Long time confinement of vorticity around a stable stationary point vortex in a bounded planar domain
Annales de l'I.H.P. Analyse non linéaire, septembre – octobre 2021, Tome 38 (2021) no. 5, pp. 1461-1485
Le texte intégral des articles récents est réservé aux abonnés de la revue. Consultez l'article sur le site de la revue.

In this paper we consider the incompressible Euler equation in a simply-connected bounded planar domain. We study the confinement of the vorticity around a stationary point vortex. We show that the power law confinement around the center of the unit disk obtained in [2] remains true in the case of a stationary point vortex in a simply-connected bounded domain. The domain and the stationary point vortex must satisfy a condition expressed in terms of the conformal mapping from the domain to the unit disk. Explicit examples are discussed at the end.

Reçu le :
Révisé le :
Accepté le :
DOI : 10.1016/j.anihpc.2020.11.009
Keywords: Perfect incompressible flows, Point-vortex system, Confinement of vorticity

Donati, Martin 1 ; Iftimie, Dragoș 1

1 Université de Lyon, CNRS, Université Lyon 1, Institut Camille Jordan, 43 bd. du 11 novembre, Villeurbanne Cedex F-69622, France
@article{AIHPC_2021__38_5_1461_0,
     author = {Donati, Martin and Iftimie, Dragoș},
     title = {Long time confinement of vorticity around a stable stationary point vortex in a bounded planar domain},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {1461--1485},
     year = {2021},
     publisher = {Elsevier},
     volume = {38},
     number = {5},
     doi = {10.1016/j.anihpc.2020.11.009},
     mrnumber = {4300929},
     zbl = {1471.76020},
     language = {en},
     url = {https://www.numdam.org/articles/10.1016/j.anihpc.2020.11.009/}
}
TY  - JOUR
AU  - Donati, Martin
AU  - Iftimie, Dragoș
TI  - Long time confinement of vorticity around a stable stationary point vortex in a bounded planar domain
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2021
SP  - 1461
EP  - 1485
VL  - 38
IS  - 5
PB  - Elsevier
UR  - https://www.numdam.org/articles/10.1016/j.anihpc.2020.11.009/
DO  - 10.1016/j.anihpc.2020.11.009
LA  - en
ID  - AIHPC_2021__38_5_1461_0
ER  - 
%0 Journal Article
%A Donati, Martin
%A Iftimie, Dragoș
%T Long time confinement of vorticity around a stable stationary point vortex in a bounded planar domain
%J Annales de l'I.H.P. Analyse non linéaire
%D 2021
%P 1461-1485
%V 38
%N 5
%I Elsevier
%U https://www.numdam.org/articles/10.1016/j.anihpc.2020.11.009/
%R 10.1016/j.anihpc.2020.11.009
%G en
%F AIHPC_2021__38_5_1461_0
Donati, Martin; Iftimie, Dragoș. Long time confinement of vorticity around a stable stationary point vortex in a bounded planar domain. Annales de l'I.H.P. Analyse non linéaire, septembre – octobre 2021, Tome 38 (2021) no. 5, pp. 1461-1485. doi: 10.1016/j.anihpc.2020.11.009

[1] Ahlfors, L. Complex Analysis, McGraw Hill Publishing Co., New York, 1966 | MR | Zbl

[2] Buttà, P.; Marchioro, C. Long time evolution of concentrated Euler flows with planar symmetry, SIAM J. Math. Anal., Volume 50 (2018) no. 1, pp. 735-760 | MR | Zbl | DOI

[3] Cao, D.; Wang, G. Euler evolution of a concentrated vortex in planar bounded domains, 2018 | arXiv

[4] Goodman, J.; Hou, T.; Lowengrub, J. Convergence of the point vortex method for 2-D Euler equations, Commun. Pure Appl. Math., Volume 43 (1990) no. 3, pp. 415-430 | MR | Zbl | DOI

[5] Gustafsson, B. On the Motion of a Vortex in Two-Dimensional Flow of an Ideal Fluid in Simply and Multiply Connected Domains, Royal Institute of Technology, 1979 (Trita-MAT-1979-7)

[6] Han, Z.; Zlatos, A. Euler equations on general planar domains, 2020 | arXiv | MR | Zbl

[7] Hartman, P. Ordinary Differential Equations, Classics in Applied Mathematics, Society for Industrial and Applied Mathematics, SIAM, 3600 Market Street, Floor 6, Philadelphia, PA 19104, 1910 | MR | Zbl

[8] Helmholtz, H. Über integrale der hydrodynamischen Gleichungen, welche den Wirbelbewegungen entsprechen, J. Reine Angew. Math., Volume 55 (1858), pp. 25-55 | MR | Zbl

[9] Iftimie, D. Large time behavior in perfect incompressible flows, Partial Differential Equations and Applications, Sémin. Congr., vol. 15, Soc. Math. France, Paris, 2007, pp. 119-179 | MR | Zbl

[10] Iftimie, D.; Marchioro, C. Self-similar point vortices and confinement of vorticity, Commun. Partial Differ. Equ., Volume 43 (2018) no. 3, pp. 347-363 | MR | Zbl | DOI

[11] Iftimie, D.; Sideris, T.C.; Gamblin, P. On the evolution of compactly supported planar vorticity, Commun. Partial Differ. Equ., Volume 24 (1999) no. 9–10, pp. 159-182 | MR | Zbl

[12] Kanas, S.; Sugawa, T. On conformal representations of the interior of an ellipse, Ann. Acad. Sci. Fenn., Math., Volume 31 (2006) no. 2, pp. 329-348 | MR | Zbl

[13] Lacave, C.; Zlatoš, A. The Euler equations in planar domains with corners, Arch. Ration. Mech. Anal., Volume 234 (2019) no. 1, pp. 57-79 | MR | Zbl | DOI

[14] Marchioro, C.; Pulvirenti, M. Vortex Methods in Two-Dimensional Fluid Dynamics, Lecture Notes in Physics, Springer-Verlag, 1984 | MR | Zbl

[15] Marchioro, C.; Pulvirenti, M. Mathematical Theory of Incompressible Nonviscous Fluids, Applied Mathematical Sciences, Springer, New York, 1993 | MR | Zbl

[16] Marchioro, C.; Pulvirenti, M. Vortices and localization in Euler flows, Commun. Math. Phys., Volume 154 (1993) no. 1, pp. 49-61 | MR | Zbl | DOI

[17] Wolibner, W. Un theorème sur l'existence du mouvement plan d'un fluide parfait, homogène, incompressible, pendant un temps infiniment long, Math. Z., Volume 37 (1933) no. 1, pp. 698-726 | MR | Zbl | JFM | DOI

[18] Yudovich, V. Non-stationary flow of an ideal incompressible liquid, USSR Comput. Math. Math. Phys., Volume 3 (1963) no. 6, pp. 1407-1456 | MR | Zbl | DOI

Cité par Sources :