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Abstract

This paper is concerned with the blowup criterion for mild solution to the incompressible Navier–Stokes equation in higher 
spatial dimensions d ≥ 4. By establishing an ε regularity criterion in the spirit of [11], we show that if the mild solution u with 
initial data in Ḃ−1+d/p

p,q (Rd ), d < p, q < ∞ becomes singular at a finite time T∗, then

lim sup
t→T∗

‖u(t)‖
Ḃ

−1+d/p
p,q (Rd )

= ∞.

The corresponding result in 3D case has been obtained in [24]. As a by-product, we also prove a regularity criterion for the 
Leray–Hopf solution in the critical Besov space, which generalizes the results in [17], where blowup criterion in critical Lebesgue 
space Ld(Rd) is addressed.
© 2019 L’Association Publications de l’Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved.
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1. Introduction

In the present work, we consider the regularity problem of the solution to the incompressible Navier–Stokes equa-
tion (NS)

∂tu − �u + u · ∇u + ∇p = 0, divu = 0, u(x,0) = u0(x) (1.1)

on Rd × (0, T ), where d ≥ 4, u : Rd × (0, T ) → R
d denotes the velocity vector field, p represents the scalar pressure, 

u0 is the initial data. NS plays a fundamental role in the fluid mechanics.
It is well-known that NS is scaling-invariant in the sense that if (u, p) solves (1.1) with data u0, so does (uλ, pλ)

with the initial data λu0(λx), where uλ(x, t) := λu(λx, λ2t) and pλ(x, t) := λ2p(λx, λ2t), λ > 0. A space X defined 
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on Rd is said to be critical provided that ‖u0‖X = ‖λu0(λ ·)‖X for any λ > 0 (or more generally, ‖u0‖X ∼ ‖λu0(λ ·)‖X

and the equivalence is independent of λ > 0), for example, Ḣ d/2−1(Rd), Ld(Rd), Ḃ
sp
p,q(Rd) are critical spaces, where

sp := −1 + d

p

will be used in the whole paper (see Definition 2.1 for Besov spaces).
In the pioneering work [36], J. Leray showed the existence of a global weak solution to the 3D Navier–Stokes 

equation defined on the whole space R3 with initial data in L2, which is closely linked to the energy structure of the 
equation. Later, Hopf [29] extended this result to bounded smooth domain. The weak solution, which is now said to 
be the Leray–Hopf solution also exists in higher spatial dimensions, see Section 5 for details.

The uniqueness and regularity of Leray–Hopf solution remains a long-standing open problem. However, various 
conditional results are obtained, for instance, the famous Ladyzhenskaya–Serrin–Prodi criterion, which asserts that a 
Leray–Hopf solution u is regular and unique on (0, T ] ×R

d provided

u ∈ Lq(0, T ;Lr(Rd)),
2

q
+ d

r
= 1, 3 ≤ d ≤ r ≤ ∞. (1.2)

The endpoint case r = d, q = ∞ is much more subtle, and it was until 2003 that Escauriaza, Seregin and Sverak [20]
solved this case in 3D, later, Dong and Du [17] extended their result to the case d ≥ 3. On the other hand, there are 
lots of interests in relaxing the condition (1.2), for instance, Phuc showed the same conclusion for the 3D Leray–Hopf 
solution u by assuming u ∈ L∞(0, T ; L3,m) with 3 ≤ m < ∞, see [40]. Besides, according to [24,5], the same result 
also applies for u in 3D provided u ∈ L∞(0, T ; Ḃsp

p,q) with 3 < p, q < ∞, a natural extension to the higher dimension 
in such setting is one of aims of our current paper. Finally, we mention a very interesting work, Buckmaster and 
Vicol [10] recently demonstrates a nonuniqueness result for the periodic weak solution in T3 with finite kinetic energy, 
unfortunately, this weak solution is still not known as a Leray–Hopf solution.

There is another way in constructing strong solution directly. It is well known that the Duhamel formula of (1.1)
can be expressed as follows:

u(t) = et�u0 −
tˆ

0

e(t−τ)�
P div(u ⊗ u)(τ )dτ, (1.3)

where P = I −∇�−1div is the projection operator onto the divergence free vector fields. The solution to (1.3) is called 
a mild solution or strong solution. Kato and Fujita [30,31] initiated the study of (1.3) in a fully invariant functional 
setting by using the semigroup method, which has a vivid perturbative feature and led to lots of results on various 
classes of (regular) solutions. For example, let d < p < q < ∞, Cannone [14], Planchon [39] and Chemin [15] used 
Kato’s method to derive the existence of a unique local mild solution u (in some properly chosen spaces) to NS with 
initial data in Ḃ

sp
p,q , see Theorem 4.1 in Section 4 for more details. One can also refer to [16,21,26–28,34,12,47,54,

13,51] and references therein for the local Cauchy theory in Lebesgue space, Morrey space and others. It is known 
that NS is ill-posed in all critical Besov spaces Ḃ−1∞,q(R

d) with d ≥ 2, q ∈ [1, ∞] (cf. [9,25,52,55]) and up to now, 
the known largest critical space for which NS is globally well posed for small initial data is BMO−1, see Koch and 
Tataru [33].

Generally speaking, the mild solution associated with initial data in many critical spaces is not known to be global 
except for the small data solution. This issue is complicated due to the lack of the uniform bounds in some function 
spaces adapted to the NS with scaling invariance. On the opposite side, we need to seek regularity criteria, or in other 
words, the blowup criteria. More precisely, let X be a critical space, u0 ∈ X, assume that u is the mild solution with 
u0 and the maximal existence time is denoted by T∗, whether or not the following assertion holds:

T∗ < ∞ ⇒ lim sup
t→T∗

‖u(t)‖X = ∞. (1.4)

Much progress has been made on this direction, Kenig and Koch proved the case X = Ḣ 1/2(R3) in [32], afterwards, 
Gallagher, Koch and Planchon [23,24] further showed that (1.4) is also true for X = L3(R3) and Ḃ

sp
p,q(R3) with 3 <

p, q < ∞. Besides, the upper limit in (1.4) can be refined as a limit for X = L3(R3), Ḃ−1+3/p
p,q (R3), see Seregin [44]
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and Dallas [1] respectively, both of which employed a splitting argument and some type of weak solution. Motivated 
by the aforementioned results, we are led to consider whether (1.4) holds for X = Ḃ

sp
p,q(Rd) with 4 ≤ d < p, q < ∞. 

Indeed, we shall answer it affirmably, see Theorem 1.6 below.
Compared to those aimed at obtaining the global regularity of Leray–Hopf solution, another important aspect lies in 

founding partial regularity result for weak solution satisfying local energy inequality. On that way, a key ingredient is 
the so-called ε regularity criterion. Scheffer [41–43] started this way and got various results for such weak solution in 
3D. Inspired by Scheffer’s results, L. Caffarelli, R. Kohn and L. Nirenberg in [11] exploited the best partial regularity 
result to date for the suitable weak solution of the 3D Navier–Stokes equation. Lin [38] gave a more direct and sketched 
proof of Caffarelli, Kohn and Nirenberg’s result under the zero external force, for a detailed treatment, one can refer 
to [35], see also [49] for a De Giorgi method proof. Recently, in [18] and [19], the authors showed a similar ε regularity 
criterion for the four dimensional NS in the context of classical solution and suitable weak solution respectively, thus 
leading to an estimate of the Hausdorff dimension of the singular set. By adapting the method in [49], Wang and 
Wu [53] gave a unified proof of the partial regularity results for NS in the cases d = 2, 3, 4.

However, the notion of suitable weak solution in dimensions d ≥ 5 needs to be slightly modified (compared to 
the one in 3D or 4D) so that the local energy inequality makes sense, see Remark 1.2, then an ε regularity criterion 
corresponding to such suitable weak solution can be derived, which constitutes an integral part in proving the blowup 
result for solution in critical Besov space.

To introduce the suitable weak solution in higher dimensions, let us specify the notion of weak solution. Let 
� ⊂R

d be an open set, (u, p) is said to be a pair of weak solution on � × (0, T ), provided u ∈ L2
loc(� × (0, T )), p ∈

D′(� × (0, T )) satisfies NS in the sense of distributions. Hereafter, the space dimension d , if not otherwise indicated, 
is always assumed to satisfy d ≥ 4.

Definition 1.1 (Suitable weak solution). Let � be an open set in Rd , Q := � ×(−T1, T ), u ∈ L∞(−T1, T ; Ḃ−1∞,∞(Rd)). 
(u, p) is called a pair of suitable weak solution to (1.1) on Q if the following conditions are satisfied:

(1) u ∈ L∞(
(−T1, T ), L2(�)

) ∩ L2(−T1, T ; H 1(�)), here H 1 denotes the usual Sobolev spaces, p ∈ L3/2(Q);
(2) (u, p) is a pair of weak solution on Q;
(3) The following local energy inequality

ˆ

�

ϕ(x, t)|u(x, t)|2dx + 2

tˆ

−T1

ˆ

�

ϕ(x, s)|∇u(x, s)|2dxds

≤
tˆ

−T1

ˆ

�

|u|2(∂tϕ + �ϕ) + u · ∇ϕ(|u|2 + 2p)dxds (1.5)

holds for all t ∈ (−T1, T ) and for all non-negative functions ϕ ∈ C∞
0 (R3 ×R) vanishing in a neighborhood of the 

parabolic boundary ∂Q = � × {t = −T1} ∪ ∂� × (−T1, T ).

Remark 1.2. In the above definition, u ∈ L∞(−T1, T ; Ḃ−1∞,∞) is superfluous for d = 4. Indeed, it follows from (1)

that u ∈ L3
loc(Q), thus each term in (1.5) makes sense. As for d ≥ 5, based on our definition, one can obtain that 

u ∈ L4
loc(Q), see Proposition 2.4.

Now we come to state our main result.

Theorem 1.3. Let u ∈ L∞(−1, 0; Ḃ−1∞,∞(Rd)) and (u, p) be a pair of suitable weak solution to NS on Q(1). Assume 
‖u‖

L∞(−1,0;Ḃ−1∞,∞)
≤ M , 1 < α < 2, then there exist constants ε1 and C, which depend on M, d and α only, satisfying 

the following property. If

sup
−1<t<0

ˆ

B(1)

|u|2dx +
ˆ

Q(1)

(|∇u|2 + |u| |p|)dxdt +
0ˆ

−1

⎛
⎜⎝ ˆ

B(1)

|p|dx

⎞
⎟⎠

α

dt ≤ ε1, (1.6)
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then

sup
(x,t)∈Q(1/2)

|u(x, t)| ≤ C.

Here Q(r) := B(r) × (−r2, 0), B(r) ⊂ R
d denotes a ball centered at 0 with radius r .

Remark 1.4. The above conclusion is still valid without the assumption u ∈ L∞(−1, 0; Ḃ−1∞,∞) for d = 4 and α = 3/2, 
one can refer to [53].

