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Abstract

This paper is concerned with the blowup criterion for mild solution to the incompressible Navier—Stokes equation in higher
spatial dimensions d > 4. By establishing an € regularity criterion in the spirit of [11], we show that if the mild solution u with

initial data in B;,}fd/p (Rd), d < p, g < oo becomes singular at a finite time T, then

limsup ||u @) ,—1+d/ = 00.
t— Ty Bp.a "R

The corresponding result in 3D case has been obtained in [24]. As a by-product, we also prove a regularity criterion for the

Leray—Hopf solution in the critical Besov space, which generalizes the results in [17], where blowup criterion in critical Lebesgue

space L4 (Rd ) is addressed.

© 2019 L’ Association Publications de 1’Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved.
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1. Introduction

In the present work, we consider the regularity problem of the solution to the incompressible Navier—Stokes equa-
tion (NS)

oru—Au+u-Vu+Vp=0, divu =0, u(x,0)=up(x) (1.1)

on RY x 0,T),whered >4, u: RY x 0, T)— RY denotes the velocity vector field, p represents the scalar pressure,
ug is the initial data. NS plays a fundamental role in the fluid mechanics.

It is well-known that NS is scaling-invariant in the sense that if (u, p) solves (1.1) with data ug, so does (u;, px)
with the initial data Aug(Ax), where u; (x, ) := Au(Ax, A%t) and p; (x, 1) := A2 p(rx, A*t), A > 0. A space X defined
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on R is said to be critical provided that ||ug|| x = [|Auo(A -) ||_X for any A > 0 (or more generally, |lugllx ~ [[Auo(X -)|lx
and the equivalence is independent of A > 0), for example, H*/>~1(R?), L4(R?), B‘;,{’q (R?) are critical spaces, where

Sp 1+ d
! p
will be used in the whole paper (see Definition 2.1 for Besov spaces).

In the pioneering work [36], J. Leray showed the existence of a global weak solution to the 3D Navier—Stokes
equation defined on the whole space R3 with initial data in L2, which is closely linked to the energy structure of the
equation. Later, Hopf [29] extended this result to bounded smooth domain. The weak solution, which is now said to
be the Leray—Hopf solution also exists in higher spatial dimensions, see Section 5 for details.

The uniqueness and regularity of Leray—Hopf solution remains a long-standing open problem. However, various
conditional results are obtained, for instance, the famous Ladyzhenskaya—Serrin—Prodi criterion, which asserts that a
Leray—Hopf solution u is regular and unique on (0, 7] x R? provided

2 d
ue L0, T; L"(RY)), 5+;=1, 3<d<r<oo. (1.2)

The endpoint case r = d, g = 0o is much more subtle, and it was until 2003 that Escauriaza, Seregin and Sverak [20]
solved this case in 3D, later, Dong and Du [17] extended their result to the case d > 3. On the other hand, there are
lots of interests in relaxing the condition (1.2), for instance, Phuc showed the same conclusion for the 3D Leray—Hopf
solution u by assuming u € L*°(0, T’; L3’m) with 3 <m < 00, see [40]. Besides, according to [24,5], the same result
also applies for u in 3D provided u € L*°(0, T'; B;,’f ¢) With 3 < p, g < 00, a natural extension to the higher dimension
in such setting is one of aims of our current paper. Finally, we mention a very interesting work, Buckmaster and
Vicol [10] recently demonstrates a nonuniqueness result for the periodic weak solution in T2 with finite kinetic energy,
unfortunately, this weak solution is still not known as a Leray—Hopf solution.

There is another way in constructing strong solution directly. It is well known that the Duhamel formula of (1.1)
can be expressed as follows:

t
u(t) =eug — /e<’—f>AIP> div(u ® u)(t)dr, (1.3)
0

where P = I — VA~ !div is the projection operator onto the divergence free vector fields. The solution to (1.3) is called
a mild solution or strong solution. Kato and Fujita [30,31] initiated the study of (1.3) in a fully invariant functional
setting by using the semigroup method, which has a vivid perturbative feature and led to lots of results on various
classes of (regular) solutions. For example, let d < p < g < 0o, Cannone [14], Planchon [39] and Chemin [15] used
Kato’s method to derive the existence of a unique local mild solution u (in some properly chosen spaces) to NS with
initial data in B;fq, see Theorem 4.1 in Section 4 for more details. One can also refer to [16,21,26-28,34,12,47,54,
13,51] and references therein for the local Cauchy theory in Lebesgue space, Morrey space and others. It is known
that NS is ill-posed in all critical Besov spaces Bgofq(Rd) with d > 2, g € [1, oo] (cf. [9,25,52,55]) and up to now,
the known largest critical space for which NS is globally well posed for small initial data is BM O~!, see Koch and
Tataru [33].

Generally speaking, the mild solution associated with initial data in many critical spaces is not known to be global
except for the small data solution. This issue is complicated due to the lack of the uniform bounds in some function
spaces adapted to the NS with scaling invariance. On the opposite side, we need to seek regularity criteria, or in other
words, the blowup criteria. More precisely, let X be a critical space, ug € X, assume that u is the mild solution with
uo and the maximal existence time is denoted by T, whether or not the following assertion holds:

T, <00 = limsup |lu(?)||x = oo. (1.4)

t—Ty

Much progress has been made on this direction, Kenig and Koch proved the case X = H'/2(R3) in [32], afterwards,
Gallagher, Koch and Planchon [23,24] further showed that (1.4) is also true for X = L3(R?) and Bf,” q (R3) with 3 <

P, q < 0o. Besides, the upper limit in (1.4) can be refined as a limit for X = L3(RY), B;;—H/p (R3), see Seregin [44]
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and Dallas [1] respectively, both of which employed a splitting argument and some type of weak solution. Motivated
by the aforementioned results, we are led to consider whether (1.4) holds for X = B;" q (RY) with4 <d < p, g < .
Indeed, we shall answer it affirmably, see Theorem 1.6 below.

Compared to those aimed at obtaining the global regularity of Leray—Hopf solution, another important aspect lies in
founding partial regularity result for weak solution satisfying local energy inequality. On that way, a key ingredient is
the so-called € regularity criterion. Scheffer [41-43] started this way and got various results for such weak solution in
3D. Inspired by Scheffer’s results, L. Caffarelli, R. Kohn and L. Nirenberg in [11] exploited the best partial regularity
result to date for the suitable weak solution of the 3D Navier—Stokes equation. Lin [38] gave a more direct and sketched
proof of Caffarelli, Kohn and Nirenberg’s result under the zero external force, for a detailed treatment, one can refer
to [35], see also [49] for a De Giorgi method proof. Recently, in [18] and [19], the authors showed a similar € regularity
criterion for the four dimensional NS in the context of classical solution and suitable weak solution respectively, thus
leading to an estimate of the Hausdorff dimension of the singular set. By adapting the method in [49], Wang and
Wu [53] gave a unified proof of the partial regularity results for NS in the cases d =2, 3, 4.

However, the notion of suitable weak solution in dimensions d > 5 needs to be slightly modified (compared to
the one in 3D or 4D) so that the local energy inequality makes sense, see Remark 1.2, then an € regularity criterion
corresponding to such suitable weak solution can be derived, which constitutes an integral part in proving the blowup
result for solution in critical Besov space.

To introduce the suitable weak solution in higher dimensions, let us specify the notion of weak solution. Let
Q Cc R? be an open set, (1, p) is said to be a pair of weak solution on 2 x (0, T'), provided u € LIZOC(Q x(0,T)), pe
D'(Q2 x (0, T)) satisfies NS in the sense of distributions. Hereafter, the space dimension d, if not otherwise indicated,
is always assumed to satisfy d > 4.

Definition 1.1 (Suitable weak solution). Let Q2 be an open set in RY, Q:=Qx(=T1,T),u € L®°(-T\,T; BgO%OO(Rd)).
(u, p) is called a pair of suitable weak solution to (1.1) on Q if the following conditions are satisfied:

M ue L°°((—T1, T), LZ(Q)) NL2(—=Ty, T; HY(Q)), here H' denotes the usual Sobolev spaces, p € L32(0);

(2) (u, p) is a pair of weak solution on Q;

(3) The following local energy inequality

t
/so(x,r>|u<x,r>|2dx+2//cp(x,s>|w(x,s>|2dxds
Q -T) Q
t
< //|u|2(a,<p+A¢)+u-V¢(|u|2+2p)dxds (1.5)
-1 Q

holds for all # € (—T1, T') and for all non-negative functions ¢ € C° (R? x R) vanishing in a neighborhood of the
parabolic boundary 00 =Q x {t =—-T1}UdQ x (-T1,T).

Remark 1.2. In the above definition, u € L*°(—Ty, T, Bo_o{oo) is superfluous for d = 4. Indeed, it follows from (1)
that u € L?OC(Q), thus each term in (1.5) makes sense. As for d > 5, based on our definition, one can obtain that
uel? (Q), see Proposition 2.4.

loc

Now we come to state our main result.

Theorem 1.3. Let u € L°°(—1,0; BO_O{OO(R")) and (u, p) be a pair of suitable weak solution to NS on Q(1). Assume
||14||Lc,o(71 0Bl = M, 1 <o < 2, then there exist constants €1 and C, which depend on M, d and a only, satisfying
the following p)‘operty. If

o

0

sup /|u|2dx+ /(IVu|2+|u||p|)dxdt+/ /|p|dx dt <ey, (1.6)

—1<t<0
B(1) o) -1 \B(@1)
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then

sup lu(x,t)| <C.
(x,0eQ(1/2)

Here Q(r) := B(r) x (—r2, 0), B(r) C R? denotes a ball centered at 0 with radius r.

Remark 1.4. The above conclusion is still valid without the assumption u € L*°(—1, 0; BZ 100) ford =4anda =3/2,
one can refer to [53].

Corollary 1.5. Let r >0, u € L>®(=r2,0; BO_O{OO(R‘Z)) and (u, p) forms a pair of suitable weak solution on Q(r).
Assume ||u||L°°(—r2 0Bl = M, then there exist constants €| and C relying only on d and M,, such that if

1
— / ul® + |pl*?dxdt <&, (1.7)
p
0@Gr/4)
then
C
sup  Ju(x, )] < —. (1.8)
(x.HEQ(r/4) r

Next we give our second main result concerning the regularity of mild solution with initial data in critical Besov
spaces.

