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Abstract

One of the most challenging questions in fluid dynamics is whether the three-dimensional (3D) incompressible Navier-Stokes,
3D Euler and two-dimensional Quasi-Geostrophic (2D QG) equations can develop a finite-time singularity from smooth initial
data. Recently, from a numerical point of view, Luo & Hou presented a class of potentially singular solutions to the Euler equations
in a fluid with solid boundary [1,2]. Furthermore, in two recent papers [3,4], Tao indicates a significant barrier to establishing
global regularity for the 3D Euler and Navier-Stokes equations, in that any method for achieving this, must use the finer geometric
structure of these equations. In this paper, we show that the singularity discovered by Luo & Hou which lies right on the boundary
is not relevant in the case of the whole domain R3. We reveal also that the translation and rotation invariance present in the
Euler, Navier-Stokes and 2D QG equations are the key for the non blow-up in finite time of the solutions. The translation and
rotation invariance of these equations combined with the anisotropic structure of regions of high vorticity allowed to establish a
new geometric non blow-up criterion which yield us to the non blow-up of the solutions in all the Kerr’s numerical experiments
and to show that the potential mechanism of blow-up introduced in [5] cannot lead to the blow-up in finite time of solutions of
Euler equations.
© 2019 L’ Association Publications de I’Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved.
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1. Introduction

The Navier-Stokes and Euler equations describe the motion of a fluid in the three-dimensional space. These funda-
mental equations were derived over 250 years ago by Euler and since then have played a major role in fluid dynamics.
They have enriched many branches of mathematics, were involved in many areas outside mathematical activity from
weather prediction to exploding supernova (see for instance the surveys [6], [7]) and present important open physical
and mathematical problems (see [6]). Regarding the 2D Quasi-Geostrophic (2D QG) equation, it appears in atmo-
spheric studies. It describes the evolution of potential temperature # on the two dimensional boundary of a rapidly
rotating half space with small Rossby and Ekman numbers, for the case of special solutions with constant potential
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vorticity in the interior and constant buoyancy frequency (normalized to one), where equations in the bulk are com-
pressible Euler or Navier-Stokes equations coupled with temperature equation, continuity equation, and equation of
State.

In the case of Navier-Stokes equations, for a long time ago, a global weak solution u € L>(0, oo; L?(R?))? and
Vu € L*>(R3 x (0, 00))? was built by Leray [8]. In particular, Leray introduced a notion of weak solutions for the
Navier-Stokes equations, and proved that, for every given ug € L?(R3)3, there exists a global weak solution u €
L®([0, +oo[; L2R?))? N L2([0, oo[; H'(R?))3. Hopf has proved the existence of a global weak solution in the
general case RY, d > 2, [9]. Meanwhile the regularity and the uniqueness of this weak solution has been known for
a long time ago for the two-dimensional case (see [10], [11], [12], [13]), in the three-dimensional case the problem
remains widely open in spite of great efforts made. On the uniqueness many works have been done (see [14], [15], [16],
[17], [18]). Concerning the regularity of weak solutions, in [19], it is proved that if u is a Leray-Hopf weak solution
belonging to L4(]0, T1; L% (R?))? with g + g <1,2 < p<o00,3<gq < o0, then the solution u € C®(R3x10, T1)°.
In [20] and [21], it is showed that if u is a weak solution in C ([0, T]; L3(R?))3, then u € C*®°(R3x]0, T1)3. The limit
case of L ([0, T1; L3(R?))3 has been solved in [22]. Other criterion regularity can also be found in [23,24,15,25-30].

In the case of Euler Equations, in the two dimension case, uniqueness and existence of classical solutions have
been known for a long time ago (see [31-34,10]). However for the full three space dimensions, little is known about
smooth solutions apart from classical short-time existence and uniqueness. Moreover, weak solutions are known to
be badly behaved from the point of view of Hadamard’s well-posedness theory (see for instance the surveys [35,36]).
Considerable efforts have been devoted to the study of the regularity properties of the 3D Euler equations. The main
difficulty in the analysis lies in the presence of the nonlinear vortex stretching term and the lack of a regularization
mechanism. Despite these difficulties, a few important partial results concerning the regularity of 3D Euler equations
have been obtained over the years (see [37—43]).