Corollary 1.5. Let r > 0, u ∈ L∞(−r2, 0; Ḃ−1∞,∞(Rd)) and (u, p) forms a pair of suitable weak solution on Q(r). 
Assume ‖u‖

L∞(−r2,0;Ḃ−1∞,∞)
≤ Mr , then there exist constants ε̃1 and C relying only on d and Mr , such that if

1

rd−1

ˆ

Q(3r/4)

|u|3 + |p|3/2dxdt ≤ ε̃1, (1.7)

then

sup
(x,t)∈Q(r/4)

|u(x, t)| ≤ C

r
. (1.8)

Next we give our second main result concerning the regularity of mild solution with initial data in critical Besov 
spaces.

Theorem 1.6. Assume u0 ∈ Ḃ
sp
p,q(Rd), 4 ≤ d < p, q < ∞. Let u be the mild solution associated with u0, whose 

maximal existence time is T∗. If T∗ < ∞, then necessarily

lim sup
t→T∗

‖u(t)‖
Ḃ

sp
p,q (Rd )

= ∞. (1.9)

As a direct consequence, for the Leray–Hopf solution to (1.1) (see Definition 5.1), we have

Corollary 1.7. Let d ≥ 4, u be a Leray–Hopf solution to (1.1) on QT := R
d × (0, T ) with T < ∞. Suppose further

u ∈ L∞(0, T ; Ḃsp
p,q(Rd)), d < p, q < ∞. (1.10)

Then u is smooth and unique on Rd × (0, T ].
Throughout out the paper, we will denote by NS(u0) the mild solution to (1.3) with initial data u0 and its maximal 

existence time is denoted by T (u0). Fix a point z0 = (x0, t0) ∈ R
d ×R, B(x0, r) stands for a ball centered at x0 with 

radius r and B(r) := B(0, r). Also, we have parabolic domain

Q(z0, r) := B(x0, r) × (t0 − r2, t0), Q(r) := B(r) × (−r2,0).

Let S and S ′ be the Schwartz and the tempered distribution spaces, respectively. For f ∈ S ′, we denote by Ff the 
Fourier transform of f , and by F−1f the inverse Fourier transform of f . The integral average of a function u over 
some ball B(x0, r) is denoted by [u]B(x0,r), i.e.

[u]B(x0,r) =
 

B(x0,r)

u(x)dx = 1

|B(x0, r)|
ˆ

B(x0,r)

u(x)dx. (1.11)

In addition, ‖u‖L
q
t L

p
x (Q(r)) and ‖u‖K s

p,∞(a,b) mean

‖u‖L
q
t L

p
x (Q(r)) =

⎛
⎜⎝

0ˆ

−r2

‖u(t)‖q

L
p
x (B(r))

dt

⎞
⎟⎠

1/q

, (1.12)

‖u‖K s
p,∞(a,b) = sup

a<t<b

(t − a)−s/2‖u(t)‖L
p
x (Rd ), s < 0. (1.13)
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Specially, ‖u‖Lp(Q(r)) := ‖u‖L
p
t L

p
x (Q(r)) and K s

p,∞(T ) := K s
p,∞(0, T ) with T > 0. Various constants C arising in the 

course of our work, may be different at different places. C(p, q, . . .) or Cp,q,... means that the constant depends on 
p, q, ..., for simplicity, some indices on which the constant C relies will be omitted if there is no confusion in our 
arguments. Finally, p′ will denote the dual number of p, i.e., 1/p + 1/p′ = 1.

Let us conclude the introduction by giving the plan of the remaining sections. In Section 2, we present some 
localized estimates for the solutions of NS. Section 3 is devoted to the verification of Theorem 1.3 by using the 
ingredients in the previous section and Corollary 1.5 is also shown in this part. Theorem 1.6 is proven in Section 4. 
The regularity criterion for Leray–Hopf solution is given in the last section, where Corollary 1.7 is proved and we 
give a remark to explain that Corollary 1.7 also holds with initial data in a subspace of Ḃ

sp
p,∞.

2. Preliminary estimates

In this section, we present several results that play a major role in establishing the ε regularity criterion. First, we 
recall the definition of Besov spaces in all dimensions d ≥ 1, see [24]. For a detailed presentation, one can also refer 
to [4,8,48,50].

Definition 2.1. Let ϕ be a function in S(Rd) verifying (Fϕ)(ξ) = 1 for |ξ | ≤ 1 and (Fϕ)(ξ) = 0 for |ξ | > 2, and 
denote ϕj (x) := 2jdϕ(2j x), then the frequency localization operators are defined by

Sj := ϕj∗, �j := Sj+1 − Sj .

Here ∗ is the convolution operator in Rd . A function f ∈ S ′(Rd) is said to belong to Ḃs
p,q = Ḃs

p,q(Rd) provided

(i) the partial sum 
∑m

j=−m �jf converges to f as a tempered distribution if s < d/p and after taking the quotient
with polynomials if not, and

(ii) ‖f ‖Ḃs
p,q

:= ‖2js‖�jf ‖L
p
x
‖�

q
j
< ∞.

Besov spaces have many other equivalent characterizations, a particularly useful one in solving NS is given by the 
heat kernel. Indeed, we have (cf. [4,48])

‖f ‖Ḃs
p,q

∼
⎛
⎝ ∞̂

0

(
t−s/2‖et�f ‖L

p
x

)q dt

t

⎞
⎠1/q

, 1 ≤ p, q ≤ ∞, s < 0. (2.1)

Here

et�f := F−1e−t |ξ |2Ff (ξ). (2.2)

The next interpolation inequality is borrowed from [4].

Proposition 2.2. Let d ≥ 1, 1 ≤ q < p < ∞ and α be a positive real number. There exists a constant C such that

‖f ‖Lp(Rd ) ≤ C‖f ‖1−θ

Ḃ−α∞,∞(Rd )
‖f ‖θ

Ḃ
β
q,q (Rd )

with β = α
(p

q
− 1

)
and θ = q

p
. (2.3)

Proposition 2.3. Let d ≥ 1, φ ∈ S(Rd), there exists a constant C such that

‖φu‖
Ḃ−1∞,∞ ≤ C(‖φ‖L∞ + ‖φ‖Ḃ1

d,1
)‖u‖

Ḃ−1∞,∞ . (2.4)

Proof. We rewrite φu as

φu = Tuφ + Tφu + R(u,φ), (2.5)

with

Tuφ =
∑
j∈Z

(Sj−5u)�jφ, Tφu =
∑
j∈Z

(Sj−5φ)�ju, R(u,φ) =
∑

|j−k|≤4

�ku�jφ.
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Due to the interaction of frequency, one can assert the existence of a positive constant L so that

‖�lTuφ‖L∞ ≤ C
∑

|j−l|≤L

‖Sj−5u�jφ‖L∞ ≤ C
∑

|j−l|≤L

‖Sj−5u‖L∞‖φ‖L∞ (2.6)

where we have used the fact that �j : Lp → Lp is a bounded operator with 1 ≤ p ≤ ∞. Another useful feature is that 
(cf. [4])

‖f ‖Ḃs
p,q

∼ ‖2js‖Sjf ‖L
p
x
‖�

q
j
, s < 0, 1 ≤ p, q ≤ ∞. (2.7)

Thereby one can see that

sup
l∈Z

2−l‖�lTuφ‖L∞ ≤ CL‖u‖
Ḃ−1∞,∞‖φ‖L∞ . (2.8)

The estimate of Tφu is simpler, since Sj is also bounded from Lp to Lp with 1 ≤ p ≤ ∞, then

‖�lTφu‖L∞ ≤ C
∑

|j−l|≤L

‖Sj−5φ�ju‖L∞ ≤ C
∑

|j−l|≤L

‖φ‖L∞‖�ju‖L∞ . (2.9)

Multiplying each side by 2−l , we can obtain

‖Tφu‖
Ḃ−1∞,∞ ≤ CL‖φ‖L∞‖u‖

Ḃ−1∞,∞ . (2.10)

Regarding R(u, φ), we will estimate it in Ḃ0
d,∞ space, which is better than Ḃ0

d,∞ ↪→ Ḃ−1∞,∞. For simplicity, we just 
consider a representative term 

∑
j∈Z �ju�jv in R(u, φ), since the argument for the others are almost the same. Once 

again, there exists another positive constant L̃, such that∥∥∥�l

(∑
j∈Z

�ju�jφ
)∥∥∥

Ld
≤ C

∑
j≥l−L̃

‖�ju�jφ‖Ld ≤C
∑

j≥l−L̃

‖�ju‖L∞‖�jφ‖Ld

≤ C‖u‖
Ḃ−1∞,∞‖φ‖Ḃ1

d,1
. (2.11)

It turns out that the desired result holds if one collects estimates for the three terms. The proof is finished. �
The local energy inequality (1.5) serves as a main tool to justify Theorem 1.3. In higher spatial dimensions, one 

of the main difficulty arises in estimating 
´ t

−T1

´
�

|u|2u · ∇ϕdxdτ in the right hand side of (1.5), which is bounded 
by ‖u‖L3(�×(−T1,t))

. The following result is helpful to control this cubic term and in fact, if � is a ball, a better local 
L4

t L
4
x norm is obtained in terms of local energy under reasonable regularity assumption.

Proposition 2.4. Let d ≥ 1, 0 < γ < 1, ρ > 0 and a < b. Then there exists a constant C(d, γ ) depending only on d, γ
such that

‖u‖L4(a,b;L4(B(γρ))) ≤ C(d,γ )‖u‖1/2

L∞(a,b;Ḃ−1∞,∞(Rd ))
×(√

b − a

ρ
‖u‖L∞(a,b;L2(B(ρ))) + ‖∇u‖L2(a,b;L2(B(ρ)))

)1/2

. (2.12)

Proof. Choose φ ∈ C∞
0 (Rd) such that suppφ ⊂ B(1), 0 ≤ φ ≤ 1 and φ = 1 on B(γ ). Set φρ(x) = φ(x/ρ), in view 

of Proposition 2.2, we see

‖φρu‖L4(Rd ) ≤ C‖φρu‖1/2

Ḃ−1∞,∞(Rd )
‖φρu‖1/2

Ḣ 1(Rd )
. (2.13)

Integrating in time, one can find

‖φρu‖L4(a,b;L4(Rd )) ≤ C‖φρu‖1/2

L∞(a,b;Ḃ−1∞,∞(Rd ))
‖φρu‖1/2

L2(a,b;Ḣ 1(Rd ))
. (2.14)

It is easy to see that
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‖φρu‖Ḣ 1(Rd ) ≤ C
(
ρ−1‖u‖L2(B(ρ)) + ‖∇u‖L2(B(ρ))

)
. (2.15)

On the other hand, applying Proposition 2.3, we have

‖φρu‖
Ḃ−1∞,∞ ≤ C(‖φρ‖L∞ + ‖φρ‖Ḃ1

d,1
)‖u‖

Ḃ−1∞,∞

≤ C(d,γ )‖u‖
Ḃ−1∞,∞ . (2.16)

Inserting (2.15) and (2.16) into (2.14), and noticing that

‖u‖L4(a,b;L4(B(γρ))) ≤ ‖φρu‖L4(a,b;L4(Rd )), (2.17)

one can easily obtain the final result, as desired. �
Let (u, p) be a pair of solution to (1.1), we introduce some quantities involving u and p. Denote

E1(r) = sup
−r2<t<0

ˆ

B(r)

|u|2dx; (2.18)

E2(r) =
ˆ

Q(r)

|∇u|2dxdt; (2.19)

F(r) =
ˆ

Q(r)

|u|
∣∣∣|u|2 − [|u|2]B(r)

∣∣∣dxdt; (2.20)

D(r) =
ˆ

Q(r)

|u|4dxdt; (2.21)

L(r) =
ˆ

Q(r)

|u| ∣∣p − [p]B(r)

∣∣dxdt; (2.22)

Kα(r) =
0ˆ

−r2

⎛
⎜⎝ ˆ

B(r)

|p|dx

⎞
⎟⎠

α

dt. (2.23)

We remark that the above quantities follow from [11], which are used for the control of the suitable weak solution u in 
Q(r). However, in [11] they applied a version F(r) = ´

Q(r)
|u|3dxdt to show Theorem 1.3 in 3D. Noticing that for the 

suitable weak solution u in Q(r) and test function ϕ with compact support in Q(r), 
´
Q(r)

u · ∇ϕ[|u|2]B(r)dxdt = 0, 
we haveˆ

Q(r)

u · ∇ϕ|u|2dxdt =
ˆ

Q(r)

u · ∇ϕ(|u|2 − [|u|2]B(r))dxdt (2.24)

for the third term in the right hand side of local energy inequality (1.5). u(|u|2 − [|u|2]B(r)) enjoys a more delicate 
estimate than |u|3, which is important for the estimates in higher spatial dimensions.

