation for the deterministic dynamics of , the chaotic regimes of which are determined by typically uncheckable, infinite-time conditions. Moreover, our finite-time criterion depends on only iterates of the deterministic dynamics of , which grows quite slowly as .
@article{AIHPC_2022__39_2_419_0,
author = {Blumenthal, Alex and Yang, Yun},
title = {Positive {Lyapunov} exponent for random perturbations of predominantly expanding multimodal circle maps},
journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
pages = {419--455},
year = {2022},
volume = {39},
number = {2},
doi = {10.4171/aihpc/11},
language = {en},
url = {https://www.numdam.org/articles/10.4171/aihpc/11/}
}
TY - JOUR AU - Blumenthal, Alex AU - Yang, Yun TI - Positive Lyapunov exponent for random perturbations of predominantly expanding multimodal circle maps JO - Annales de l'I.H.P. Analyse non linéaire PY - 2022 SP - 419 EP - 455 VL - 39 IS - 2 UR - https://www.numdam.org/articles/10.4171/aihpc/11/ DO - 10.4171/aihpc/11 LA - en ID - AIHPC_2022__39_2_419_0 ER -
%0 Journal Article %A Blumenthal, Alex %A Yang, Yun %T Positive Lyapunov exponent for random perturbations of predominantly expanding multimodal circle maps %J Annales de l'I.H.P. Analyse non linéaire %D 2022 %P 419-455 %V 39 %N 2 %U https://www.numdam.org/articles/10.4171/aihpc/11/ %R 10.4171/aihpc/11 %G en %F AIHPC_2022__39_2_419_0
Blumenthal, Alex; Yang, Yun. Positive Lyapunov exponent for random perturbations of predominantly expanding multimodal circle maps. Annales de l'I.H.P. Analyse non linéaire, Tome 39 (2022) no. 2, pp. 419-455. doi: 10.4171/aihpc/11
Cité par Sources :