Theorem 1.6. Assume ug € B;‘f q (Rd), 4<d<p,q<oo. Let u be the mild solution associated with ug, whose
maximal existence time is Ty. If Ty < 0o, then necessarily

lim sup ||u(t)||B = 00. (1.9)

.Sp d
t— Ty (R )

As a direct consequence, for the Leray—Hopf solution to (1.1) (see Definition 5.1), we have

Corollary 1.7. Let d > 4, u be a Leray—Hopf solution to (1.1) on Q7 :=R? x (0, T) with T < 0o. Suppose further
ueL®0,T; B, (R, d<p,q<oo. (1.10)
Then u is smooth and unique on R4 x (0, T].
Throughout out the paper, we will denote by N S(u¢) the mild solution to (1.3) with initial data u( and its maximal

existence time is denoted by 7 (u¢). Fix a point zo = (xq, fp) € R? x R, B(xo, r) stands for a ball centered at xq with
radius r and B(r) := B(0, r). Also, we have parabolic domain

0(z0,7) := B(x0,7) x (to — %, 10), Q(r) := B(r) x (—r?,0).

Let S and &’ be the Schwartz and the tempered distribution spaces, respectively. For f € ', we denote by .7 f the
Fourier transform of f, and by .# ~! f the inverse Fourier transform of f. The integral average of a function u over
some ball B(xy, r) is denoted by [u]p(x,,r), i.€.

1
u = ux)dx = — u(x)dx. 1.11
(i) 5tv0.0 ][ (= s / ) (111)
B(xq,r) B(xo,r)
In addition, ||u||L;1L£(Q(r)) and ||M||J{,,{oc(a,b) mean

1/q
Il oy = / eI p 512 , (1.12)

71‘

Il o3 oiaty = sup (¢ —a) 2wl r gay, s <0 (1.13)

a<t<b
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Specially, |lullLro)) = llu ||L,”L£(Q(r)) and JKI;V‘OO(T) = L%/I;ioo(O, T) with T > 0. Various constants C arising in the
course of our work, may be different at different places. C(p,q,...) or C 4 .. means that the constant depends on
P, q, ..., for simplicity, some indices on which the constant C relies will be omitted if there is no confusion in our
arguments. Finally, p’ will denote the dual number of p,ie., 1/p+1/p =1.

Let us conclude the introduction by giving the plan of the remaining sections. In Section 2, we present some
localized estimates for the solutions of NS. Section 3 is devoted to the verification of Theorem 1.3 by using the
ingredients in the previous section and Corollary 1.5 is also shown in this part. Theorem 1.6 is proven in Section 4.
The regularity criterion for Leray—Hopf solution is given in the last section, where Corollary 1.7 is proved and we
give a remark to explain that Corollary 1.7 also holds with initial data in a subspace of B;f 00

2. Preliminary estimates

In this section, we present several results that play a major role in establishing the € regularity criterion. First, we
recall the definition of Besov spaces in all dimensions d > 1, see [24]. For a detailed presentation, one can also refer
to [4,8,48,50].

Definition 2.1. Let ¢ be a function in S(RY) verifying (Z#¢)(&) =1 for |€] < 1 and (F¢) (&) =0 for |§] > 2, and
denote ¢;(x) :=2/ 4 (27 x), then the frequency localization operators are defined by
Sji=9¢j*, Aj:=8j11—S5;.

Here  is the convolution operator in R¢. A function f € S’(R?) is said to belong to B;’ = B;’ q (R?) provided

m

(i) the partial sum ) im—m A f converges to f as a tempered distribution if s < d/p and after taking the quotient
with polynomials if not, and

) 1/ 1z, = 12718 fll gl < oo.

Besov spaces have many other equivalent characterizations, a particularly useful one in solving NS is given by the
heat kernel. Indeed, we have (cf. [4,48])

00 d 1/q
t
10y, ~ /(f”zne’AfML;)‘fT . 1=p.g=oo. 5<0. @
0
Here
Ry e P 2.2)

The next interpolation inequality is borrowed from [4].

Proposition 2.2. Letd > 1,1 < g < p < 00 and o be a positive real number. There exists a constant C such that

16 0 i B—ol(P _ _4
ey < CUFIGE )l gy with == 1) and 6=, 23)

Proposition 2.3. Letd > 1, ¢ € S (Rd), there exists a constant C such that

Ipullzr = CUidlie + 1l Mullg - (2.4)

Proof. We rewrite ¢u as
pu=Tup+ Tou+ R(u, ¢), (2.5)
with

Tu¢:Z(Sj_5M)AJ'¢, T¢M=Z(Sj—5¢)Aj“» R(u, ) = Z Aguljg.

jez jez lj—kl=<4



1684 K. Li, B. Wang / Ann. I. H. Poincaré — AN 36 (2019) 1679-1707

Due to the interaction of frequency, one can assert the existence of a positive constant L so that
IATullLo <C Y ISj_sudjplle <C Y Sj—sullllglos (2.6)
lj—ll=L lj—ll=L

where we have used the fact that A; : L” — L7 is a bounded operator with 1 < p < co. Another useful feature is that

(cf. [4])

1 g, ~ 1270 fllpplles, s <0, 1< p, g <o0. 2.7)
Thereby one can see that

sup2~! | A1 TPl < Crllull g1 llllze. 2.8)

leZ ’

The estimate of Tyu is simpler, since S; is also bounded from L” to L? with 1 < p < oo, then

1A Tpullie <C Y IS s¢pAjullee <C Y @l llAjull L. (2.9)
lj—l=L lj—l=L

Multiplying each side by 2/, we can obtain
ITpull g1 = Crllglireellullzr - (2.10)

Regarding R(u, ¢), we will estimate it in B0 oo SPace, which is better than B0 — B ] . For simplicity, we just
consider a representative term »_ jez Ajul; v 1n R(u, ¢), since the argument for the others are almost the same. Once
again, there exists another positive constant L, such that

[a(Xoajune)| =€ 3 18un9l0 =C Y 1A ull=] 4,0l 10
JEZ

j=l— L j=l- L
=Cllullgo Nl - (2.11)

It turns out that the desired result holds if one collects estimates for the three terms. The proof is finished. O

The local energy inequality (1.5) serves as a main tool to justify Theorem 1.3. In higher spatial dimensions, one
of the main difficulty arises in estimating fiTl Jq lu?u - Vodxdr in the right hand side of (1.5), which is bounded
by llull3(@x (—1y,r))- The following result is helpful to control this cubic term and in fact, if €2 is a ball, a better local
L;‘Li norm is obtained in terms of local energy under reasonable regularity assumption.

Proposition 2.4. Letd > 1,0 <y < 1, p > 0 and a < b. Then there exists a constant C(d, y) depending only ond,y

such that
el g 14 <cWd,)lull'?
L*(a,b; L*(B(yp))) = ’ L®(a,b; By, (Rd))
Vb—a v
< el e a2 000 + WVl 20 6128600 ) - 2.12)

Proof. Choose ¢ € Cgo(Rd) such that supp¢ C B(1),0<¢ <1 and ¢ =1 on B(y). Set ¢,(x) = ¢(x/p), in view
of Proposition 2.2, we see

1 2 1/2
I$pulsgay < Clldpull s o IBorll i g (2.13)
Integrating in time, one can find

1/2 1/2

L®(a,b; By oo (RY)) 1pou ||L2(a,b;H1 Rd))* (2.14)

||¢pu||L4(a,b;L4 Rd)) = <Cligpul

It is easy to see that
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Ipoull g1 ey < C (0~ Nutll 280y + 1 Vitll 12B0y))- (2.15)
On the other hand, applying Proposition 2.3, we have

Ippull g1 = Cligpllire +ldpllg Mullz
=Cd. Ylullg - (2.16)

Inserting (2.15) and (2.16) into (2.14), and noticing that

letll 24 @, 4 Bvpyy) = NPpUl L4a,b; L4 Ry 2.17)

one can easily obtain the final result, as desired. O

Let (1, p) be a pair of solution to (1.1), we introduce some quantities involving u and p. Denote

Ex(r)= sup /|u|2dx; (2.18)

—r2<t<0
B(r)

Ex(r) = / |Vu|*dxdt; (2.19)
o(r)

Foy= [t = hePhaco | dxar; (2.20)
Q(r)

D(r) = / lul*dxdt; 2.21)
o

L(r) = / el | p — [Pl | dxdr: (2.22)
Q(r)
0 o

Ka(r)=/ /Ipldx dr. (2.23)
—r2 \B(r)

We remark that the above quantities follow from [11], which are used for the control of the suitable weak solution « in
Q(r). However, in [11] they applied a version F (r) = fQ(r) |u|3dxdt to show Theorem 1.3 in 3D. Noticing that for the

suitable weak solution # in Q(r) and test function ¢ with compact support in Q(r), f oL Vollul?] rydxdt =0,
we have

/u~V<p|u|2dxdt= / u-Vo(lul* = [lul*1p¢))dxdt (2.24)
o) o)

for the third term in the right hand side of local energy inequality (1.5). u(|u|2 — [|u|2] B(r)) enjoys a more delicate
estimate than |u|?, which is important for the estimates in higher spatial dimensions.

We are about to present two important lemmas in deriving Theorem 1.3. Basically, they show how one can bound
the right hand side of the local energy inequality.

Lemma 2.5. Let d > 4, then there exists a constant C, such that
F(r) < CrlE () Ex(r)' 2D ()21, (2.25)
Proof. Let m meet 1/m =3/4 — 1/d. By Sobolev’s and Poincaré’s inequalities, one sees

1f =LA lswllensay = CILF = Aol say = CIV Fllzassay-
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By scaling argument, we immediately have

I f = [f1Be)llLmBery) = CIV fllLamsery)- (2.26)
Here the constant C is independent of r. In view of Holder’s inequality and (2.26),

0

F(r) < / 1l ot

—r2

0
<C [ Wl g 1910 35

)

lu)® = [Jul*15¢)

dt
L™ (B(r))

<Cllu ”LfLif‘/(Q(r)) Vu ||L2(Q(r)) [|u ”L4(Q(r))' (2.27)
Using interpolation inequality, we can find
il gy = Cl 2o 10 3y 0= 4/ (2.28)
Integrating over time interval (—r2, 0) and using Holder’s inequality, one can see

<cr?

flu ||L?L§”/(Q(r)) = (2.29)

||M ” L°°L2(Q(r)) ”I/t ”L“(Q(r))
Inserting (2.29) into (2.27), one can conclude the proof. O

With regard to the pressure p, one can observe that if (u, p) satisfies NS distributionally on 2 x (#1, #;) with
Q CRY, then for ae. 1 € (11, 1),

Ap=—30;u'ul). (2.30)
Here the summation convention over repeated indices is enforced. As in [11], we localize p to some bounded domain

QCcQ. Letge C§°(2) be such that ¢ = 1 on a neighborhood of <, for x € €, we have

p=dp=ca / s @

- d/| a2 [PAve+6A,p+2V,¢ -V, pldy. (2.31)

Putting (2.30) into the above formula and integrating by parts, one can obtain a useful expression for ¢p:

ép =p+ p3+ pa, (2.32)
where
p= 3 71 1o, .u'd
P ==Ca Vi | |d D) ¢M y_,-u y,
p3=—cq(d — 2)/| u ul 3y, pdy — cd/li_zuiujayiyj¢dy,

=—cq / . |d ———5 P Aygdy —2cq(d —2) / iy by, (2.33)



K. Li, B. Wang / Ann. I. H. Poincaré — AN 36 (2019) 1679-1707 1687

Lemma 2.6. Letd >4, 0 <r < p/2and 1 <« < 00, then there exists a constant C depending on d, such that

L(r) < Cr*E\ () E2(3r/2)'* D (3r/2) >~ 14

1/2 0 1/2
+Cri2E (n)'? sup / JulPly|~4dy / / Vul?|y|~?dydt
—r2ct<
A T “r3e22lyl<e
pd/2+3 o pd/2+1+42/a s |
T T B / Alp) + C—r—Ea(r) PKa(p)'e. (2.34)
Proof. We use expression (2.32) for p, where ¢ is chosen as follows:
¢=1 on B(3p/4), suppé C B(p), (2.35)
Vol <Cp~', |Vl <Cp>. (2.36)
Also, we further decompose p into p = p; + p2, with
1 . ,
pr=ca / d ,(—_>¢u18 Juldy; (2.37)
Y\ = yl=2 .
Iyl<3r
1 . .
p2=¢q4 dy, =2 duld, u'dy. (2.38)
3r<lyl<p
Hence
4
lp = pley| <D 1pi = [pilsn|- (2.39)
i=1
For convenience, we denote
Li(r)= / |u| |17i — [pi]g(r)|dxdl‘, i=1,...,4.
Q@)
For x € B(r), it can be easily verified that
dy
IVpa| < Cqa IMIIVMIW, (2.40)
3r<lyl<p
Cy Caq
|VP3|SW / |ul*dy. |VP4|SW / Ipldy. (2.41)
B(p) B(p)
On the other hand,
Tij () =3 (I~ ?) ey (2.42)

is a Calderon-Zygmund operator, which is bounded from L?(R?) to itself for 1 < p < co. Let m be such that 1/m =
3/4 — 1/d, we have from Holder’s inequality, (2.26), (2.37) that

0
Li(r) = / Nl o gy 1 = [P11B( lLm Byt
72

0

<C [ Wil o IV P

—2



1688 K. Li, B. Wang / Ann. I. H. Poincaré — AN 36 (2019) 1679-1707

0
<C [ Wl o 6T 5 1 (2.43)

2

Therefore, one can argue as Lemma 2.5 to obtain that

Ly = CrM Nl o o 190 2020 181 2 sy (244)
For the estimate of Ly (r), in view of Holder’s inequality, (2.40) and mean value theorem, we have
0
Lo=cr [ ||sz||Loo<B<r»( / |u|dx)dt 2.45)
2 B(r)

<Cr2+ ||“||L°°L2(Q(r))/ / |d|u||Vu|dydt

=2 3r<lyl<p

Using Holder inequality again, one can see

1
Lo(r) = Cr? lulleor2(00y) sup / — |u|*dy / / d|Vu|2dydt . (2.46)
—r2<t<0 ] 23 Iyl
—r

3r<lyl<p 3r<lyl<e

To estimate L3 (r), from (2.45), Holder’s inequality and (2.41) it follows that

L3(r)<Cr/||VP3||L°°(B(r))</ |M|dx)dt

B(r)
e /</|u|dx></|u|2dy)dt
B(p)
Cr 2+3
= W||u||L°°L2(Q(r))||u||LooL2(Q(p)) (2.47)

Finally, for the estimate of L4(r), using (2.45), Holder’s inequality and (2.41), one has that

0
L4(r)§Cr/IIVP4IILOO<B(r))</ IMIdX)dt
2

B(r)

gt | ([ ) [ o)

—2 B() B(p)

pdj2+1
Sc—pa’+l lull oo 200 / 1Pl By dt

Fd/2+142/0
=C Py lull oo r2con IPILeLtoepy)- (2.48)

Noticing that L(r) < Z?:l L;(r) and combining the results (2.44), (2.46), (2.47) and (2.48), we can get the desired
result. O
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3. e-regularity criterion

In this section, we will adopt the same strategy as that in [11] to prove Theorem 1.3, performing an induction on
the local energy. In fact, under the assumption of Theorem 1.3, we shall show that for each zp := (a, s) € Q(1/2),

][ u|*(x, $)dx < Cey, 1, =2"", Vn>2, (3.1
|x—al<ry
where C is a constant that will be chosen suitably in our proof. Additionally, assume z¢ is a Lebesgue point for u,
then (3.1) implies
ul*(a, s) < Cey, (3.2)

hence almost everywhere in Q(1/2).
Due to the translation invariance of the NS equation and the hypothesis in Theorem 1.3, one can assume zg = 0 in
the sequel. To show (3.1), we will prove inductively that

F(r}’l)+ L(rn)fel, n237 (3.3)

(D : d+1+2/d EESERV
rn rn

(R)n:  Ei(ra) + Ea(ry) <Cerril, n>2, (3.4)
where y;,4 = min{2/d,2/a'}, C is a constant depending on d, M and «. Clearly, (3.4) implies (3.1) with (a, s) =
(0, 0). Next, we show the validity of (), and (R),.

Proof of Theorem 1.3. We will use the following way to show the results of (1), and (R),: (1) We show that (R)>
holds; (2) (R); holds for 2 < k < n implies that (1),+1; (3) ({)x holds for 3 < k < n implies that (R),. Then by
induction we have (3.3) and (3.4).

Step 1. We prove that (R); holds. Recalling that our hypotheses are

0

o
sup /|u|2dx~|— /(|Vu|2+|u||p|)dxdt+/(/ |p|dx) dt < e, 3.5)
B(1)

—1<t<0
o) -1 B()
”u”Loo(_lsO;Bgcl.oo) <M <oo. (36)
As a priori, assume €| < 1. Apparently, for C > r, 4 one has that
Ei(r2) + Ea(r2) < €1 < Ceyrf. 3.7)

Step 2. For all n > 2, we show that (R); holds for 2 < k < n implies the result of (/), 4. Note that our inductive
hypothesis is

Ei(ry) + Ex(rn) < Ceqrf, V2 <k<n. (3.8)

One can easily see E1(s1) < E(s2) provided 0 < 51 < 57 and the same holds for E;(r). For the first term in (/),+1,
by Lemma 2.5 and Proposition 2.4 (set y = 1/2, p =r,), we have for any n > 2,

2 2 1 1.1
F(rnt1) < Cryl (E1(rag1) @ Ex(rag1) 2D (ry1) 24

2
<cri (Card)i(Cearh (Card)r

d+1+3 144
<Cry e, (3.9)
Selecting € sufficiently small, say
Cell/d < 1/2d+2+2/d’ (3.10)

one has that
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d+142
F(rnp1) <1,y “€1/2.

Concerning the second term in (/),1, we will utilize Lemma 2.6, set r = r,, 11, p = 1/4, n > 2 there, one can deduce
that

2
Crt o Evras ) Ex3rus1 /22 DBy /2012711
< cry(Cerdy M (Cerrh) V2 (Cerrd) V2V < o TR HUA (3.11)
We point out that in the first inequality, Proposition 2.4 is used. In addition,

sup / Iy~ |ul*dy

2
—rs, , <t<0
n+l1 3
ra+1=lyl<1/4

S iy + 3

/ Iy~ lu2dy

_ 2
rn+l<t<0%rn+1§|y\<r,, k=21 l<[<0k+1<|y\<rk
n—1
<cr? sup / ulPdy +C> re® sup / u|?dy
—r3<t<0 k=2 —r,?<t<0
Iyl<rn Iyl<r
< Cne. (3.12)
Similarly,
/ / Iy Vul*dydt < Cne;. (3.13)
n+1 27n+1<‘y|<1/4
Consequently,
1/2 1/2
d/2+2 — _
CriZPEran)'? sup / |yI7 |ul*dy / / v~ |Vul*dydt
3+]<t<0 s
Sra+1=lyl<1/4 n+l 2’n+l<|)"<1/4
< CriPT (Ceird) P Cney < Cnrdt?e)?, (3.14)
For the last two terms in (2.34), we have
d
C49+!1 ,3:1 E\(ras ) Er(1/4) < Cr P (Cerrd)1cey < Crdt3e)? (3.15)
and
d+1 TG I+ N 1
CA El(rn+1)21< (1/4)“ <C (Cerry)2(Cep)e
d+1+2
<cCr, ¥tV (3.16)

Noticing that 1 < o < 2, we can obtain from (3.11), (3.14)—(3.16) that

d+1 a 1464«
L(ryg1) < Cry ) Ve T (3.17)
with
2 2 (111
yda_mm[g J}’ Hd,azmln{g,a—i}. (3.18)
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Now taking €1 small enough, such that

cele <12, (3.19)

So (1),+1 follows.
Step 3. Assuming that n > 3, (1), holds for 3 < k < n, we show the result of (R),. Recall the local energy inequality

t

/|u(x,t)|2¢n(x,t)dx+2//|Vu|2¢n(x,t)dxdr
B(1) -1 B(1)
t

< / / |t |? (3 + An) + 1 - Vb (Ju|* 4 2p)dxdr (3.20)
—1B(1)

holds for all # € (—1,0) and 0 < ¢, € C5°(Q(1)). In particular, we choose ¢, = x¢,, with x € C5°(Q(1/3)), 0 <
x <1land x =1o0n Q(1/4),

(x. 1) 1 { L } (3.21)
On(x,t) = ——expy ————¢- .
! 2 -1} 47 —1)

Obviously, ¢, differs with the backward heat kernel by a constant and ¢,, > 0. Now one can show via a direct calcu-

lation that

o 0,9, + A¢, <C forall (x,1) € Q(1);
o crd<g,<Crid, Vol <Cry ™Y on Q). n>2;
o ¢u<Crid, [Vul <Cr T on Qr-D\Q(), 1 <k <n,

for some constant ¢, C depending only on d. It follows from (3.20) that

sup ][ lu(x, 1) 2dx +r¢ / \Vul?dxdt < CU + 11+ 111), (3.22)
—r3<t<0

B(rn) Q(rn)

where

[ = / u|?(3;pn + Apy)dxdr, 11 = / [ul?(u - Vop)dxdr, III:/p(u»Vd)n)dxdT.
o) o) o)

Thus we are reduced to discussing the above three terms, one can readily get

I<C / lul’dxdt < Ce. (3.23)
or)

The estimate of 11 and 111 is a bit complicated, nevertheless goes in a similar way, both fully exploit the divergence
free condition of the solution u. Let g, k =1, ..., n be smooth cut-off functions, satisfying

suppnx C Q(rr), 0=<m <1,
me=1on Q(Try/8), [Vl =< Crk_l- (3.24)

By a direct computation, one can see

Mbn=bn, V(e — )| < Cri 9V k=2, n.