We are about to present two important lemmas in deriving Theorem 1.3. Basically, they show how one can bound 
the right hand side of the local energy inequality.

Lemma 2.5. Let d ≥ 4, then there exists a constant C, such that

F(r) ≤ Cr2/dE1(r)
2/dE2(r)

1/2D(r)1/2−1/d . (2.25)

Proof. Let m meet 1/m = 3/4 − 1/d . By Sobolev’s and Poincaré’s inequalities, one sees

‖f − [f ]B(1)‖Lm(B(1)) ≤ C‖f − [f ]B(1)‖H 1 (B(1)) ≤ C‖∇f ‖L4/3(B(1)).
4/3
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By scaling argument, we immediately have

‖f − [f ]B(r)‖Lm(B(r)) ≤ C‖∇f ‖L4/3(B(r)). (2.26)

Here the constant C is independent of r . In view of Hölder’s inequality and (2.26),

F(r) ≤
0ˆ

−r2

‖u‖
Lm′

(B(r))

∥∥∥|u|2 − [|u|2]B(r)

∥∥∥
Lm(B(r))

dt

≤ C

0ˆ

−r2

‖u‖
Lm′

(B(r))
‖∇|u|2‖L4/3(B(r))dt

≤ C‖u‖
L4

t L
m′
x (Q(r))

‖∇u‖L2(Q(r))‖u‖L4(Q(r)). (2.27)

Using interpolation inequality, we can find

‖u‖
Lm′

x (B(r))
≤ C‖u‖θ

L2
x(B(r))

‖u‖1−θ

L4
x(B(r))

, θ = 4/d. (2.28)

Integrating over time interval (−r2, 0) and using Hölder’s inequality, one can see

‖u‖
L4

t L
m′
x (Q(r))

≤ Crθ/2‖u‖θ
L∞

t L2
x(Q(r))

‖u‖1−θ

L4(Q(r))
. (2.29)

Inserting (2.29) into (2.27), one can conclude the proof. �
With regard to the pressure p, one can observe that if (u, p) satisfies NS distributionally on � × (t1, t2) with 

� ⊂R
d , then for a.e. t ∈ (t1, t2),

�p = −∂i∂j (u
iuj ). (2.30)

Here the summation convention over repeated indices is enforced. As in [11], we localize p to some bounded domain 
�′ ⊂ �. Let φ ∈ C∞

0 (�) be such that φ = 1 on a neighborhood of �′, for x ∈ �′, we have

p = φp = cd

ˆ

Rd

1

|x − y|d−2 �y(φp)dy

= cd

ˆ

Rd

1

|x − y|d−2

[
p�yφ + φ�yp + 2∇yφ · ∇yp

]
dy. (2.31)

Putting (2.30) into the above formula and integrating by parts, one can obtain a useful expression for φp:

φp = p̃ + p3 + p4, (2.32)

where

p̃ = cd

ˆ

Rd

∂yi

(
1

|x − y|d−2

)
φuj∂yj

uidy,

p3 = −cd(d − 2)

ˆ

Rd

xj − yj

|x − y|d uiuj ∂yi
φdy − cd

ˆ

Rd

1

|x − y|d−2 uiuj ∂yiyj
φdy,

p4 = −cd

ˆ

Rd

1

|x − y|d−2 p �yφdy − 2cd(d − 2)

ˆ

Rd

xj − yj

|x − y|d p ∂yj
φdy. (2.33)
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Lemma 2.6. Let d ≥ 4, 0 < r ≤ ρ/2 and 1 < α < ∞, then there exists a constant C depending on d , such that

L(r) ≤ Cr2/dE1(r)
2/dE2(3r/2)1/2D(3r/2)1/2−1/d

+ Crd/2+2E1(r)
1/2 sup

−r2<t<0

⎛
⎜⎝ ˆ

3r/2≤|y|<ρ

|u|2|y|−ddy

⎞
⎟⎠

1/2 ⎛
⎜⎝

0ˆ

−r2

ˆ

3r/2≤|y|<ρ

|∇u|2|y|−ddydt

⎞
⎟⎠

1/2

+ C
rd/2+3

ρd+1 E1(r)
1/2A(ρ) + C

rd/2+1+2/α′

ρd+1 E1(r)
1/2Kα(ρ)1/α. (2.34)

Proof. We use expression (2.32) for p, where φ is chosen as follows:

φ = 1 on B(3ρ/4), suppφ ⊂ B(ρ), (2.35)

|∇φ| ≤ Cρ−1, |∇2φ| ≤ Cρ−2. (2.36)

Also, we further decompose p̃ into p̃ = p1 + p2, with

p1 = cd

ˆ

|y|< 3
2 r

∂yi

(
1

|x − y|d−2

)
φuj∂yj

uidy; (2.37)

p2 = cd

ˆ

3
2 r≤|y|<ρ

∂yi

(
1

|x − y|d−2

)
φuj∂yj

uidy. (2.38)

Hence

|p − [p]B(r)| ≤
4∑

i=1

|pi − [pi]B(r)|. (2.39)

For convenience, we denote

Li(r) =
ˆ

Q(r)

|u| ∣∣pi − [pi]B(r)

∣∣dxdt, i = 1, ...,4.

For x ∈ B(r), it can be easily verified that

|∇p2| ≤ Cd

ˆ

3
2 r≤|y|<ρ

|u||∇u| dy

|y|d , (2.40)

|∇p3| ≤ Cd

ρd+1

ˆ

B(ρ)

|u|2dy, |∇p4| ≤ Cd

ρd+1

ˆ

B(ρ)

|p|dy. (2.41)

On the other hand,

Tij (ψ) := ∂ij

(|x|−(d−2)
) ∗ ψ (2.42)

is a Calderon–Zygmund operator, which is bounded from Lp(Rd) to itself for 1 < p < ∞. Let m be such that 1/m =
3/4 − 1/d , we have from Hölder’s inequality, (2.26), (2.37) that

L1(r) ≤
0ˆ

−r2

‖u‖
Lm′

(B(r))
‖p1 − [p1]B(r)‖Lm(B(r))dt

≤ C

0ˆ

2

‖u‖
Lm′

(B(r))
‖∇p1‖L4/3(B(r))dt
−r
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≤ C

0ˆ

−r2

‖u‖
Lm′

(B(r))
‖u∇u‖L4/3(B(3r/2))dt. (2.43)

Therefore, one can argue as Lemma 2.5 to obtain that

L1(r) ≤ Cr2/d‖u‖4/d

L∞
t L2

x(Q(r))
‖∇u‖L2(Q(3r/2))‖u‖2−4/d

L4(Q(3r/2))
. (2.44)

For the estimate of L2(r), in view of Hölder’s inequality, (2.40) and mean value theorem, we have

L2(r) ≤ Cr

0ˆ

−r2

‖∇p2‖L∞(B(r))

( ˆ

B(r)

|u|dx

)
dt (2.45)

≤ Cr
d
2 +1‖u‖L∞

t L2
x(Q(r))

0ˆ

−r2

ˆ

3
2 r≤|y|<ρ

1

|y|d |u||∇u|dydt.

Using Hölder inequality again, one can see

L2(r) ≤ Cr
d
2 +2‖u‖L∞

t L2
x(Q(r)) sup

−r2<t<0

⎛
⎜⎜⎝

ˆ

3
2 r≤|y|<ρ

1

|y|d |u|2dy

⎞
⎟⎟⎠

1
2
⎛
⎜⎜⎝

0ˆ

−r2

ˆ

3
2 r≤|y|<ρ

1

|y|d |∇u|2dydt

⎞
⎟⎟⎠

1
2

. (2.46)

To estimate L3(r), from (2.45), Hölder’s inequality and (2.41) it follows that

L3(r) ≤ Cr

0ˆ

−r2

‖∇p3‖L∞(B(r))

( ˆ

B(r)

|u|dx

)
dt

≤ Cr

ρd+1

0ˆ

−r2

( ˆ

B(r)

|u|dx

)( ˆ

B(ρ)

|u|2dy

)
dt

≤ Cr
d
2 +3

ρd+1 ‖u‖L∞
t L2

x(Q(r))‖u‖2
L∞

t L2
x(Q(ρ))

. (2.47)

Finally, for the estimate of L4(r), using (2.45), Hölder’s inequality and (2.41), one has that

L4(r) ≤ Cr

0ˆ

−r2

‖∇p4‖L∞(B(r))

( ˆ

B(r)

|u|dx

)
dt

≤ C
r

ρd+1

0ˆ

−r2

( ˆ

B(r)

|u|dx

)( ˆ

B(ρ)

|p|dy

)
dt

≤ C
rd/2+1

ρd+1 ‖u‖L∞
t L2

x(Q(r))

0ˆ

−r2

‖p‖L1(B(ρ))dt

≤ C
rd/2+1+2/α′

ρd+1 ‖u‖L∞
t L2

x(Q(r))‖p‖Lα
t L1

x(Q(ρ)). (2.48)

Noticing that L(r) ≤ ∑4
i=1 Li(r) and combining the results (2.44), (2.46), (2.47) and (2.48), we can get the desired 

result. �
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3. ε-regularity criterion

In this section, we will adopt the same strategy as that in [11] to prove Theorem 1.3, performing an induction on 
the local energy. In fact, under the assumption of Theorem 1.3, we shall show that for each z0 := (a, s) ∈ Q(1/2), 

|x−a|<rn

|u|2(x, s)dx ≤ Cε1, rn = 2−n, ∀n ≥ 2, (3.1)

where C is a constant that will be chosen suitably in our proof. Additionally, assume z0 is a Lebesgue point for u, 
then (3.1) implies

|u|2(a, s) ≤ Cε1, (3.2)

hence almost everywhere in Q(1/2).
Due to the translation invariance of the NS equation and the hypothesis in Theorem 1.3, one can assume z0 = 0 in 

the sequel. To show (3.1), we will prove inductively that

(I )n : 1

r
d+1+2/d
n

F (rn) + 1

r
d+1+γd,α
n

L(rn) ≤ ε1, n ≥ 3, (3.3)

(R)n : E1(rn) + E2(rn) ≤ Cε1r
d
n , n ≥ 2, (3.4)

where γd,α = min{2/d, 2/α′}, C is a constant depending on d, M and α. Clearly, (3.4) implies (3.1) with (a, s) =
(0, 0). Next, we show the validity of (I )n and (R)n.