In the case of 2D QG equation, besides its direct physical significance [44,45], the 2D QG equation has very
interesting features of resemblance to the 3D Euler equation, being also an outstanding open problem of the finite
time blow-up issue. In particular, one can derive a necessary and sufficient blow-up condition for the 2D QG equation
similar to the well-known Beale-Kato-Majda (BKM) criterion (Beale-Kato-Majda [37]). More precisely, the solution

T
to the 2D QG equation (11) becomes singular at time 7* if and only if / ||Vlu(t)||Loo dt = 400 (see [46]). Thus,

V-+u plays a role similar to the vorticity w in the 3D Euler equations. In the recent years, the 2D QG equation has
been the focus of intense mathematical research [46-52].

Unfortunately despite of considerable efforts devoted to the regularity issue of the 3D Euler, 3D Navier-Stokes and
2D QG equations, standard scaling heuristics have long indicated to the experts that the identity energy, together with
the harmonic analysis estimates available for the heat equation and for the Euler bilinear operator, are not sufficient
by themselves if one wishes to improve the theory on the Cauchy problem for these equations. It seems crucial to use
the specific structure of the nonlinear term in these equations, as well as the divergence free assumption. Indeed, some
finite time blowup results have been established for various Navier-Stokes type equations (see [53—57]). Nevertheless,
for all of these Navier-Stokes type equations, the cancellation property of the Euler bilinear operator did not hold and
for some, the energy identity did not hold (see [53-55]).

However, recently it was shown also in [3], a finite time blow up solution to an averaged three-dimensional Navier-
Stokes equations of type d;u = Au + B(u,u), where B is an averaged version of the Euler bilinear operator B, acting
also on divergence free vector fields u and obeying as B to the cancellation property (B(u,u),u) = 0. This result
suggests that any successful method to affirmatively answer to the Existence and Smoothness problem must either use
finer structure of B or else must rely crucially on some estimate or other property of the Euler bilinear operator B
that is not shared by the averaged operator B. Such additional structure exists for instance, the Euler equation has a
vorticity formulation involving only differential operators rather than pseudo-differential ones.

However, even this vorticity formulation is not a barrier to get a finite time blow up solution. Indeed, it was shown in
[4], finite time blow-up solutions in the class of generalised Euler equations sharing with the Euler equation its main
features such as: vorticity formulation, energy conservation, Kelvin circulation theorem, vorticity-vector potential
formulation viewed as the Generalised Biot-Savart, function space estimates for the vector potential operator. Then,
it seems that there is no room left to establish global regularity of solutions of 3D Euler equations. However, as it
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is mentioned in [4], there are two properties of the Euler equations which are not obeyed by the generalised Euler
equations, namely translation invariance and rotation invariance.

Further, these symmetries basically determined the usual Biot-Savart law (see [58,59]) which are thus not shared
by the Generalised Euler equations introduced in [4]. Furthermore, the use of Biot-Savart law allows to rewrite the
vortex stretching term for Euler (v = 0) and Navier-Stokes (v > 0) equations as follows (see [30,60]):

(- Vv 0=alo, )

where (see Equation (7) in [30])

3 . . dy
a(xv t) = HPV /(y : E(xa t))det(yv S(x + Yy, t)’ E(‘xa t))lw(x + Y, t)lmv (2)
R3 Y
with y = |y—|, &= |_a)| and det(a, b, ¢) is the determinant of the matrix with columns a, b, ¢ in that order. We thus
y w

notice from the expression of « that if the direction of the vorticity, & varies mildly within a small region around x,
then the singularity of the integrand in (2) will be mild.