Therefore
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11 = / lu?u - V(n1¢y)dxdt

Q(r1)

n
=y / |uPu - V(-1 — m)pn)dxdt + / |u*u -V (nupn)dxdr.
k=200 ()

By means of the argument in (3.9), one can show that

[P = P

Q(rk—1)
Due to the fact that divu = 0 and the hypothesis in Step 3, we can assert that for 2 <k <n,

luldxdt < Cr T4 TV =2 3, (3.25)

|u)?u - V (k=1 — i) pn)dxdt = / (ul® = [P 184y )u - V(=1 — k) n)dxdt

Q(rk—1) Q(rk—1)
1 2 2
<Copr [ [P = 1lpe | luldxds
Tk—1
O(rk—1)
<crile. (3.26)
Similarly
/ ulPu -V (nadn)dxdt < Cry/ ey (3.27)
Q(ry)
This implies
n
1=y il +Crle < Cer. (3.28)
k=2
Finally, we treat 111, as before,
n
1=y pu- V(-1 — m)¢n)dxdt + / pu -V (nagn)dxds.
k=20 (r_1) 0(ra)
When k =2, 3, it follows from (3.5) that
pu - V((Mk—1 — Nk)Pn)dxdt < C / lul|pldxdt < Ce;. (3.29)
Q(re-1) o)

While for 4 < k < n, we have

pu - V((Mk—1 — M) Pn)dxdt = / (p — [PIBGr_))tt - V((Mk—1 — ni)dn)dxdt
O(rg—1) O(rg—1)

1
=Cn / |p = [P1B(rey| luldxdt

P
= own
<Cr[™e. (3.30)

In the same way,

pu - V(ipn)dxdt < Cry*“ey. (3.31)
0(ry)
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So one can find

n
[T <Cei+ ) ri" e +Cry" e < Cey. (3.32)
k=4

Gathering the estimates of I, 11 and 111, we finally obtain that (R), holds, which is exactly the required result. The
proof is done. O

We mention a bit more on the choice of €;. By a closer observation, one can figure out that various constants
C appearing in the course of Step /// relies on d, M and o only. The same applies for the constants C in (3.10)
and (3.19), we can specify €] through (3.10) and (3.19).
: 3 3/2
To show Corollary 1.5, we need to control the local energy in terms of fQ(3r/4) lu|’dxdt and fQ(3r/4) |p|3dxd:r.

First, assume u € L*>°(—4, 0; BO_OI!OO) and (u, p) is a pair of suitable weak solution on Q(2), applying the local energy
inequality with test function ¢ satisfying supp¢ C Q(3/2) and ¢ =1 on Q(1), we can find

sup /|u|2dx+ / |Vu|*dxdt

—1<t<0

B(1) o)

§c< / |u|2+|u|3+|u||p|dxdt>
0(3/2)

2/3
§C( / |u|3dxdt> +C< / |u|3+|p|3/2dxdz>. (3.33)

0(3/2) 0(3/2)

In general, for u, p defined on Q(r), we set

ur(X,t)zku(kx,Azt), A=r/2.
pr(x.t) =22p(rx, 2A%1). 334

Then u,, p, become functions defined on Q(2).
Proof of Corollary 1.5. Let u,, p, be as above, by (3.33) and Holder inequality, we have

0
3/2
sup /|ur|2dx+ /(|wr|2+|ur||pr|>dxdz+/</|pr|dx) dt
—1<t<03(1)

o) -1 B

2/3
sc( / |ur|3dxdt) +c( / Iur|3+|pr|3/2dxdt)

0@3/2) 0(3/2)
1 2/3 1
SC(W / |u|3dxdt> +c(ﬂ / |u|3+|p|3/2dxdt>
r r
0Gr/4) 0Gr/4)
<Cc@)’*+cq. (3.35)

Selecting €] small enough, such that
CE)?+Cé <e. (3.36)
Here € is given by (1.6) with &« = 3/2. Then Theorem 1.3 can infer

sup up(x, )] < Cey. (3.37)
@.ne€Q(1/2)

This concludes the proof. 0O
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4. Mild solution in critical Besov space

This section is devoted to proving Theorem 1.6, and we argue by contradiction. Assume that the conclusion of
Theorem 1.6 does not hold, i.e., there exists M > O such that

1)l i gy <M, a1 €10,T,). 4.1)
4.1. Formation of singular point at blowup time

We shall show the existence of singular point for blowup mild solution in critical Besov space under an extra
regularity assumption, the key part lies in establishing some global space-time bounds for the solution until the singular
time. Let us first recall the local Cauchy theory for NS with initial data in B;f q» see [1] for the 3D case and the higher
dimensional cases are similar.

Theorem 4.1. Let ug € B‘;,,q (RY) with d < p, q < 00, sp <5 < 0. Then there exist a time T > 0 and a unique mild
solution u := NS(ug) € C([0, T]; B;‘q) N Ji/;oo(T) to (1.1), such that

10/ V7l 24 )+ Wl oo,y < Cluoll g+ 1 J € 40,1, (42)

2/(s— . ..
Moreover, we can take T > co||u0||B/S(é S"), provided s > sy, here cq is independent of ug. Recall that
p.q

lull o = sup t P2 ux, )0, B <O.
Hp.oo (D) 0<t<T !

We further exploit a regularity result for the mild solution with data in B;‘,! g Sp =5 <0.

Proposition 4.2. Let u be the mild solution given by Theorem 4.1 and the estimate (4.2) hold. Additionally, assume
2d < p < 00, then

lullzoe(or2%) < C. T Juolly ), Yo € (0,7, (43)
Particularly, u € C*®((0, T) x R9).

Proof. For simplicity, we denote § = s — 5, and obviously, § € [0, 1). It is known that u can be written as

t

u(t) = e ®ug — /w-ﬂAp div(u ® u)(t)dt

0
=uj — B(u,u). 4.4)
The estimate of the linear term u, := e'2uq follows from (2.1), since
sup 1972 lup || < Clluoll g-11s < Clluoll 3, - (4.5)
O<t<T 00,00 P

On the other hand, by [37], the bilinear term B(u, u) can be formulated as

t

1 X
B(u. u)(r) = / o G(m) % (u @ u)(T)dT, (4.6)

0

where G (x) satisfies

GO T

Letr besuchthat 1 =2/p+1/r,t € (o, T), applying Young inequality, one can figure out that
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t

1Bt )| sc/

0

1

d+1
t—1) 72

o) o
t

N
2 T
SC”””%‘_OO(T)/(I_T)de
0

1
s

A
5—1/2 2 _—
<Ct ||M||1/p§w(T)/ a _A)1/2+d/pd)“'
0

Note that —1 <5 <0, 2d < p < 00 and (4.2), one can readily see
| B(u, u)l|roo,7:00) < C(0,8, T, ||M0||3;1q)~ 4.7

This combining with (4.5) yields the desired bound. Once (4.3) is established, the smoothness becomes an immediate
result, see [37,3]. O

Next result is related to the decomposition of functions in Besov space, which can be viewed from the point of
interpolation theory, here we present a simple version, see [1] for the proof. As for the slightly general case, one can
refer to [5,2].

Lemma4.3. Letd < p <m < o0 and 6 € (0, 1) be such that

1 6 1-06
—=oy 2 (4.8)
p 2 m

Define s by s, = (1 —0)s. Given n > 0 and a vector field v € Bls,’fp (RY), there exist vector fields U € B;’fp N L% and

Ver,’fpﬁBs verifyingv=U +V and

Ha-
Iz, < an‘f’nvng;{,p, 4.9)

IVIG, <" I, . (4.10)

10Nz, + 1V I, < Cllvil e . @.11)

Further, U and V can be selected to be divergence free provided that v is divergence free.

When making standard energy estimate for NS equation, we need to deal with some type of trilinear form, specifi-
cally, the integral fOT fRd v ®u : Vudxdt with u € ET, v has some sort of regularity condition, here

Er =L, T: L>*(RY)) N L*0, T; H' (R?)). (4.12)

The following result gives a proper estimate of that kind, and is adapted to our needs later. One can refer to [26,5] and
references therein for the proof.

Lemma 44.Letd >3, uc Er, ve L"(0,T; LY(RY) with2/r +d/q =1, d < g < 0o. Then a constant C exists,
such that

1-6 0
v ®ull20,7;12) = Cllvllero. 1o lull o 7.2 1l 20 7.1y € =4d/4- (4.13)

Moreover, for any € > 0, there exists a constant Ce, such that

T T T
//v@u:Vudxdtfe/||Vu||izdt+CE/|Iv||qu ||u||i2dt. 4.14)
0 R4 0 0
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We now state our main result in this part. For simplicity, we restrict ourselves to consider the initial data in B,S,” P
which is enough for our later purpose.

Proposition 4.5. Let 4 <d < p < 00, ug € B;fp and u := NS(ug) be the mild solution to (1.1), assume further
u € L®(0, Ty; B;,f,,) blows up at finite time Ty, then there exists some R > 0, such that

sup sup |u(x,t)] < oo. 4.15)
Ty /2<t<Ty xe B(R)*

Proof. Let p <m < oo satisfy

1 1-6 @6
—=——4 =, S =0n+8HU-0). (4.16)
p m 2
A simple computation shows § = (d — 2)6/[2(1 — 8)]. According to Lemma 4.3, we can decompose uq as up =
uo,1 + up2 withug | € B,il"fjn'a N B;’fp, uop € LN B;’fp. Besides,

- p 2 2— p
o1 g0n s <0™ P lluoll s Nuo2llz2 < Cn™Plluolls, (4.17)
m.m p.p p.p
lwo.ill g+ luo2ll g =< Clluol gov - (4.18)

Define V.= NS(up,1) and U = u — V. Taking 7 to be small enough, we see the existence time 7" of solution V given
by Theorem 4.1 can be beyond T, so

IV gy + 19V gamssmt .y < Clluo il gapss < €1 luoll g ),

IVl 07,7, < COn luoll gy ). (4.19)
In addition, determining r by 2/r 4+ d/m = 1, one can verify
T
IV 0 sem < WV s / 1"126n 40 < T, (4.20)
0

where C depends on r, 8, n and [[uol| z5» . Let Q1 be the associated pressure with V, then
PP

AQ=—div(V-VV). 4.21)
It follows from the classical Calderon—Zygmund estimate that
sup [ Qillpnrz < C(n. T, lluoll gov ). (4.22)
Ty /A<t <T, p-p

On the other hand, U solves the following perturbative Navier—Stokes equation:

U —-AU+U-VU+V -VU+U -VV+VQ,=0,
divU =0,
U0, x) =up,2(x),

where QO satisfies

AQy=—div(U-VU+U-VV +V.VU). (4.23)
Noticing that

u, Ve L=, Ty; B) ),

so does U. At the same time, as ug 2 € L2, by persistence and propagation of regularity (cf. [22]), one can further
show there exists a time 7 < Ty, such that

UeL®0,T; L>)NL*0,Ti; HY). (4.24)
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Hence, performing the standard energy estimate, we can see that

t t
U3, +2/||VU<r)||izdr = lluoll3 +2//V®U : VUdxdt (4.25)
0 0 Rd

fulfills for all ¢ € (0, T7). This together with Lemma 4.4 and Gronwall inequality yields

t Ts
U7, + / IVU (0)117,d7 < [luo2ll3, exp (C / ||V(r>||2mdr>, 0<t<T. (4.26)
0 0

However, the above boundedness of U in the energy space can ensure that 77 = T, so U € E7,. Notice that
UeL®0,Ts; B ). 4.27)

By Proposition 2.2, we have U € L4(O, Ts; L4). On account of Lemma 4.4, we seethat U Q V € L2(0, Ts; L2). Now
applying Calderon—Zygmund estimate, one can obtain that 0> € LZ(O, Ty; L2). To summarize, u =V + U, with

V e L®(T/4, Tu; L™(RY)), U € L*(0, Ty;; L*(RY)). (4.28)
The associated pressure g = Q1 + Q», with

Q1 € L®(Ty /4, Ty: L"*(RY), Q5 € L*(0, Ty; L*(RY)). (4.29)
Moreover, (4, g) forms a pair of suitable weak solution on any bounded domain of (7, /4, Ty) x R4, Due to (4.28)
and (4.29), one can claim that for any €, p > 0, there exists some Ry > 0, such that

T;
sup / lul® + 1q1¥2dxdt < e/ T2, (4.30)
zeRd

T,/4 B(Ro)*NB(z,p)

Fix a point zg = (xo, f0), Tx/2 < to < Tx. Choosing p = /T /2, one sees Q(zo, p) C (Tx/4, Ty) X R4 and

flu ||L°°(t0—p2,to;l-3§ol,oo) <|lu ||LOO(O»T*;Bgo!oo). 4.31)
The following integral
1
pra] lul® + g3 *dxdt < Ce (4.32)

0(z0.3p/4)

provided |xg| > Ro + p. Now we take € so small that Ce < €. Therefore, Corollary 1.5 implies the boundedness of u
around zp. The proof is completed. O

4.2. Some a priori estimates and limiting process

This subsection presents some preparation results for the proof of Theorem 1.6. Since B;’fq C Bff, for r =
max {p, g}, it suffices to prove the theorem with initial data ug € Bls,{’p, 4 <d < p < o0, see [22,24] for further
explanations. Taking the assumption of Proposition 4.2 into consideration, we will assume, from now on that in The-
orem 1.6, the initial data ug fulfills

ug € B;’fp, 2d < p < 00. (4.33)

Let u := NS(uo) be the mild solution described in Theorem 1.6, assume the conclusion there is false, by (4.1),
there exists M > 0 such that

~

Wl oo, 7,: 57,y = M- (4.34)

As u becomes singular at T, so



1698 K. Li, B. Wang / Ann. I. H. Poincaré — AN 36 (2019) 1679-1707

t—Ty

However, Proposition 4.5 implies the boundedness of u out of B(R) for some R > 0, it follows that there exists some
point Zg := (Xo, Ty), such that u is singular at Zp, more precisely,

u¢ L®(Q(Zo.r)), VO<r<T.. (4.36)

Let g be the pressure associated with u, we plan to rescale u, g around Z, then derive a solution sequence. First,
by (4.34), one can find a time sequence {#,},>1, such that z, — T, as n — oo, and

lut)ll gsp, < Nl oo 1,57, < M- (4.37)
Without loss of generality, one can assume

u(ty) = u* == u(T,) weaklyin B,,. (4.38)
Set A, = +/(Tx — t,)/2 and denote

Un (x, 1) = hqut(Xo + Anx, Te + 221), (4.39)

Gn(x, 1) =22q(Xo 4 Anx, Ty 4+ 221). (4.40)

Naturally, v, is a mild solution to (1.1) on (—2,0) x R4 with initial data
vy (x, =2) = vo,n = At (Xo + Apx, ty).

By a direct calculation, one can see

” Un ”Loo(_z’O;B;Pp) = ||M ”Loc(tn’T*;B;l’p) =< Mv (441)
ol g = lute)ll o < . (442)
p.r 14

Next, we aim at obtaining some uniform control over v,, g,, the procedure is quite similar to the proof of
Proposition 4.5 and we will omit the details of the argument by simply writing down relevant conclusions. For
convenience, the notations m, §, r used in the proof of Proposition 4.5 will be continuously used. First, there ex-

ist v(l)’n € B;L"f;fa n B;’f p and v%yn eL’n B;," p» such that vg ,, = v(l),n + U(%,n and the corresponding qualitative estimates
hold, i.e. (4.17) and (4.18) with ug,1, uo,2 replaced by vé w v% , respectively.
Given the decomposition of the initial data, we can also express the solution into two parts, set

U, :==NS(g,), Ui=v,—U,. (4.43)

Let us treat U,} now, by choosing 7 to be sufficiently small and applying local Cauchy theory of NS, see Theorem 4.1,
one can deduce that

1Un 1 gons .0y F IV U gsmss-1 s gy < CllVg s < C . B0). (4.44)
18: Ul yms5-2_p.0) < Cllvgul omss < C 0, ) (4.45)
Meantime,
1 ~
” Un ”LOO(,z’O; B;Pp) = C(’?, M) (446)
For arbitrary 0 < o < 2,
1 Lo (=240, 0:0m) + IV Uy L2240, 0m) + 18U 1259 (=241, 0,m) < C (0, 1, ). (4.47)
Furthermore, Proposition 4.2 yields
IU L (<240, 0525 < C(ov . M), VO <o <2. (4.48)
Let Q,ll be the pressure associated with U,f, then Calderon—Zygmund estimate infers

1OM Lo (240, 0:m2) < Clo, 1, M). (4.49)

Based on the above estimates over Unl, Q,ll, we can show the following result.
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Lemma 4.6. There exist limit functions uéo, qéo, defined on (=2, 0) x R?, such that for any 0 <o <2, R > 0, we
have

(D U,l — uéo weakly*in L*°(—=2+ o, 0; L") and L*>°(—2+ o, 0; L*°);
(2) VU! — Vul, weakly* in L®(=2+ 0, 0; L™);

3) U,l — uéo strongly in C([—2 + o, 0], L™ (B(R)));

@) U} — ul, weakly*in L(=2,0; B, ,);

%) Q,ll — q;o weakly* in L (=2 + &, 0; L™/?).

Proof. Obviously, (1), (2), (4) and (5) follow directly from (4.48)—(4.49). For any fixed r > 1, note that
Ule L' (=2 +0,0; WL(B(R))), 3,U!eL (—2+0, 0; L™ (B(R))). (4.50)

Thus (3) is a consequence of Aubin-Lions lemma (cf. [46,45]). O

We turn to the estimate of U,%. Observing that U,% solves the following perturbed Navier—Stokes equation on domain
(=2,0) x R4,
QU2 — AU?+U?-VUX+U?-VU) + U} - VU?+VQ2 =0,
divU? =0,
Uz (x, —2) = v§ , (x).

Due to (4.41) and (4.46), one can easily find

U2 e L®(=2,0; B} ,(RY)). (4.51)
Recall that r is such that 2/r + d/m = 1, we can apply energy estimate again to see
1 0
U213, + / IVUZI72ds < llvg,ll72exp | € / UM mds | < C(n, M) (4.52)
oY -2

holds for all € (—2, 0). It follows from interpolating (4.51) and (4.52) that

1UR N 4.0:14) < Cn. ). (4.53)
The pressure Q2 meets

10212 2.0.02) < Cn. BD). (4.54)

For more details on the above estimates of U2, Q2, one can refer to the proof of Proposition 4.5. The estimate of 3, U?

can be done as follows: let R > 0, ¢ € C{°(B(R)), then
(U2, ¢) = | — (VU2, Vo) + (U2, U2 - V) + (U}, U - V) + (U2, U} - V) + (02, divg) |
< C>IVU N2 + 10174 + 1, @ Upll2 + 1Q511.2) IVl 2 (4.55)
Taking L? integral with respect to time over interval [—2, 0] and using Lemma 4.4, one sees
13 U2 12—2.0: 5 B(RYy) < C (1. M), ¥R >0, (4.56)

where H~1(B(R)) is the dual space of H(} (B(R)). Besides, U,% satisfies the local energy equality with lower order
terms:

% |UR 1> = AUZ I +2IVU; P+div (UL PU; + U 1PU,)
+2U2div (U2 @ U 4 2div (U? Q2) =0, (4.57)

which can be interpreted in the sense of distributions. Collecting the estimates of Un2 and Q,% and taking the estimates
of U, into consideration, we can claim the conclusion below.
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Lemma 4.7. There exist limit functions ugo and qgo defined on (=2, 0) x R4, satisfying

(1) U2 — u2, weakly* in L(=2,0; B} ,) and L>®(—2,0; L?);
(2) VU? — Vu2_ weakly in L>(—2,0; L?);
(3) U? — u?, strongly in LP(—2,0; LP(B(R))) and C([-2,0]; H"'(B(R))), Y1 <B <4, R>0;
4) Q2 — g2 weakly in L*>(=2,0; L?);
(5) The following local energy inequality
t
/ lu2, (x, 1) (x, )dx + 2/ / V2 |*¢ (x, T)dxdt
B(R) —2 B(R)
t

</ / 2 200 + Ap) +u>, - Vo (u> |* +2¢2) + > |ul, - Vodxdr

—2 B(R)

t
+ 2/ / uly - ut )yl Vo + w3 - Vutul pdxdr (4.58)
—2 B(R)
holds for any t € (—2,0) and 0 < ¢ € C(C)’o((—Z, 0) X B(R)), here, R > 0 is arbitrary.

Proof. It is easy to see that (1), (2) and (4) follows from (4.52), (4.54). The validity of (3) can be argued as follows:

U2 e L*(=2,0; H'(B(R))), 8,U*e L*(—=2,0; H"'(B(R))). (4.59)
Appealing to the Aubin-Lions Lemma once again, we obtain
U? — u%, stronglyin L?(=2,0; L*(B(R))) and C([-2,0]; H '(B(R))). (4.60)

Then interpolation with (4.53) leads to the required result. Finally, using the fact that U,% satisfies (4.57) distributionally
and the convergence properties of U,} (see Lemma 4.6) and Unz, Q%, one can deduce (5). O

Recalling that v, = U} + U?2, g, = QL + Q2. Thanks to Lemma 4.6 and Lemma 4.7, one can formulate the limit
behavior of v, and g, into the following statement.