Proof of Theorem 1.3. We will use the following way to show the results of (I )n and (R)n: (1) We show that (R)2
holds; (2) (R)k holds for 2 ≤ k ≤ n implies that (I )n+1; (3) (I )k holds for 3 ≤ k ≤ n implies that (R)n. Then by 
induction we have (3.3) and (3.4).

Step 1. We prove that (R)2 holds. Recalling that our hypotheses are

sup
−1<t<0

ˆ

B(1)

|u|2dx+
ˆ

Q(1)

(|∇u|2 + |u||p|)dxdt +
0ˆ

−1

( ˆ

B(1)

|p|dx
)α

dt ≤ ε1, (3.5)

‖u‖
L∞(−1,0;Ḃ−1∞,∞)

≤ M < ∞. (3.6)

As a priori, assume ε1 ≤ 1. Apparently, for C ≥ r−d
2 , one has that

E1(r2) + E2(r2) ≤ ε1 ≤ Cε1r
d
2 . (3.7)

Step 2. For all n ≥ 2, we show that (R)k holds for 2 ≤ k ≤ n implies the result of (I )n+1. Note that our inductive 
hypothesis is

E1(rk) + E2(rk) ≤ Cε1r
d
k , ∀2 ≤ k ≤ n. (3.8)

One can easily see E1(s1) ≤ E1(s2) provided 0 < s1 ≤ s2 and the same holds for E2(r). For the first term in (I )n+1, 
by Lemma 2.5 and Proposition 2.4 (set γ = 1/2, ρ = rn), we have for any n ≥ 2,

F(rn+1) ≤ Cr
2
d

n+1E1(rn+1)
2
d E2(rn+1)

1
2 D(rn+1)

1
2 − 1

d

≤ Cr
2
d
n (Cε1r

d
n )

2
d (Cε1r

d
n )

1
2 (Cε1r

d
n )

1
2 − 1

d

≤ Cr
d+1+ 2

d
n ε

1+ 1
d

1 . (3.9)

Selecting ε1 sufficiently small, say

Cε
1/d
1 ≤ 1/2d+2+2/d , (3.10)

one has that



1690 K. Li, B. Wang / Ann. I. H. Poincaré – AN 36 (2019) 1679–1707
F(rn+1) ≤ r
d+1+ 2

d

n+1 ε1/2.

Concerning the second term in (I )n+1, we will utilize Lemma 2.6, set r = rn+1, ρ = 1/4, n ≥ 2 there, one can deduce 
that

Cr
2
d

n+1E1(rn+1)
2/dE2(3rn+1/2)1/2D(3rn+1/2)1/2−1/d

≤ Cr
2/d
n (Cε1r

d
n )2/d(Cε1r

d
n )1/2(Cε1r

d
n )1/2−1/d ≤ Cr

d+1+2/d
n ε

1+1/d

1 . (3.11)

We point out that in the first inequality, Proposition 2.4 is used. In addition,

sup
−r2

n+1<t<0

ˆ

3
2 rn+1≤|y|<1/4

|y|−d |u|2dy

≤ sup
−r2

n+1<t<0

ˆ

3
2 rn+1≤|y|<rn

|y|−d |u|2dy +
n−1∑
k=2

sup
−r2

n+1<t<0

ˆ

rk+1≤|y|<rk

|y|−d |u|2dy

≤ Cr−d
n sup

−r2
n<t<0

ˆ

|y|<rn

|u|2dy + C

n−1∑
k=2

r−d
k sup

−r2
k <t<0

ˆ

|y|<rk

|u|2dy

≤ Cnε1. (3.12)

Similarly,

0ˆ

−r2
n+1

ˆ

3
2 rn+1≤|y|<1/4

|y|−d |∇u|2dydt ≤ Cnε1. (3.13)

Consequently,

Cr
d/2+2
n+1 E1(rn+1)

1/2 sup
−r2

n+1<t<0

⎛
⎜⎜⎝

ˆ

3
2 rn+1≤|y|<1/4

|y|−d |u|2dy

⎞
⎟⎟⎠

1/2 ⎛
⎜⎜⎝

0ˆ

−r2
n+1

ˆ

3
2 rn+1≤|y|<1/4

|y|−d |∇u|2dydt

⎞
⎟⎟⎠

1/2

≤ Cr
d/2+2
n (Cε1r

d
n )1/2Cnε1 ≤ Cnrd+2

n ε
3/2
1 . (3.14)

For the last two terms in (2.34), we have

C4d+1r
d
2 +3
n+1 E1(rn+1)

1
2 E1(1/4) ≤ Cr

d
2 +3
n (Cε1r

d
n )

1
2 Cε1 ≤ Crd+3

n ε
3/2
1 (3.15)

and

C4d+1r
d
2 +1+ 2

α′
n+1 E1(rn+1)

1
2 Kα(1/4)

1
α ≤ Cr

d
2 +1+ 2

α′
n (Cε1r

d
n )

1
2 (Cε1)

1
α

≤ Cr
d+1+ 2

α′
n ε

1/2+1/α

1 . (3.16)

Noticing that 1 < α < 2, we can obtain from (3.11), (3.14)–(3.16) that

L(rn+1) ≤ Cr
d+1+γd,α

n+1 ε
1+θd,α

1 , (3.17)

with

γd,α = min
{ 2

d
,

2

α′
}
, θd,α = min

{ 1

d
,

1

α
− 1

2

}
. (3.18)
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Now taking ε1 small enough, such that

Cε
θd,α

1 ≤ 1/2. (3.19)

So (I )n+1 follows.
Step 3. Assuming that n ≥ 3, (I )k holds for 3 ≤ k ≤ n, we show the result of (R)n. Recall the local energy inequality

ˆ

B(1)

|u(x, t)|2φn(x, t)dx+2

tˆ

−1

ˆ

B(1)

|∇u|2φn(x, τ )dxdτ

≤
tˆ

−1

ˆ

B(1)

|u|2(∂tφn + �φn) + u · ∇φn(|u|2 + 2p)dxdτ (3.20)

holds for all t ∈ (−1, 0) and 0 ≤ φn ∈ C∞
0 (Q(1)). In particular, we choose φn = χϕn, with χ ∈ C∞

0 (Q(1/3)), 0 ≤
χ ≤ 1 and χ = 1 on Q(1/4),

ϕn(x, t) = 1

(r2
n − t)

d
2

exp

{
− |x|2

4(r2
n − t)

}
. (3.21)

Obviously, ϕn differs with the backward heat kernel by a constant and φn ≥ 0. Now one can show via a direct calcu-
lation that

• ∂tφn + �φn ≤ C for all (x, t) ∈ Q(1);
• cr−d

n ≤ φn ≤ Cr−d
n , |∇φn| ≤ Cr

−(d+1)
n on Q(rn), n ≥ 2;

• φn ≤ Cr−d
k , |∇φn| ≤ Cr

−(d+1)
k on Q(rk−1)\Q(rk), 1 < k ≤ n,

for some constant c, C depending only on d . It follows from (3.20) that

sup
−r2

n<t<0

 

B(rn)

|u(x, t)|2dx + r−d
n

ˆ

Q(rn)

|∇u|2dxdτ ≤ C(I + II + III ), (3.22)

where

I =
ˆ

Q(1)

|u|2(∂tφn + �φn)dxdτ, II =
ˆ

Q(1)

|u|2(u · ∇φn)dxdτ, III =
ˆ

Q(1)

p(u · ∇φn)dxdτ.

Thus we are reduced to discussing the above three terms, one can readily get

I ≤ C

ˆ

Q(r1)

|u|2dxdt ≤ Cε1. (3.23)

The estimate of II and III is a bit complicated, nevertheless goes in a similar way, both fully exploit the divergence 
free condition of the solution u. Let ηk, k = 1, . . . , n be smooth cut-off functions, satisfying

suppηk ⊂ Q(rk), 0 ≤ ηk ≤ 1,

ηk = 1 on Q(7rk/8), |∇ηk| ≤ cr−1
k . (3.24)

By a direct computation, one can see

η1φn = φn, |∇((ηk−1 − ηk)φn)| ≤ Cr
−(d+1)
k−1 , k = 2, . . . , n.

Therefore
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II =
ˆ

Q(r1)

|u|2u · ∇(η1φn)dxdt

=
n∑

k=2

ˆ

Q(rk−1)

|u|2u · ∇((ηk−1 − ηk)φn)dxdt +
ˆ

Q(rn)

|u|2u · ∇(ηnφn)dxdt.

By means of the argument in (3.9), one can show thatˆ

Q(rk−1)

∣∣∣|u|2 − [|u|2]B(rk−1)

∣∣∣ |u|dxdt ≤ Cr
1+d+2/d

k−1 ε
1+1/d

1 , k = 2, 3. (3.25)

Due to the fact that divu = 0 and the hypothesis in Step 3, we can assert that for 2 ≤ k ≤ n,ˆ

Q(rk−1)

|u|2u · ∇((ηk−1 − ηk)φn)dxdt =
ˆ

Q(rk−1)

(|u|2 − [|u|2]B(rk−1))u · ∇((ηk−1 − ηk)φn)dxdt

≤ C
1

rd+1
k−1

ˆ

Q(rk−1)

∣∣∣|u|2 − [|u|2]B(rk−1)

∣∣∣ |u|dxdt

≤ Cr
2/d
k−1ε1. (3.26)

Similarlyˆ

Q(rn)

|u|2u · ∇(ηnφn)dxdt ≤ Cr
2/d
n ε1. (3.27)

This implies

II ≤ C

n∑
k=2

r
2/d

k−1ε1 + Cr
2/d
n ε1 ≤ Cε1. (3.28)

Finally, we treat III , as before,

III =
n∑

k=2

ˆ

Q(rk−1)

pu · ∇((ηk−1 − ηk)φn)dxdτ +
ˆ

Q(rn)

pu · ∇(ηnφn)dxdτ.

When k = 2, 3, it follows from (3.5) thatˆ

Q(rk−1)

pu · ∇((ηk−1 − ηk)φn)dxdτ ≤ C

ˆ

Q(1)

|u||p|dxdt ≤ Cε1. (3.29)

While for 4 ≤ k ≤ n, we haveˆ

Q(rk−1)

pu · ∇((ηk−1 − ηk)φn)dxdτ =
ˆ

Q(rk−1)

(p − [p]B(rk−1))u · ∇((ηk−1 − ηk)φn)dxdτ

≤ C
1

rd+1
k−1

ˆ

Q(rk−1)

∣∣p − [p]B(rk−1)

∣∣ |u|dxdt

≤ Cr
γd,α

k−1ε1. (3.30)

In the same way,ˆ

Q(rn)

pu · ∇(ηnφn)dxdτ ≤ Cr
γd,α
n ε1. (3.31)
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So one can find

III ≤ Cε1 +
n∑

k=4

r
γd,α

k−1ε1 + Cr
γd,α
n ε1 ≤ Cε1. (3.32)

Gathering the estimates of I, II and III , we finally obtain that (R)n holds, which is exactly the required result. The 
proof is done. �

We mention a bit more on the choice of ε1. By a closer observation, one can figure out that various constants 
C appearing in the course of Step III relies on d , M and α only. The same applies for the constants C in (3.10)
and (3.19), we can specify ε1 through (3.10) and (3.19).

To show Corollary 1.5, we need to control the local energy in terms of 
´
Q(3r/4)

|u|3dxdt and 
´
Q(3r/4)

|p|3/2dxdt . 

First, assume u ∈ L∞(−4, 0; Ḃ−1∞,∞) and (u, p) is a pair of suitable weak solution on Q(2), applying the local energy 
inequality with test function φ satisfying suppφ ⊂ Q(3/2) and φ = 1 on Q(1), we can find

sup
−1<t<0

ˆ

B(1)

|u|2dx +
ˆ

Q(1)

|∇u|2dxdt

≤ C

( ˆ

Q(3/2)

|u|2 + |u|3 + |u||p|dxdt

)

≤ C

( ˆ

Q(3/2)

|u|3dxdt

)2/3

+ C

( ˆ

Q(3/2)

|u|3 + |p|3/2dxdt

)
. (3.33)

In general, for u, p defined on Q(r), we set

ur(x, t) = λu
(
λx,λ2t

)
, λ = r/2.

pr(x, t) = λ2p
(
λx,λ2t

)
. (3.34)

Then ur, pr become functions defined on Q(2).

Proof of Corollary 1.5. Let ur, pr be as above, by (3.33) and Hölder inequality, we have

sup
−1<t<0

ˆ

B(1)

|ur |2dx +
ˆ

Q(1)

(|∇ur |2 + |ur ||pr |)dxdt +
0ˆ

−1

( ˆ

B(1)

|pr |dx

)3/2

dt

≤ C

( ˆ

Q(3/2)

|ur |3dxdt

)2/3

+ C

( ˆ

Q(3/2)

|ur |3 + |pr |3/2dxdt

)

≤ C

(
1

rd−1

ˆ

Q(3r/4)

|u|3dxdt

)2/3

+ C

(
1

rd−1

ˆ

Q(3r/4)

|u|3 + |p|3/2dxdt

)

≤ C(ε̃1)
3/2 + Cε̃1. (3.35)

Selecting ε̃1 small enough, such that

C(ε̃1)
3/2 + Cε̃1 ≤ ε1. (3.36)

Here ε1 is given by (1.6) with α = 3/2. Then Theorem 1.3 can infer

sup
(x,t)∈Q(1/2)

|ur(x, t)| ≤ Cε1. (3.37)

This concludes the proof. �
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4. Mild solution in critical Besov space

This section is devoted to proving Theorem 1.6, and we argue by contradiction. Assume that the conclusion of 
Theorem 1.6 does not hold, i.e., there exists M > 0 such that

‖u(t)‖
Ḃ

sp
p,q (Rd )

≤ M, a.e. t ∈ [0, T∗). (4.1)

4.1. Formation of singular point at blowup time

We shall show the existence of singular point for blowup mild solution in critical Besov space under an extra 
regularity assumption, the key part lies in establishing some global space-time bounds for the solution until the singular 
time. Let us first recall the local Cauchy theory for NS with initial data in Ḃ

sp
p,q , see [1] for the 3D case and the higher 

dimensional cases are similar.

Theorem 4.1. Let u0 ∈ Ḃs
p,q(Rd) with d < p, q < ∞, sp ≤ s < 0. Then there exist a time T > 0 and a unique mild 

solution u := NS(u0) ∈ C([0, T ]; Ḃs
p,q) ∩ K s

p,∞(T ) to (1.1), such that

‖∂l
t ∇j u‖

K s−2l−j
p,∞ (T )

+ ‖u‖L∞(0,T ;Ḃs
p,q ) ≤ C‖u0‖Ḃs

p,q
, l, j ∈ {0,1}. (4.2)

Moreover, we can take T ≥ c0‖u0‖2/(s−sp)

Ḃs
p,q

, provided s > sp , here c0 is independent of u0. Recall that

‖u‖
K β

p,∞(T )
:= sup

0<t<T

t−β/2‖u(x, t)‖L
p
x
, β < 0.

We further exploit a regularity result for the mild solution with data in Ḃs
p,q , sp ≤ s < 0.

Proposition 4.2. Let u be the mild solution given by Theorem 4.1 and the estimate (4.2) hold. Additionally, assume 
2d < p < ∞, then

‖u‖L∞(σ,T ;L∞) ≤ C(σ,T ,‖u0‖Ḃs
p,q

), ∀σ ∈ (0, T ). (4.3)

Particularly, u ∈ C∞((0, T ) ×R
d).

Proof. For simplicity, we denote δ = s − sp and obviously, δ ∈ [0, 1). It is known that u can be written as

u(t) = et�u0 −
tˆ

0

e(t−τ)�
P div(u ⊗ u)(τ )dτ

= uL − B(u,u). (4.4)

The estimate of the linear term uL := et�u0 follows from (2.1), since

sup
0<t<T

t(1−δ)/2‖uL‖L∞ ≤ C‖u0‖Ḃ−1+δ∞,∞ ≤ C‖u0‖Ḃs
p,q

. (4.5)

On the other hand, by [37], the bilinear term B(u, u) can be formulated as

B(u,u)(t) =
tˆ

0

1

(t − τ)
d+1

2

G
( x√

t − τ

)
∗ (u ⊗ u)(τ )dτ, (4.6)

where G(x) satisfies

|G(x)| ≤ C

(1 + |x|)d+1 .

Let r be such that 1 = 2/p + 1/r , t ∈ (σ, T ), applying Young inequality, one can figure out that
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‖B(u,u)‖L∞ ≤ C

tˆ

0

1

(t − τ)
d+1

2

∥∥∥G
( x√

t − τ

)∥∥∥
Lr

‖u(τ)‖2
L

p
x
dτ

≤ C‖u‖2
K s

p,∞(T )

tˆ

0

τ s

(t − τ)1/2+d/p
dτ

≤ Ctδ−1/2‖u‖2
K s

p,∞(T )

1ˆ

0

λs

(1 − λ)1/2+d/p
dλ.

Note that −1 < s < 0, 2d < p < ∞ and (4.2), one can readily see

‖B(u,u)‖L∞(σ,T ;L∞) ≤ C(σ, δ, T ,‖u0‖Ḃs
p,q

). (4.7)

This combining with (4.5) yields the desired bound. Once (4.3) is established, the smoothness becomes an immediate 
result, see [37,3]. �

Next result is related to the decomposition of functions in Besov space, which can be viewed from the point of 
interpolation theory, here we present a simple version, see [1] for the proof. As for the slightly general case, one can 
refer to [5,2].

Lemma 4.3. Let d < p < m < ∞ and θ ∈ (0, 1) be such that

1

p
= θ

2
+ 1 − θ

m
. (4.8)

Define s by sp = (1 − θ)s. Given η > 0 and a vector field v ∈ Ḃ
sp
p,p(Rd), there exist vector fields U ∈ Ḃ

sp
p,p ∩ L2 and 

V ∈ Ḃ
sp
p,p ∩ Ḃs

m,m, verifying v = U + V and

‖U‖2
L2 ≤ Cη2−p‖v‖p

Ḃ
sp
p,p

, (4.9)

‖V ‖m

Ḃs
m,m

≤ ηm−p‖v‖p

Ḃ
sp
p,p

, (4.10)

‖U‖
Ḃ

sp
p,p

+ ‖V ‖
Ḃ

sp
p,p

≤ C‖v‖
Ḃ

sp
p,p

. (4.11)

Further, U and V can be selected to be divergence free provided that v is divergence free.

When making standard energy estimate for NS equation, we need to deal with some type of trilinear form, specifi-
cally, the integral 

´ T

0

´
Rd v ⊗ u : ∇udxdt with u ∈ ET , v has some sort of regularity condition, here

ET := L∞(0, T ;L2(Rd)) ∩ L2(0, T ; Ḣ 1(Rd)). (4.12)

The following result gives a proper estimate of that kind, and is adapted to our needs later. One can refer to [26,5] and 
references therein for the proof.

Lemma 4.4. Let d ≥ 3, u ∈ ET , v ∈ Lr(0, T ; Lq(Rd)) with 2/r + d/q = 1, d < q < ∞. Then a constant C exists, 
such that

‖v ⊗ u‖L2(0,T ;L2) ≤ C‖v‖Lr(0,T ;Lq)‖u‖1−θ

L∞(0,T ;L2)
‖u‖θ

L2(0,T ;Ḣ 1)
, θ = d/q. (4.13)

Moreover, for any ε > 0, there exists a constant Cε , such that

T̂

0

ˆ

Rd

v ⊗ u : ∇udxdt ≤ ε

T̂

0

‖∇u‖2
L2dt + Cε

T̂

0

‖v‖r
Lq ‖u‖2

L2dt. (4.14)
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We now state our main result in this part. For simplicity, we restrict ourselves to consider the initial data in Ḃ
sp
p,p, 

which is enough for our later purpose.