Proposition 4.8. There exist limit functions v, g0, defined on domain (—2,0) x RY, with veo = u éo + ugo oo =
‘1;0 + qgo, such that for any 0 < o <2, R > 0, the following properties hold.

(1) vy = veo weakly* in L°°(—2,0; B;’fp) and L (=2 + o, 0; L2(B(R)));
(i) v, = v Strongly in Lﬂ(—Z + o, 0; Lﬂ(B(R))), Vi<pB <4
(iii) Vv, — Vs weakly in L*(—2 + o, 0; L2(B(R)));
@iv) For every t € [-2 4+ 0,0], ¥ (xX)vu(x,t) — Y (X)veo(x,t) weakly in L2RY), and the function
t— f]Rd Voo (X, )Y (x)dx € C([—-2+ o, 0]), here Y € Cgo(]Rd);
(V) gn — goo weakly in L3/?(—2+a, 0; L’>(B(R)));
(Vi) Voo, oo forms a pair of suitable weak solution on any bounded domain of (=2 + o, 0) x R%.

Proof. The verification of (i)—(v) is straightforward, provided one notice relevant properties of U,} and U,%. Now that
v, and g, is a pair of smooth solution to NS, so it fulfills the local energy equality, taking n — oo and using (i)—(v),
one can find (vi) follows. O

4.3. Proof of Theorem 1.6

In this section, we shall prove the blowup criterion for NS in critical Besov space. Let v, gn, Voo, goo be the
functions constructed in Section 4.2. We draw on ideas from [1,6,17,20], showing first the limit function vy, vanishes
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for some time, then using the strong convergence property of v, and an interior estimate of g, to yield that for some
small y > 0 and large ng, the pair (v,,, gn,) verifies the condition of € regularity criterion on Q(y), thus producing
the boundedness of u at the singular point, which is obviously absurd. Now we start to implement this argument.

Proposition 4.9. Let voo, goo be the limit solution obtained in Proposition 4.8, then

Voo(x,1) =0, for te(—-5/4,0]. 4.61)

Proof. Observing that v, = ul + ugo, doo = + qgo, with
ul, € L®(=5/3,0; L™), u?, e L3(—=5/3,0; L),
gl e L®(=5/3,0; L™?), ¢ e L*(—=5/3,0; L?).

So for any €p, p > 0, there exists some Ry > 0 large, such that

0
sup / vool® + |goo|2dxdt < €. (4.62)

zeR4
—=5/3 B(Ro)“NB(z,p)

Let zo = (xo0, o) € RY x (—3/2,0), p = 1/4, then Q(z0, p) C R? x (=5/3,0). The value

1 3
ST / lVool® + |goc] 2dxdt < Ceo, (4.63)
0(z0,p)

provided |xo| > p 4+ R := R;. Now one can specify € so that Ceg < €1, in view of Corollary 1.5, we know v is
bounded in some neighborhood of zg, and hence

sup Sup |veo(x, t)| < 00. 4.64)
—3/2<1<0 B(R))*

Upon using the regularity results for linear Stokes systems, one can acquire higher order derivatives estimates
IV veo (. 1)| < N()), (4.65)

with j > 1 and (x,7) € B2R|)¢ x (=5/4,0).

Next we show v (x, 0) vanishes, one can also refer to the same argument in [1]. Due to (iv) in Proposition 4.8, we
know v, (0) — v (0) in the sense of tempered distribution. In addition, u(-, T) € B;” p» 80 for any € > 0, there exists
ue € Cg° (R), such that

lue () —u(, T*)”B;{’p <E€. (4.66)
Let ¢ be a Schwartz function, then

(a(0), ) = A7 @D (u(Xo + x, T,), p(A; ' x))
= V(X0 4 x, T) — ue(Xo +x), 90 ' 0)) + 2, 47D (e (Xo 4+ x), o4, ')

= Nu(T) —uellgp 0l g=sp + Anllucli>llellr = Ce
B p/,p/
provided 7 is sufficiently large. Hence,
(Vo0 (0), ) = lim (v, (0), ) =0. (4.67)

As ¢ € § is arbitrary, so v5(0) = 0, as desired. Now we denote ws, = curlu, then ws meets the differential
inequality

10; w0 — Awoo| = N(lwso| + [V l) (4.68)
on B(0,2R1)¢ x (—5/4,0] and wso(x, 0) = 0. Applying the backward uniqueness theorem ([20]), we reach
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woo(z) =0 on B(0,2R)¢ x (—5/4,0]. (4.69)
We continue to establish the regularity of vy, on B(0,2R1) x (—5/4, 0]. Note that vy, = u + uoo, and
ul, € L®(=5/4,0; L), (4.70)

thus it is reduced to estimating ugo First, the local energy inequality (4.58) implies the following the global energy
inequality:

/|uoo(t2)|2dx+2//|Vuoo|2dxdt</|uoo(t1)|2dx+2// ®ul : Vul dxdt 4.71)

I Rd 1 Rd
with almost every ¢; > —2 and all #; <1, < 0, see [1] for the proof. On the other hand,
2 e L>®(=2,0; By ,) N L™®(=2,0; LY. 4.72)
We can choose t; € (—5/4, 0] so that (4.71) holds and ugo(tl) eL*n BIS,” p- Considering the equation below
D — AG+-Vi+ul, - Vi+i-Vul +V§G=0,
divo =0,
U(x, 1) = ulo(t1).

By a standard Picard iteration procedure, one can construct a mild solution v to the above equation on some interval
(t1,t1 +«), and

sup  sup [9] < C(o, llux @l s - ludolloo—s/a0.%)), VO <o <k/2. (4.73)
t+o<t<ti+k xcRd

Moreover, the global energy equality

/|v(t)|2dx+2//|Vv|2dxdr_/|u (t1)|2dx+2// ® U: Vidxdr (4.74)

I R4 t Rd

fulfills for #; <t < 0. Then weak-strong uniqueness' for the equation ¥ solves can infer

ur =7, on (1,0 +«)xRe. (4.75)

e¢]

Recalling (4.70), (4.73) and the parabolic regularity result, we can see

sup sup |Vkvoo (x,0)| <c(o,k), VkeN. 4.76)

11420 <t<t;+k xecR4

Meanwhile, on account of the fact that ws(z) = 0 if z € B(0,2R1)¢ x (t; + 20, t; + k), one can conclude from the
unique continuation theorem (cf. [20])

w=0 on R? x (1] + 20, 1] +«). 4.77)
To summarize,
divve, =curlvge =0 on RY x (t1 +20,t1 + k), YO<o <k/2. 4.78)

Accordingly, Avy = 0 on the same domain. It follows from Liouville’s theorem that v, equals to some constant.
Owing to (4.62), we can assert

' Barker [5] showed weak-strong uniqueness of 3D Navier—Stokes equation with initial data in LZn B;’? p» see Theorem 5.2 for details, whereas

his method can still be applied to prove a similar result for the perturbed Navier-Stokes equation v, satisfies, where the terms u})o - Vo and
#- Vul, don’t pose new difficulties because of the subcriticality of .



K. Li, B. Wang / Ann. I. H. Poincaré — AN 36 (2019) 1679-1707 1703

Voo =0 on RY x (1] + 20,1 + ). (4.79)

Since o can be chosen to be arbitrarily small, then vy (#1) = 0, because of the weak continuity property. However,
such #; exists almost everywhere in (—5/4, 0), upon using weak continuity once again, we finally obtain

Voo (t) =0 for t € (=5/4,0]. (4.80)

This completes the proof. O

Before pushing forward, we give an estimate of the pressure term inside a fixed domain, which will be used later.
Estimate of this type can also be found in [17,18].

Lemma 4.10. Let 0 < y < 1/4, p > 0. (u, p) forms a pair of weak solution to NS on Q(p). Set r = yp, then there
exists a constant C independent of y, such that

1 1 , 1
e /|p|%armtsCy[F / |p|%azmz}+c;/‘(f"“[F / |u|3dxdt}. (4.81)
o(r) Q(p) Q(p)

Proof. Let ¢ € Cgo(Rd) be such that supp¢ C B(1) and ¢ =1 on B(1/2). Define ¢,(x) = ¢(x/p), we decompose
the pressure as p = p, + h, on Q(p), where

—~App=89;(ujuj¢p,) on R (4.82)
forae.r e (—,02, 0). The other part &, is harmonic on B(p/2), so we have
1
sup [hp()] < sup ———— / o (D)ldy
veB() veB() B, p/4)] ?
B(x.p/4)
1
< / 1y () Idy. (4.83)
B(p/2)
It follows
/|p|%dxsc / 191 + 1yl dx. (4.84)
B(r) B(r)

By Calderon—Zygmund’s estimate

/|pp|%dx5/|pp|%dx5c / u|3dx. (4.85)

B(r) Rd B(p)
While according (4.83),

3 d 3 rd 3
lhpl2dx < Cr® sup Ihp(x)IZSCp—d lhp(N2dy

x€B(r)
B() B(p/2)
rd 3 3
SCp—d /Ip(y)lzder / lpp(¥)I2dy |. (4.86)
B(p) B(p)
Hence
3 3 rd 3
/IpldeSC/luI dX+Cp—d / [p(y)|2dy. (4.87)
B(r) B(p) B(p)

Integrating in time on interval (—r2,0) and multiplying each side by 1/r?~!, one can obtain (4.81). The proof is
done. O



1704 K. Li, B. Wang / Ann. I. H. Poincaré — AN 36 (2019) 1679-1707

We are ready to prove Theorem 1.6.

Proof of Theorem 1.6. We claim that there exist some 0 < y < 1 sufficiently small and an index ng sufficiently large,
so that

1 3 .
F / |vno|3 + |qny|2dxdt < €, (4.88)
o)
where € is determined by (1.7) and depends only on d, M. Indeed, it follows from Lemma 4.10 with o =1 that

1
yd—T

3 3 —@d-1) 3
/ lgn|2dxdt < Cy / lgn|2dxdt + Cy / |v,|"dxdt. (4.89)
o) o) o)

Due to Proposition 4.8 and Proposition 4.9, we have for some constant C, it holds

/ |qn|%dxdt <C, lim / |vn|3dxdt =0. (4.90)
n—oo
o o)

Thus one can choose y small enough so that

Cy / \gn| 2 dxdt < %1. 4.91)
o)
Fix such y, by (4.90), there exists some ng large, satisfying

/ oo Pdxdrt < %. (4.92)

o)

C———
J/dfl

In this way, we find (4.88) follows. Meanwhile, (v,,, ¢n,) is a pair of suitable weak solution on Q(y), now applying
Corollary 1.5, one readily obtains

sup  |up(x, 0] = C, (4.93)
(x,1)eQ(y /%
or in terms of u, we have
sup u(x, 0] < Chy, (4.94)
(X.0)€Q(Z0. Y hng/4)

which obviously contradicts to our hypothesis that Zy is a singular point, hence, the conclusion of Theorem 1.6 is
true. This completes the proof. O

5. Leray-Hopf solution in critical Besov space

The objective of this section is to show an endpoint Serrin type regularity criterion for Leray—Hopf solution, i.e.
Corollary 1.7. Before stating the precise notion of Leray—Hopf solution, we first clarify some necessary notations
being used, let C(‘)>Q (RY) :={u € Ccse (RY) : divu =0}, J and 121 represent the closure of C(‘)>Q in the norm of L? and
Dirichlet integral respectively.