Proposition 4.5. Let 4 ≤ d < p < ∞, u0 ∈ Ḃ
sp
p,p and u := NS(u0) be the mild solution to (1.1), assume further 

u ∈ L∞(0, T∗; Ḃsp
p,p) blows up at finite time T∗, then there exists some R > 0, such that

sup
T∗/2<t<T∗

sup
x∈B(R)c

|u(x, t)| < ∞. (4.15)

Proof. Let p < m < ∞ satisfy

1

p
= 1 − θ

m
+ θ

2
, sp = (sm + δ)(1 − θ). (4.16)

A simple computation shows δ = (d − 2)θ/[2(1 − θ)]. According to Lemma 4.3, we can decompose u0 as u0 =
u0,1 + u0,2 with u0,1 ∈ Ḃ

sm+δ
m,m ∩ Ḃ

sp
p,p , u0,2 ∈ L2 ∩ Ḃ

sp
p,p . Besides,

‖u0,1‖m

Ḃ
sm+δ
m,m

≤ηm−p‖u0‖p

Ḃ
sp
p,p

, ‖u0,2‖2
L2 ≤ Cη2−p‖u0‖p

Ḃ
sp
p,p

, (4.17)

‖u0,1‖Ḃ
sp
p,p

+ ‖u0,2‖Ḃ
sp
p,p

≤ C‖u0‖Ḃ
sp
p,p

. (4.18)

Define V = NS(u0,1) and U = u − V . Taking η to be small enough, we see the existence time T of solution V given 
by Theorem 4.1 can be beyond T∗, so

‖V ‖K sm+δ
m,∞ (T∗) + ‖∇V ‖

K sm+δ−1
m,∞ (T∗) ≤ C‖u0,1‖Ḃ

sm+δ
m,m

≤ C(η,‖u0‖Ḃ
sp
p,p

),

‖V ‖
L∞(0,T∗;Ḃsp

p,p)
≤ C(η,‖u0‖Ḃ

sp
p,p

). (4.19)

In addition, determining r by 2/r + d/m = 1, one can verify

‖V ‖r
Lr (0,T∗;Lm) ≤ ‖V ‖r

K sm+δ
m,∞ (T∗)

T∗ˆ

0

t r/2(sm+δ)dt ≤ CT
rδ/2∗ , (4.20)

where C depends on r, δ, η and ‖u0‖Ḃ
sp
p,p

. Let Q1 be the associated pressure with V , then

�Q1 = −div (V · ∇V ). (4.21)

It follows from the classical Calderon–Zygmund estimate that

sup
T∗/4<t<T∗

‖Q1‖Lm/2 ≤ C
(
η,T∗,‖u0‖Ḃ

sp
p,p

)
. (4.22)

On the other hand, U solves the following perturbative Navier–Stokes equation:⎧⎪⎨
⎪⎩

∂tU − �U + U · ∇U + V · ∇U + U · ∇V + ∇Q2 = 0,

divU = 0,

U(0, x) = u0,2(x),

where Q2 satisfies

�Q2 = −div(U · ∇U + U · ∇V + V · ∇U). (4.23)

Noticing that

u, V ∈ L∞(0, T∗; Ḃsp
p,p),

so does U . At the same time, as u0,2 ∈ L2, by persistence and propagation of regularity (cf. [22]), one can further 
show there exists a time T1 ≤ T∗, such that

U ∈ L∞(0, T1;L2) ∩ L2(0, T1; Ḣ 1). (4.24)
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Hence, performing the standard energy estimate, we can see that

‖U(t)‖2
L2 + 2

tˆ

0

‖∇U(τ)‖2
L2dτ = ‖u0,2‖2

L2 + 2

tˆ

0

ˆ

Rd

V ⊗ U : ∇Udxdτ (4.25)

fulfills for all t ∈ (0, T1). This together with Lemma 4.4 and Gronwall inequality yields

‖U(t)‖2
L2 +

tˆ

0

‖∇U(τ)‖2
L2dτ ≤ ‖u0,2‖2

L2 exp

(
C

T∗ˆ

0

‖V (τ)‖r
Lmdτ

)
, 0 ≤ t < T1. (4.26)

However, the above boundedness of U in the energy space can ensure that T1 = T∗, so U ∈ ET∗ . Notice that

U ∈ L∞(0, T∗; Ḃsp
p,p). (4.27)

By Proposition 2.2, we have U ∈ L4(0, T∗; L4). On account of Lemma 4.4, we see that U ⊗ V ∈ L2(0, T∗; L2). Now 
applying Calderon–Zygmund estimate, one can obtain that Q2 ∈ L2(0, T∗; L2). To summarize, u = V + U , with

V ∈ L∞(T∗/4, T∗;Lm(Rd)), U ∈ L4(0, T∗;L4(Rd)). (4.28)

The associated pressure q = Q1 + Q2, with

Q1 ∈ L∞(T∗/4, T∗;Lm/2(Rd)), Q2 ∈ L2(0, T∗;L2(Rd)). (4.29)

Moreover, (u, q) forms a pair of suitable weak solution on any bounded domain of (T∗/4, T∗) × R
d . Due to (4.28)

and (4.29), one can claim that for any ε, ρ > 0, there exists some R0 > 0, such that

sup
z∈Rd

T∗ˆ

T∗/4

ˆ

B(R0)
c∩B(z,ρ)

|u|3 + |q|3/2dxdt < ε/T
(d−1)/2∗ . (4.30)

Fix a point z0 = (x0, t0), T∗/2 < t0 < T∗. Choosing ρ = √
T∗/2, one sees Q(z0, ρ) ⊂ (T∗/4, T∗) ×R

d and

‖u‖
L∞(t0−ρ2,t0;Ḃ−1∞,∞)

≤ ‖u‖
L∞(0,T∗;Ḃ−1∞,∞)

. (4.31)

The following integral

1

ρd−1

ˆ

Q(z0,3ρ/4)

|u|3 + |q|3/2dxdt < Cε (4.32)

provided |x0| > R0 + ρ. Now we take ε so small that Cε < ε̃1. Therefore, Corollary 1.5 implies the boundedness of u
around z0. The proof is completed. �
4.2. Some a priori estimates and limiting process

This subsection presents some preparation results for the proof of Theorem 1.6. Since Ḃ
sp
p,q ⊂ Ḃ

sr
r,r for r =

max {p,q}, it suffices to prove the theorem with initial data u0 ∈ Ḃ
sp
p,p, 4 ≤ d < p < ∞, see [22,24] for further 

explanations. Taking the assumption of Proposition 4.2 into consideration, we will assume, from now on that in The-
orem 1.6, the initial data u0 fulfills

u0 ∈ Ḃ
sp
p,p, 2d < p < ∞. (4.33)

Let u := NS(u0) be the mild solution described in Theorem 1.6, assume the conclusion there is false, by (4.1), 
there exists M̃ > 0 such that

‖u‖
L∞(0,T∗;Ḃsp

p,p)
≤ M̃. (4.34)

As u becomes singular at T∗, so
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lim sup
t→T∗

‖u(t)‖L∞(Rd ) = ∞. (4.35)

However, Proposition 4.5 implies the boundedness of u out of B(R) for some R > 0, it follows that there exists some 
point Z0 := (X0, T∗), such that u is singular at Z0, more precisely,

u /∈ L∞(Q(Z0, r)), ∀0 < r <
√

T∗. (4.36)

Let q be the pressure associated with u, we plan to rescale u, q around Z0, then derive a solution sequence. First, 
by (4.34), one can find a time sequence {tn}n≥1, such that tn → T∗ as n → ∞, and

‖u(tn)‖Ḃ
sp
p,p

≤ ‖u‖
L∞(0,T∗;Ḃsp

p,p)
≤ M̃. (4.37)

Without loss of generality, one can assume

u(tn) ⇀ u∗ := u(T∗) weakly in Ḃ
sp
p,p. (4.38)

Set λn = √
(T∗ − tn)/2 and denote

vn(x, t) = λnu(X0 + λnx,T∗ + λ2
nt), (4.39)

qn(x, t) = λ2
nq(X0 + λnx,T∗ + λ2

nt). (4.40)

Naturally, vn is a mild solution to (1.1) on (−2, 0) ×R
d with initial data

vn(x,−2) = v0,n := λnu(X0 + λnx, tn).

By a direct calculation, one can see

‖vn‖L∞(−2,0;Ḃsp
p,p)

= ‖u‖
L∞(tn,T∗;Ḃsp

p,p)
≤ M̃, (4.41)

‖v0,n‖Ḃ
sp
p,p

= ‖u(tn)‖Ḃ
sp
p,p

≤ M̃. (4.42)

Next, we aim at obtaining some uniform control over vn, qn, the procedure is quite similar to the proof of 
Proposition 4.5 and we will omit the details of the argument by simply writing down relevant conclusions. For 
convenience, the notations m, δ, r used in the proof of Proposition 4.5 will be continuously used. First, there ex-
ist v1

0,n ∈ Ḃ
sm+δ
m,m ∩ Ḃ

sp
p,p and v2

0,n ∈ L2 ∩ Ḃ
sp
p,p , such that v0,n = v1

0,n + v2
0,n and the corresponding qualitative estimates 

hold, i.e. (4.17) and (4.18) with u0,1, u0,2 replaced by v1
0,n, v

2
0,n respectively.

Given the decomposition of the initial data, we can also express the solution into two parts, set

U1
n := NS(v1

0,n), U2
n = vn − U1

n . (4.43)

Let us treat U1
n now, by choosing η to be sufficiently small and applying local Cauchy theory of NS, see Theorem 4.1, 

one can deduce that

‖U1
n‖K sm+δ

m,∞ (−2,0)
+ ‖∇U1

n‖
K sm+δ−1

m,∞ (−2,0)
≤ C‖v1

0,n‖Ḃ
sm+δ
m,m

≤ C(η, M̃). (4.44)

‖∂tU
1
n‖

K sm+δ−2
m,∞ (−2,0)

≤ C‖v1
0,n‖Ḃ

sm+δ
m,m

≤ C(η, M̃) (4.45)

Meantime,

‖U1
n‖

L∞(−2,0;Ḃsp
p,p)

≤ C(η, M̃). (4.46)

For arbitrary 0 < σ < 2,

‖U1
n‖L∞(−2+σ, 0;Lm) + ‖∇U1

n‖L∞(−2+σ, 0;Lm) + ‖∂tU
1
n‖L∞(−2+σ, 0;Lm) ≤ C(σ,η, M̃). (4.47)

Furthermore, Proposition 4.2 yields

‖U1
n‖L∞(−2+σ, 0;L∞) ≤ C(σ,η, M̃), ∀0 < σ < 2. (4.48)

Let Q1
n be the pressure associated with U1

n , then Calderon–Zygmund estimate infers

‖Q1
n‖L∞(−2+σ, 0;Lm/2) ≤ C(σ,η, M̃). (4.49)

Based on the above estimates over U1
n, Q1

n, we can show the following result.
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Lemma 4.6. There exist limit functions u1∞, q1∞, defined on (−2, 0) × R
d , such that for any 0 < σ < 2, R > 0, we 

have

(1) U1
n ⇀ u1∞ weakly* in L∞(−2 + σ, 0; Lm) and L∞(−2 + σ, 0; L∞);

(2) ∇U1
n ⇀ ∇u1∞ weakly* in L∞(−2 + σ, 0; Lm);

(3) U1
n → u1∞ strongly in C([−2 + σ, 0], Lm(B(R)));

(4) U1
n ⇀ u1∞ weakly* in L∞(−2, 0; Ḃsp

p,p);

(5) Q1
n ⇀ q1∞ weakly* in L∞(−2 + σ, 0; Lm/2).

Proof. Obviously, (1), (2), (4) and (5) follow directly from (4.48)–(4.49). For any fixed r > 1, note that

U1
n ∈ Lr(−2 + σ, 0;W 1

m(B(R))), ∂tU
1
n ∈ Lr(−2 + σ, 0;Lm(B(R))). (4.50)

Thus (3) is a consequence of Aubin–Lions lemma (cf. [46,45]). �
We turn to the estimate of U2

n . Observing that U2
n solves the following perturbed Navier–Stokes equation on domain 

(−2, 0) ×R
d ,⎧⎪⎨

⎪⎩
∂tU

2
n − �U2

n + U2
n · ∇U2

n + U2
n · ∇U1

n + U1
n · ∇U2

n + ∇Q2
n = 0,

divU2
n = 0,

U2
n (x,−2) = v2

0,n(x).

Due to (4.41) and (4.46), one can easily find

U2
n ∈ L∞(−2,0; Ḃsp

p,p(Rd)). (4.51)

Recall that r is such that 2/r + d/m = 1, we can apply energy estimate again to see

‖U2
n (t)‖2

L2 +
tˆ

−2

‖∇U2
n‖2

L2ds ≤ ‖v2
0,n‖2

L2 exp

⎛
⎝C

0ˆ

−2

‖U1
n‖r

Lmds

⎞
⎠ ≤ C(η, M̃) (4.52)

holds for all t ∈ (−2, 0). It follows from interpolating (4.51) and (4.52) that

‖U2
n‖L4(−2,0;L4) ≤ C(η, M̃). (4.53)

The pressure Q2
n meets

‖Q2
n‖L2(−2,0;L2) ≤ C(η, M̃). (4.54)

For more details on the above estimates of U2
n, Q2

n, one can refer to the proof of Proposition 4.5. The estimate of ∂tU
2
n

can be done as follows: let R > 0, φ ∈ C∞
0 (B(R)), then

|〈∂tU
2
n ,φ〉| = ∣∣ − 〈∇U2

n ,∇φ〉 + 〈U2
n ,U2

n · ∇φ〉 + 〈U1
n ,U2

n · ∇φ〉 + 〈U2
n ,U1

n · ∇φ〉 + 〈Q2
n,divφ〉∣∣

≤ C
(‖∇U2

n‖L2 + ‖U2
n‖2

L4 + ‖U1
n ⊗ U2

n‖L2 + ‖Q2
n‖L2

)‖∇φ‖L2 (4.55)

Taking L2 integral with respect to time over interval [−2, 0] and using Lemma 4.4, one sees

‖∂tU
2
n‖L2(−2,0;H−1(B(R))) ≤ C(η, M̃), ∀R > 0, (4.56)

where H−1(B(R)) is the dual space of H 1
0 (B(R)). Besides, U2

n satisfies the local energy equality with lower order 
terms:

∂t |U2
n |2 − �|U2

n |2 + 2|∇U2
n |2+div (|U2

n |2U2
n + |U2

n |2U1
n )

+ 2U2
n div (U2

n ⊗ U1
n ) + 2div (U2

nQ2
n) = 0, (4.57)

which can be interpreted in the sense of distributions. Collecting the estimates of U2
n and Q2

n and taking the estimates 
of U1

n into consideration, we can claim the conclusion below.
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Lemma 4.7. There exist limit functions u2∞ and q2∞ defined on (−2, 0) ×R
d , satisfying

(1) U2
n ⇀ u2∞ weakly* in L∞(−2, 0; Ḃsp

p,p) and L∞(−2, 0; L2);

(2) ∇U2
n ⇀ ∇u2∞ weakly in L2(−2, 0; L2);

(3) U2
n → u2∞ strongly in Lβ(−2, 0; Lβ(B(R))) and C([−2, 0]; H−1(B(R))), ∀ 1 ≤ β < 4, R > 0;

(4) Q2
n ⇀ q2∞ weakly in L2(−2, 0; L2);

(5) The following local energy inequality

ˆ

B(R)

|u2∞(x, t)|2φ(x, t)dx + 2

tˆ

−2

ˆ

B(R)

|∇u2∞|2φ(x, τ )dxdτ

≤
tˆ

−2

ˆ

B(R)

|u2∞|2(∂τ φ + �φ) + u2∞ · ∇φ(|u2∞|2 + 2q2∞) + |u2∞|2u1∞ · ∇φdxdτ

+ 2

tˆ

−2

ˆ

B(R)

(u1∞ · u2∞)u2∞ · ∇φ + (u2∞ · ∇u2∞)u1∞φdxdτ (4.58)

holds for any t ∈ (−2, 0) and 0 ≤ φ ∈ C∞
0 ((−2, 0) × B(R)), here, R > 0 is arbitrary.

Proof. It is easy to see that (1), (2) and (4) follows from (4.52), (4.54). The validity of (3) can be argued as follows:

U2
n ∈ L2(−2,0;H 1(B(R))), ∂tU

2
n ∈ L2(−2,0;H−1(B(R))). (4.59)

Appealing to the Aubin–Lions Lemma once again, we obtain

U2
n → u2∞ strongly in L2(−2,0;L2(B(R))) and C([−2,0];H−1(B(R))). (4.60)

Then interpolation with (4.53) leads to the required result. Finally, using the fact that U2
n satisfies (4.57) distributionally 

and the convergence properties of U1
n (see Lemma 4.6) and U2

n , Q2
n, one can deduce (5). �

Recalling that vn = U1
n + U2

n , qn = Q1
n + Q2

n. Thanks to Lemma 4.6 and Lemma 4.7, one can formulate the limit 
behavior of vn and qn into the following statement.

Proposition 4.8. There exist limit functions v∞, q∞, defined on domain (−2, 0) × R
d , with v∞ = u1∞ + u2∞, q∞ =

q1∞ + q2∞, such that for any 0 < σ < 2, R > 0, the following properties hold.

(i) vn ⇀ v∞ weakly* in L∞(−2, 0; Ḃsp
p,p) and L∞(−2 + σ, 0; L2(B(R)));

(ii) vn → v∞ strongly in Lβ(−2 + σ, 0; Lβ(B(R))), ∀ 1 ≤ β < 4;
(iii) ∇vn ⇀ ∇v∞ weakly in L2(−2 + σ, 0; L2(B(R)));
(iv) For every t ∈ [−2 + σ, 0], ψ(x)vn(x, t) ⇀ ψ(x)v∞(x, t) weakly in L2(Rd), and the function

t �→ ´
Rd v∞(x, t)ψ(x)dx ∈ C([−2 + σ, 0]), here ψ ∈ C∞

0 (Rd);
(v) qn ⇀ q∞ weakly in L3/2(−2 + σ, 0; L3/2(B(R)));

(vi) v∞, q∞ forms a pair of suitable weak solution on any bounded domain of (−2 + σ, 0) ×R
d .

Proof. The verification of (i)–(v) is straightforward, provided one notice relevant properties of U1
n and U2

n . Now that 
vn and qn is a pair of smooth solution to NS, so it fulfills the local energy equality, taking n → ∞ and using (i)–(v), 
one can find (vi) follows. �
4.3. Proof of Theorem 1.6

In this section, we shall prove the blowup criterion for NS in critical Besov space. Let vn, qn, v∞, q∞ be the 
functions constructed in Section 4.2. We draw on ideas from [1,6,17,20], showing first the limit function v∞ vanishes 
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for some time, then using the strong convergence property of vn and an interior estimate of qn to yield that for some 
small γ > 0 and large n0, the pair (vn0, qn0) verifies the condition of ε regularity criterion on Q(γ ), thus producing 
the boundedness of u at the singular point, which is obviously absurd. Now we start to implement this argument.

Proposition 4.9. Let v∞, q∞ be the limit solution obtained in Proposition 4.8, then

v∞(x, t) = 0, for t ∈ (−5/4,0]. (4.61)

Proof. Observing that v∞ = u1∞ + u2∞, q∞ = q1∞ + q2∞, with

u1∞ ∈ L∞(−5/3,0;Lm), u2∞ ∈ L3(−5/3,0;L3),

q1∞ ∈ L∞(−5/3,0;Lm/2), q2∞ ∈ L2(−5/3,0;L2).

So for any ε0, ρ > 0, there exists some R0 > 0 large, such that

sup
z∈Rd

0ˆ

−5/3

ˆ

B(R0)
c∩B(z,ρ)

|v∞|3 + |q∞| 3
2 dxdt < ε0. (4.62)

Let z0 = (x0, t0) ∈ R
d × (−3/2, 0), ρ = 1/4, then Q(z0, ρ) ⊂ R

d × (−5/3, 0). The value

1

ρd−1

ˆ

Q(z0,ρ)

|v∞|3 + |q∞| 3
2 dxdt ≤ Cε0, (4.63)

provided |x0| > ρ + R0 := R1. Now one can specify ε0 so that Cε0 < ε̃1, in view of Corollary 1.5, we know v∞ is 
bounded in some neighborhood of z0, and hence

sup
−3/2<t<0

sup
B(R1)

c

|v∞(x, t)| < ∞. (4.64)

Upon using the regularity results for linear Stokes systems, one can acquire higher order derivatives estimates

|∇j v∞(x, t)| ≤ N(j), (4.65)

with j ≥ 1 and (x, t) ∈ B(2R1)
c × (−5/4, 0).

Next we show v∞(x, 0) vanishes, one can also refer to the same argument in [1]. Due to (iv) in Proposition 4.8, we 
know vn(0) ⇀ v∞(0) in the sense of tempered distribution. In addition, u(·, T∗) ∈ Ḃ

sp
p,p , so for any ε > 0, there exists 

uε ∈ C∞
0 (Rd), such that

‖uε(·) − u(·, T∗)‖Ḃ
sp
p,p

< ε. (4.66)

Let ϕ be a Schwartz function, then

〈vn(0), ϕ〉 = λ−(d−1)
n 〈u(X0 + x,T∗), ϕ(λ−1

n x)〉
= λ−(d−1)

n 〈u(X0 + x,T∗) − uε(X0 + x),ϕ(λ−1
n x)〉 + λ−(d−1)

n 〈uε(X0 + x),ϕ(λ−1
n x)〉

≤ ‖u(T∗) − uε‖Ḃ
sp
p,p

‖ϕ‖
Ḃ

−sp

p′,p′
+ λn‖uε‖L∞‖ϕ‖L1 ≤ Cε

provided n is sufficiently large. Hence,

〈v∞(0), ϕ〉 = lim
n→∞〈vn(0), ϕ〉 = 0. (4.67)

As ϕ ∈ S is arbitrary, so v∞(0) = 0, as desired. Now we denote ω∞ = curlu∞, then ω∞ meets the differential 
inequality

|∂tω∞ − �ω∞| ≤ N(|ω∞| + |∇ω∞|) (4.68)

on B(0, 2R1)
c × (−5/4, 0] and ω∞(x, 0) = 0. Applying the backward uniqueness theorem ([20]), we reach
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ω∞(z) = 0 on B(0,2R1)
c × (−5/4,0]. (4.69)

We continue to establish the regularity of v∞ on B(0, 2R1) × (−5/4, 0]. Note that v∞ = u1∞ + u2∞, and

u1∞ ∈ L∞(−5/4,0;L∞), (4.70)

thus it is reduced to estimating u2∞. First, the local energy inequality (4.58) implies the following the global energy 
inequality:

ˆ

Rd

|u2∞(t2)|2dx + 2

t2ˆ

t1

ˆ

Rd

|∇u2∞|2dxdt ≤
ˆ

Rd

|u2∞(t1)|2dx + 2

t2ˆ

t1

ˆ

Rd

u1∞ ⊗ u2∞ : ∇u2∞dxdt (4.71)

with almost every t1 > −2 and all t1 ≤ t2 < 0, see [1] for the proof. On the other hand,

u2∞ ∈ L∞(−2,0; Ḃsp
p,p) ∩ L∞(−2,0;L2). (4.72)

We can choose t1 ∈ (−5/4, 0] so that (4.71) holds and u2∞(t1) ∈ L2 ∩ Ḃ
sp
p,p . Considering the equation below⎧⎪⎨

⎪⎩
∂t ṽ − �ṽ + ṽ · ∇ṽ + u1∞ · ∇ṽ + ṽ · ∇u1∞ + ∇q̃ = 0,

div ṽ = 0,

ṽ(x, t1) = u2∞(t1).