Definition 5.1 (Leray—Hopf solution). Let T € (0, 0o], a vector field v is said to be a Leray—Hopf solution to (1.1) on
Or :=(0,T) x R? if

(i) veL®0,T;J)NLY0,T; jzl) satisfies NS distributionally on Qr;
(ii) For each g € L?, the function 7 > f]Rd v(x, t)g(x)dx is continuous on [0, T'];



K. Li, B. Wang / Ann. I. H. Poincaré — AN 36 (2019) 1679-1707 1705

(iii) The global energy inequality

t
lo@)lI7, +2 / IVo(s)113.ds < [lvoll?, (5.1)
0

holds for each ¢ € [0, T].

Notably, in the above definition, we call v a global Leray—Hopf solution if 7 = 0o and the interval [0, T'] is replaced
by [0, co) in (ii) and (iii).

The following weak-strong uniqueness result shows the connection between the Leray—Hopf solution and mild
solution in critical Besov space, and plays an important role in the upcoming proof. We point out that its three di-
mensional counterpart is contained in [5], where the proof can be adapted to higher dimensions without essential
difficulties.

Theorem 5.2 (Weak-strong uniqueness). Let 3 <d < p, q < 00, u be a Leray—Hopf solution to (1.1) associated with
initial data ug € L*(R%) N B;,’fq (RY), then u coincides with the mild solution N S(uq) until T (uo), in particular, u is
regular for the same time interval.

Proof of Corollary 1.7. Letd < p, g < oo, u € L*(0, T; B‘;,‘fq) be a Leray—Hopf solution. Due to the weak conti-
nuity, one can deduce that the initial data uq satisfies

ug € L>N B)Y,. (5.2)
Employing Theorem 5.2, one can see

u=NS(ug) on RY x [0, T (up)). (5.3)
We claim that

T(ug) > T. (5.4)
Otherwise, if T'(ug) < T, then Theorem 1.6 implies
lim sup ||u(t)||Bsp = 0. (5.5)
t—T (up) P4

This is contrary to our hypothesis, so (5.4) holds. Since the mild solution N S(uq) is smooth on R9 x (0, T (o)), so
does u. The uniqueness follows immediately from Theorem 5.2. We complete the proof. 0O

Remark 5.3. We can relax the assumption of Corollary 1.7 slightly. In particular, formula (1.10) can be replaced by
ueL™®0,T;B)x) d<p<oo and u(T)eB) .

Here B;’joo denotes the closure of Schwartz functions in B;’f oo~ To show the regularity result with this condition, one

needs to apply the weak-strong uniqueness result (for initial data belonging to L> N B;’ioo) in [5] and a decomposition
similar to Lemma 4.3, see [2,7], then it suffices to repeat the scheme in Section 4 to conclude.

Conflict of interest statement

There is no conflict of interest.
Acknowledgements

Both of the authors were supported in part by the National Science Foundation of China, grants 11271023 and
11771024. The first named author is grateful to Professor F. Planchon for his valuable discussions when he was

visiting Laboratoire J. A. Dieudonné. The authors also would like to thank the referee for the valuable comments and
for pointing to us the interesting improvement described in Remark 5.3.



1706 K. Li, B. Wang / Ann. 1. H. Poincaré — AN 36 (2019) 1679-1707

References

[1] D. Albritton, Blow-up criteria for the Navier—Stokes equations in non-endpoint critical Besov spaces, Anal. PDE 11 (6) (2018) 1415-1456.
[2] D. Albritton, T. Barker, Global weak Besov solutions of the Navier—Stokes equations and applications, Arch. Ration. Mech. Anal. 232 (1)
(2019) 197-263, https://doi.org/10.1007/s00205-018-1319-0.
[3] H. Bae, A. Biswas, E. Tadmor, Analyticity and decay estimates of the Navier—Stokes equations in critical Besov spaces, Arch. Ration. Mech.
Anal. 205 (2012) 963-991.
[4] H. Bahouri, J.-Y. Chemin, R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations, Grundlehren der mathematischen Wis-
senschaften, vol. 343, Springer, Heidelberg, 2011.
[5] T. Barker, Uniqueness results for weak Leray—Hopf solutions of the Navier—Stokes system with initial values in critical spaces, J. Math. Fluid
Mech. 20 (1) (2018) 133-160, https://doi.org/10.1007/s00021-017-0315-8.
[6] T. Barker, G. Seregin, A necessary condition of potential blowup for the Navier—Stokes system in half-space, Math. Ann. 369 (3—4) (2017)
1327-1352.
[7] T. Barker, Existence and weak* stability for the Navier—Stokes system with initial values in critical Besov spaces, arXiv:1703.06841, March
2017.
[8] J. Bergh, J. Lofstrom, Interpolation Spaces, Springer-Verlag, 1976.
[9] J. Bourgain, N. Pavlovic, Ill-posedness of the Navier—Stokes equations in a critical space in 3D, J. Funct. Anal. 255 (2008) 2233-2247.
[10] T. Buckmaster, V. Vicol, Nonuniqueness of weak solutions to the Navier—Stokes equation, Ann. of Math. 189 (1) (2019) 101-144.
[11] L. Caffarelli, R. Kohn, L. Nirenberg, Partial regularity of suitable weak solutions of the Navier—Stokes equations, Commun. Pure Appl. Math.
35(1982) 771-831.
[12] C.P. Calderé6n, Existence of weak solutions for the Navier—Stokes equations with initial data in L”, Trans. Am. Math. Soc. 318 (1) (1990)
179-200.
[13] M. Cannone, Y. Meyer, Littlewood—Paley decomposition and Navier—Stokes equations, Methods Appl. Anal. 2 (1995) 307-319.
[14] M. Cannone, A generalization of a theorem by Kato on Navier—Stokes equations, Rev. Mat. Iberoam. 13 (1997) 515-541.
[15] J.-Y. Chemin, Théoremes d’unicité pour le systeme de Navier—Stokes tridimensionnel (Uniqueness theorems for the three-dimensional Navier—
Stokes system), J. Anal. Math. 77 (1999) 27-50 (in French).
[16] A. Cheskidov, R. Shvydkoy, The regularity of weak solutions of the 3D Navier—Stokes equations in Bo_ol,oo, Arch. Ration. Mech. Anal. 195 (1)
(2010) 159-169.
[17] H. Dong, D. Du, The Navier—Stokes equation in the critical Lebesgue space, Commun. Math. Phys. 292 (2009) 811-827.
[18] H. Dong, D. Du, Partial regularity of solutions to the four-dimensional Navier—Stokes equations at the first blow-up time, Commun. Math.
Phys. 273 (2007) 785-801.
[19] H. Dong, X. Gu, Partial regularity of solutions to the four-dimensional Navier—Stokes equations, Dyn. Partial Differ. Equ. 11 (2014) 53-69.
[20] L. Escauriaza, G. Seregin, V. Sverak, L3 o, solutions of Navier-Stokes equations and backward uniqueness, Usp. Mat. Nauk 58 (2003) 3—44.
[21] G. Furioli, P.G. Lemarié-Rieusset, E. Zahrouni, A. Zhioua, Un théoreme de persistance de la régularité en norme d’espaces de Besov pour les
solutions de Koch et Tataru des équations de Navier—Stokes dans R3, C. R. Acad. Sci. Paris Sér. I Math. 330 (2000) 339-342.
[22] I. Gallagher, D. Iftimie, F. Planchon, Asymptotics and stability for global solutions to the Navier—Stokes equations, Ann. Inst. Fourier (Greno-
ble) 53 (5) (2003) 1387-1424.
[23] I. Gallagher, G.S. Koch, F. Planchnon, A profile decomposition approach to the L;’O(Li) Navier—Stokes regularity criterion, Math. Ann. 355
(2013) 1527-1559.
[24] 1. Gallagher, G.S. Koch, F. Planchon, Blow-up of critical Besov norms at a potential Navier—Stokes singularity, Commun. Math. Phys. 343 (1)
(2016) 39-82.
[25] P. Germain, The second iterate for the Navier—Stokes equation, J. Funct. Anal. 255 (2008) 2248-2264.
[26] Y. Giga, Solutions for semilinear parabolic equations in L and regularity of weak solutions of the Navier—Stokes system, J. Differ. Equ. 62
(1986) 182-212.
[27] Y. Giga, T. Miyakawa, Solutions in L" of the Navier-Stokes initial value problem, Arch. Ration. Mech. Anal. 89 (1985) 267-281.
[28] Y. Giga, T. Miyakawa, Navier—Stokes flow in R3 with measures as initial vorticity and Morrey spaces, Commun. Partial Differ. Equ. 14 (1989)
577-618.
[29] E. Hopf, Uber die Anfangswertaufgabe fiir die hydrodynamischen Grundgleichungen, Math. Nachr. 4 (1951) 213-231.
[30] T. Kato, H. Fujita, On the nonstationary Navier—Stokes system, Rend. Semin. Mat. Univ. Padova 32 (1962) 243-260.
[31] T. Kato, Strong L? solutions of the Navier-Stokes equations in R”", with applications to weak solutions, Math. Z. 187 (1984) 471-4380.
[32] C.E. Kenig, G.S. Koch, An alternative approach to regularity for the Navier-Stokes equations in critical spaces, Ann. Inst. Henri Poincaré,
Anal. Non Linéaire 28 (2011) 159-187.
[33] H. Koch, D. Tataru, Well-posedness for the Navier—Stokes equations, Adv. Math. 157 (2001) 22-35.
[34] H. Kozono, T. Ogawa, Y. Taniuchi, The critical Sobolev inequalities in Besov spaces and regularity criterion to some semi-linear evolution
equations, Math. Z. 242 (2002) 251-278.
[35] O.A. Ladyzhenskaya, G.A. Seregin, On partial Regularity of Suitable Weak Solutions to the Three-Dimensional Navier—Stokes equations, J.
Math. Fluid Mech. 1 (1999) 356-387.
[36] J. Leray, Sur le mouvement d’un liquide visqueux emplissant I’espace, Acta Math. 63 (1934) 193-248.
[37] P.G. Lemarié-Rieusset, Recent Developments in the Navier—Stokes Problem, Chapman & Hall/CRC Research Notes in Mathematics, vol. 431,
Chapman & Hall/CRC, Boca Raton, FL, 2002.
[38] E.H. Lin, A new proof of the Caffarelli-Kohn-Nirenberg theorem, Commun. Pure Appl. Math. 51 (1998) 241-257.
[39] F. Planchon, Asymptotic behavior of global solutions to the Navier—Stokes equations in R3, Rev. Mat. Iberoam. 14 (1) (1998) 71-93.


http://refhub.elsevier.com/S0294-1449(19)30027-7/bib616C62726974746F6E3136s1
https://doi.org/10.1007/s00205-018-1319-0
http://refhub.elsevier.com/S0294-1449(19)30027-7/bib4261426954613132s1
http://refhub.elsevier.com/S0294-1449(19)30027-7/bib4261426954613132s1
http://refhub.elsevier.com/S0294-1449(19)30027-7/bib4261436844613131s1
http://refhub.elsevier.com/S0294-1449(19)30027-7/bib4261436844613131s1
https://doi.org/10.1007/s00021-017-0315-8
http://refhub.elsevier.com/S0294-1449(19)30027-7/bib426153653137s1
http://refhub.elsevier.com/S0294-1449(19)30027-7/bib426153653137s1
http://refhub.elsevier.com/S0294-1449(19)30027-7/bib42613137s1
http://refhub.elsevier.com/S0294-1449(19)30027-7/bib42613137s1
http://refhub.elsevier.com/S0294-1449(19)30027-7/bib424Cs1
http://refhub.elsevier.com/S0294-1449(19)30027-7/bib426F50613038s1
http://refhub.elsevier.com/S0294-1449(19)30027-7/bib427556693137s1
http://refhub.elsevier.com/S0294-1449(19)30027-7/bib434B4Es1
http://refhub.elsevier.com/S0294-1449(19)30027-7/bib434B4Es1
http://refhub.elsevier.com/S0294-1449(19)30027-7/bib63616C3930s1
http://refhub.elsevier.com/S0294-1449(19)30027-7/bib63616C3930s1
http://refhub.elsevier.com/S0294-1449(19)30027-7/bib43614D653935s1
http://refhub.elsevier.com/S0294-1449(19)30027-7/bib43616E3937s1
http://refhub.elsevier.com/S0294-1449(19)30027-7/bib43683939s1
http://refhub.elsevier.com/S0294-1449(19)30027-7/bib43683939s1
http://refhub.elsevier.com/S0294-1449(19)30027-7/bib636873683130s1
http://refhub.elsevier.com/S0294-1449(19)30027-7/bib636873683130s1
http://refhub.elsevier.com/S0294-1449(19)30027-7/bib446F44753039s1
http://refhub.elsevier.com/S0294-1449(19)30027-7/bib446F44753037s1
http://refhub.elsevier.com/S0294-1449(19)30027-7/bib446F44753037s1
http://refhub.elsevier.com/S0294-1449(19)30027-7/bib446F4775s1
http://refhub.elsevier.com/S0294-1449(19)30027-7/bib4573536553763033s1
http://refhub.elsevier.com/S0294-1449(19)30027-7/bib46754C655A615A683030s1
http://refhub.elsevier.com/S0294-1449(19)30027-7/bib46754C655A615A683030s1
http://refhub.elsevier.com/S0294-1449(19)30027-7/bib47614966506C3033s1
http://refhub.elsevier.com/S0294-1449(19)30027-7/bib47614966506C3033s1
http://refhub.elsevier.com/S0294-1449(19)30027-7/bib47614B6F506C3133s1
http://refhub.elsevier.com/S0294-1449(19)30027-7/bib47614B6F506C3133s1
http://refhub.elsevier.com/S0294-1449(19)30027-7/bib474B50s1
http://refhub.elsevier.com/S0294-1449(19)30027-7/bib474B50s1
http://refhub.elsevier.com/S0294-1449(19)30027-7/bib47653038s1
http://refhub.elsevier.com/S0294-1449(19)30027-7/bib47693836s1
http://refhub.elsevier.com/S0294-1449(19)30027-7/bib47693836s1
http://refhub.elsevier.com/S0294-1449(19)30027-7/bib47694D693835s1
http://refhub.elsevier.com/S0294-1449(19)30027-7/bib47694D693839s1
http://refhub.elsevier.com/S0294-1449(19)30027-7/bib47694D693839s1
http://refhub.elsevier.com/S0294-1449(19)30027-7/bib686F70663531s1
http://refhub.elsevier.com/S0294-1449(19)30027-7/bib4B6146753632s1
http://refhub.elsevier.com/S0294-1449(19)30027-7/bib4B613834s1
http://refhub.elsevier.com/S0294-1449(19)30027-7/bib4B654B6F3131s1
http://refhub.elsevier.com/S0294-1449(19)30027-7/bib4B654B6F3131s1
http://refhub.elsevier.com/S0294-1449(19)30027-7/bib4B6F54613031s1
http://refhub.elsevier.com/S0294-1449(19)30027-7/bib4B6F4F673032s1
http://refhub.elsevier.com/S0294-1449(19)30027-7/bib4B6F4F673032s1
http://refhub.elsevier.com/S0294-1449(19)30027-7/bib4C53s1
http://refhub.elsevier.com/S0294-1449(19)30027-7/bib4C53s1
http://refhub.elsevier.com/S0294-1449(19)30027-7/bib4C653334s1
http://refhub.elsevier.com/S0294-1449(19)30027-7/bib70676C723032s1
http://refhub.elsevier.com/S0294-1449(19)30027-7/bib70676C723032s1
http://refhub.elsevier.com/S0294-1449(19)30027-7/bib4C696Es1
http://refhub.elsevier.com/S0294-1449(19)30027-7/bib706C616E63686F6Es1

K. Li, B. Wang / Ann. 1. H. Poincaré — AN 36 (2019) 1679-1707 1707

[40] N.C. Phuc, The Navier—Stokes equations in nonendpoint borderline Lorentz spaces, J. Math. Fluid Mech. 17 (4) (2015) 741-760.

[41] V. Scheffer, Partial regularity of solutions to the Navier—Stokes equations, Pac. J. Math. 66 (2) (1976) 522-532.

[42] V. Scheffer, Hausdorff measure and the Navier—Stokes equations, Commun. Math. Phys. 55 (2) (1977) 97-112.

[43] V. Scheffer, The Navier—Stokes equations in space dimension four, Commun. Math. Phys. 61 (1) (1978) 41-68.

[44] G. Seregin, A certain necessary condition of potential blow up for Navier—Stokes equations, Commun. Math. Phys. 312 (2012) 833-845.

[45] G. Seregin, Lecture Notes on Regularity Theory for the Navier—Stokes Equations, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ,
2015.

[46] J. Simon, Compact sets in the space L” (0, T; B), Ann. Mat. Pura Appl. (4) 146 (1987) 65-96.

[47] M. Taylor, Analysis on Morrey spaces and applications to Navier—Stokes equation, Commun. Partial Differ. Equ. 17 (1992) 1407-1456.

[48] H. Triebel, Theory of Function Spaces, Birkhduser-Verlag, 1983.

[49] A. Vasseur, A new proof of partial regularity of solutions to Navier—Stokes equations, Nonlinear Differ. Equ. Appl. 14 (2007) 753-785.

[50] B. Wang, Z. Huo, C. Hao, Z. Guo, Harmonic Analysis Method for Nonlinear Evolution Equations. I, World Scientific Publishing Co. Pte.
Ltd., Hackensack, NJ, 2011.

[51] B. Wang, L. Zhao, B. Guo, Isometric decomposition operators, function spaces E ;; q and their applications to nonlinear evolution equations,
J. Funct. Anal. 233 (2006) 1-39.

[52] B. Wang, Ill-posedness for the Navier—Stokes equation in critical Besov spaces Bo_o1 g» Adv. Math. 268 (2015) 350-372.

[53] Y. Wang, G. Wu, A unified proof on the partial regularity for suitable weak solutions of non-stationary and stationary Navier—Stokes equations,
J. Differ. Equ. 256 (2014) 1224-1249.

[54] F.B. Weissler, The Navier-Stokes initial value problem in L”, Arch. Ration. Mech. Anal. 74 (1980) 219-230.

[55] T. Yoneda, Ill-posedness of the 3D Navier—Stokes equations in a generalized Besov space near BM O~ I. Funct. Anal. 258 (2010)
3376-3387.


http://refhub.elsevier.com/S0294-1449(19)30027-7/bib70687563s1
http://refhub.elsevier.com/S0294-1449(19)30027-7/bib7363683736s1
http://refhub.elsevier.com/S0294-1449(19)30027-7/bib7363683737s1
http://refhub.elsevier.com/S0294-1449(19)30027-7/bib7363683738s1
http://refhub.elsevier.com/S0294-1449(19)30027-7/bib5365726567696Es1
http://refhub.elsevier.com/S0294-1449(19)30027-7/bib536572653135s1
http://refhub.elsevier.com/S0294-1449(19)30027-7/bib536572653135s1
http://refhub.elsevier.com/S0294-1449(19)30027-7/bib53693837s1
http://refhub.elsevier.com/S0294-1449(19)30027-7/bib54613932s1
http://refhub.elsevier.com/S0294-1449(19)30027-7/bib54723833s1
http://refhub.elsevier.com/S0294-1449(19)30027-7/bib7661733037s1
http://refhub.elsevier.com/S0294-1449(19)30027-7/bib57614875486147753131s1
http://refhub.elsevier.com/S0294-1449(19)30027-7/bib57614875486147753131s1
http://refhub.elsevier.com/S0294-1449(19)30027-7/bib57613036s1
http://refhub.elsevier.com/S0294-1449(19)30027-7/bib57613036s1
http://refhub.elsevier.com/S0294-1449(19)30027-7/bib57613135s1
http://refhub.elsevier.com/S0294-1449(19)30027-7/bib576157753133s1
http://refhub.elsevier.com/S0294-1449(19)30027-7/bib576157753133s1
http://refhub.elsevier.com/S0294-1449(19)30027-7/bib57653830s1
http://refhub.elsevier.com/S0294-1449(19)30027-7/bib596F3130s1
http://refhub.elsevier.com/S0294-1449(19)30027-7/bib596F3130s1

	Blowup criterion for Navier-Stokes equation in critical Besov space with spatial dimensions d >=4
	1 Introduction
	2 Preliminary estimates
	3 ε-regularity criterion
	4 Mild solution in critical Besov space
	4.1 Formation of singular point at blowup time
	4.2 Some a priori estimates and limiting process
	4.3 Proof of Theorem 1.6

	5 Leray-Hopf solution in critical Besov space
	Conﬂict of interest statement
	Acknowledgements
	References