By a standard Picard iteration procedure, one can construct a mild solution ṽ to the above equation on some interval 
(t1, t1 + κ), and

sup
t1+σ<t<t1+κ

sup
x∈Rd

|ṽ| ≤ C
(
σ,‖u2∞(t1)‖Ḃ

sp
p,p

,‖u1∞‖L∞(−5/4,0;L∞)

)
, ∀0 < σ < κ/2. (4.73)

Moreover, the global energy equality

ˆ

Rd

|ṽ(t)|2dx + 2

tˆ

t1

ˆ

Rd

|∇ṽ|2dxdτ =
ˆ

Rd

|u2∞(t1)|2dx + 2

tˆ

t1

ˆ

Rd

u1∞ ⊗ ṽ : ∇ṽdxdτ (4.74)

fulfills for t1 ≤ t < 0. Then weak-strong uniqueness1 for the equation ṽ solves can infer

u2∞ = ṽ, on (t1, t1 + κ) ×R
d . (4.75)

Recalling (4.70), (4.73) and the parabolic regularity result, we can see

sup
t1+2σ<t<t1+κ

sup
x∈Rd

|∇kv∞(x, t)| ≤ c(σ, k), ∀ k ∈ N. (4.76)

Meanwhile, on account of the fact that ω∞(z) = 0 if z ∈ B(0, 2R1)
c × (t1 + 2σ, t1 + κ), one can conclude from the 

unique continuation theorem (cf. [20])

ω = 0 on R
d × (t1 + 2σ, t1 + κ). (4.77)

To summarize,

divv∞ = curlv∞ = 0 on R
d × (t1 + 2σ, t1 + κ), ∀0 < σ < κ/2. (4.78)

Accordingly, �v∞ = 0 on the same domain. It follows from Liouville’s theorem that v∞ equals to some constant. 
Owing to (4.62), we can assert

1 Barker [5] showed weak-strong uniqueness of 3D Navier–Stokes equation with initial data in L2 ∩ Ḃ
sp
p,p , see Theorem 5.2 for details, whereas 

his method can still be applied to prove a similar result for the perturbed Navier–Stokes equation ṽ∞ satisfies, where the terms u1∞ · ∇ṽ and 
ṽ · ∇u1∞ don’t pose new difficulties because of the subcriticality of u1∞ .
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v∞ = 0 on R
d × (t1 + 2σ, t1 + κ). (4.79)

Since σ can be chosen to be arbitrarily small, then v∞(t1) = 0, because of the weak continuity property. However, 
such t1 exists almost everywhere in (−5/4, 0), upon using weak continuity once again, we finally obtain

v∞(t) = 0 for t ∈ (−5/4,0]. (4.80)

This completes the proof. �
Before pushing forward, we give an estimate of the pressure term inside a fixed domain, which will be used later. 

Estimate of this type can also be found in [17,18].

Lemma 4.10. Let 0 < γ ≤ 1/4, ρ > 0. (u, p) forms a pair of weak solution to NS on Q(ρ). Set r = γρ, then there 
exists a constant C independent of γ , such that

1

rd−1

ˆ

Q(r)

|p| 3
2 dxdt ≤ Cγ

[
1

ρd−1

ˆ

Q(ρ)

|p| 3
2 dxdt

]
+ Cγ −(d−1)

[
1

ρd−1

ˆ

Q(ρ)

|u|3dxdt

]
. (4.81)

Proof. Let φ ∈ C∞
0 (Rd) be such that suppφ ⊂ B(1) and φ = 1 on B(1/2). Define φρ(x) = φ(x/ρ), we decompose 

the pressure as p = pρ + hρ on Q(ρ), where

−�pρ = ∂i∂j (uiujφρ) on R
d (4.82)

for a.e. t ∈ (−ρ2, 0). The other part hρ is harmonic on B(ρ/2), so we have

sup
x∈B(r)

|hρ(x)| ≤ sup
x∈B(r)

1

|B(x,ρ/4)|
ˆ

B(x,ρ/4)

|hρ(y)|dy

≤ C
1

ρd

ˆ

B(ρ/2)

|hρ(y)|dy. (4.83)

It followsˆ

B(r)

|p| 3
2 dx ≤ C

ˆ

B(r)

|pρ | 3
2 + |hρ | 3

2 dx. (4.84)

By Calderon–Zygmund’s estimateˆ

B(r)

|pρ | 3
2 dx ≤

ˆ

Rd

|pρ | 3
2 dx ≤ C

ˆ

B(ρ)

|u|3dx. (4.85)

While according (4.83),
ˆ

B(r)

|hρ | 3
2 dx ≤ Crd sup

x∈B(r)

|hρ(x)| 3
2 ≤ C

rd

ρd

ˆ

B(ρ/2)

|hρ(y)| 3
2 dy

≤ C
rd

ρd

[ ˆ

B(ρ)

|p(y)| 3
2 dy +

ˆ

B(ρ)

|pρ(y)| 3
2 dy

]
. (4.86)

Henceˆ

B(r)

|p| 3
2 dx ≤ C

ˆ

B(ρ)

|u|3dx + C
rd

ρd

ˆ

B(ρ)

|p(y)| 3
2 dy. (4.87)

Integrating in time on interval (−r2, 0) and multiplying each side by 1/rd−1, one can obtain (4.81). The proof is 
done. �
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We are ready to prove Theorem 1.6.

Proof of Theorem 1.6. We claim that there exist some 0 < γ < 1 sufficiently small and an index n0 sufficiently large, 
so that

1

γ d−1

ˆ

Q(γ )

|vn0 |3 + |qn0 |
3
2 dxdt < ε̃1, (4.88)

where ε̃1 is determined by (1.7) and depends only on d, M̃ . Indeed, it follows from Lemma 4.10 with ρ = 1 that

1

γ d−1

ˆ

Q(γ )

|qn| 3
2 dxdt ≤ Cγ

ˆ

Q(1)

|qn| 3
2 dxdt + Cγ −(d−1)

ˆ

Q(1)

|vn|3dxdt. (4.89)

Due to Proposition 4.8 and Proposition 4.9, we have for some constant C, it holds
ˆ

Q(1)

|qn| 3
2 dxdt ≤ C, lim

n→∞

ˆ

Q(1)

|vn|3dxdt = 0. (4.90)

Thus one can choose γ small enough so that

Cγ

ˆ

Q(1)

|qn| 3
2 dxdt <

ε̃1

4
. (4.91)

Fix such γ , by (4.90), there exists some n0 large, satisfying

C
1

γ d−1

ˆ

Q(1)

|vn0 |3dxdt <
ε̃1

4
. (4.92)

In this way, we find (4.88) follows. Meanwhile, (vn0, qn0) is a pair of suitable weak solution on Q(γ ), now applying 
Corollary 1.5, one readily obtains

sup
(x,t)∈Q(γ/4)

|vn0(x, t)| ≤ C, (4.93)

or in terms of u, we have

sup
(x,t)∈Q(Z0, γ λn0 /4)

|u(x, t)| ≤ Cλ−1
n0

, (4.94)

which obviously contradicts to our hypothesis that Z0 is a singular point, hence, the conclusion of Theorem 1.6 is 
true. This completes the proof. �
5. Leray–Hopf solution in critical Besov space

The objective of this section is to show an endpoint Serrin type regularity criterion for Leray–Hopf solution, i.e. 
Corollary 1.7. Before stating the precise notion of Leray–Hopf solution, we first clarify some necessary notations 
being used, let Ċ∞

0 (Rd) := {u ∈ C∞
0 (Rd) : divu = 0}, J̇ and J̇ 1

2 represent the closure of Ċ∞
0 in the norm of L2 and 

Dirichlet integral respectively.

Definition 5.1 (Leray–Hopf solution). Let T ∈ (0, ∞], a vector field v is said to be a Leray–Hopf solution to (1.1) on 
QT := (0, T ) ×R

d if

(i) v ∈ L∞(0, T ; J̇ ) ∩ L2(0, T ; J̇ 1
2 ) satisfies NS distributionally on QT ;

(ii) For each g ∈ L2, the function t �→ ´
d v(x, t)g(x)dx is continuous on [0, T ];
R
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(iii) The global energy inequality

‖v(t)‖2
L2 + 2

tˆ

0

‖∇v(s)‖2
L2ds ≤ ‖v0‖2

L2 (5.1)

holds for each t ∈ [0, T ].

Notably, in the above definition, we call v a global Leray–Hopf solution if T = ∞ and the interval [0, T ] is replaced 
by [0, ∞) in (ii) and (iii).

The following weak-strong uniqueness result shows the connection between the Leray–Hopf solution and mild 
solution in critical Besov space, and plays an important role in the upcoming proof. We point out that its three di-
mensional counterpart is contained in [5], where the proof can be adapted to higher dimensions without essential 
difficulties.

Theorem 5.2 (Weak–strong uniqueness). Let 3 ≤ d < p, q < ∞, u be a Leray–Hopf solution to (1.1) associated with 
initial data u0 ∈ L2(Rd) ∩ Ḃ

sp
p,q(Rd), then u coincides with the mild solution NS(u0) until T (u0), in particular, u is 

regular for the same time interval.

Proof of Corollary 1.7. Let d < p, q < ∞, u ∈ L∞(0, T ; Ḃsp
p,q) be a Leray–Hopf solution. Due to the weak conti-

nuity, one can deduce that the initial data u0 satisfies

u0 ∈ L2 ∩ Ḃ
sp
p,q . (5.2)

Employing Theorem 5.2, one can see

u = NS(u0) on R
d × [0, T (u0)). (5.3)

We claim that

T (u0) > T . (5.4)

Otherwise, if T (u0) ≤ T , then Theorem 1.6 implies

lim sup
t→T (u0)

‖u(t)‖
Ḃ

sp
p,q

= ∞. (5.5)

This is contrary to our hypothesis, so (5.4) holds. Since the mild solution NS(u0) is smooth on Rd × (0, T (u0)), so 
does u. The uniqueness follows immediately from Theorem 5.2. We complete the proof. �
Remark 5.3. We can relax the assumption of Corollary 1.7 slightly. In particular, formula (1.10) can be replaced by

u ∈ L∞(0, T ; Ḃ
sp
p,∞) d < p < ∞ and u(T ) ∈ Ḃ

sp
p,∞.

Here Ḃ
sp
p,∞ denotes the closure of Schwartz functions in Ḃ

sp
p,∞. To show the regularity result with this condition, one 

needs to apply the weak-strong uniqueness result (for initial data belonging to L2 ∩ Ḃ
sp
p,∞) in [5] and a decomposition 

similar to Lemma 4.3, see [2,7], then it suffices to repeat the scheme in Section 4 to conclude.
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