In this paper, we bring new insights which shed light on the mechanisms involved in the non blow-up of the
solutions. We highlight through new geometric non blow-up criteria how the geometric regularity of the direction of
vorticity combined with the anisotropic structure of the localized regions containing the positions where the maximum
of the magnitude of the vorticity are reached, should prevent the formation of singularities. The novelty in the results
of this paper lies on the use of the these two features in obtaining geometric non blow-up criteria using the finer
structure of the Euler bilinear operator B. Up to now, many progress had been made to better take into account
the geometrical properties and flow structures in the non blow-up criteria (see e.g. [30,61,62,60,41,63,42,64,65]).
However none of these non blow-up criteria integrated both the geometric regularity of the direction of vorticity and
the anisotropic structure of localized regions containing the positions where the maximum of the magnitude of the
vorticity are reached. The most advanced non blow-up criteria were given in [42,64,65] and were established by using
the Lagrangian formulation of the vorticity equation of the 3D Euler and 2D QG equations.

However the results obtained in [4] suggest that even the most advanced non blow-up criterion [42,64] do not
capture the finest structures of the Euler bilinear operator B since it was shown in [4] that there exist generalised Euler
equations sharing the same property than Euler equations as the Lagrangian formulation for their vorticity equations
and for which their solutions blow up in finite time. Indeed, from [42,64], one can observe that the Deng-Hou-Yu
non-blowup criterion can be applied to all the class of generalised Euler equations introduced in [4].

Then, in order to bring new insights in the investigation of whether the 3D incompressible Navier-Stokes, Euler
and 2D QG equations can develop a finite-time singularity from smooth initial data, it was crucial to establish new
non blow-up criteria which take into account the special structure of these equations not shared by the Generalised
Euler equations.

Then in our Theorem 7.1, under mild assumptions based on the anisotropic structure of regions of high vorticity,
we show that the solutions of 3D Euler, 3D Navier-Stokes and 2D QG equations cannot blow up at a finite time 7* if

*

T

+ IIw(t)Iloo))
/Ad(t) (1 + log (790) dt < o0,
0

where the functions Ay and €2 satisfy:

Aq(1) = IVED®) lloo
* -1
Q) = (T* —1)
1+ 1og™ ((T* — 1) [|u(1) llooAo ()
Ao(®) = IVE(®) oo

Note that £(¢) is well defined only on O(¢) the set of points x of R? where w(x, t) # 0 and then || V£ (f)| oo must be
understood as [|[V&(t)[l Lo @))-
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In the case of 3D Euler equations and 2D QG equations by using their Lagrangian formulation, in Theorem 7.2
we go further in the non blow-up criteria by showing under mild assumptions based on the anisotropic structure of
regions of high vorticity, that their solutions do not blow up at a finite time 7% if

T*
/Ad(t) dt < oo.
0

These results are obtained after a fine analysis of the term « defined by (2) combined with some results based on
the anisotropic structure of regions of high vorticity. Our analysis starts by considering at each time ¢ €]0, T*[ the
regions containing the positions where the maximum of the magnitude of the vorticity are reached and shrinking to
zero as time tends to 7™ the alleged time of singularity. More precisely, these regions are balls of radius po(t) =
O((T* — t)||lu(t)]lco) and of centre the position of a point where the maximum of the magnitude of the vorticity is
reached. Inside these regions, we then consider the regions of high vorticity for which the magnitude of the vorticity
(T*—1)~!

1+1og* (p0(D [ VED loo)”

In our analysis, to track in time the positions where the maximum of the magnitude of the vorticity is reached, we
had to overcome the obstruction that we do not know if there exists an isolated absolute maximum for the vorticity
achieved along a smooth curve in time as it was assumed in Proposition 2.1 of [46] and also in [42,64,65] (which
assume that the position where the maximum of vorticity is reached, is advected with the flow). Moreover, recent
numerical experiments show that it is not always the case (see [66], see also section 5.4.5 in [67]). We thus overcome
this difficulty by using a result of Pshenichnyi concerning directional derivatives of the function of maximum and the
structure of a set of supporting functionals [68].

Our analysis led first to the non blow-up criterion given by our Theorem 5.1, namely, the solutions of 3D Euler, 3D
Navier-Stokes and 2D QG equations cannot blow up at a finite time 7* if

is greater than some function Q(¢) such that Q(z) 2

T*
/Ad(t)r[(t) dt < o0, 3)
0
where the function 7 is given by:
1
7 (t) &ef sup sup

+e0(1) 0<R=<po(t) R
B(x,R)NV (1)

lw(z,1)|dz, 4

with ©(1) £ {x € R o (x, 1) = [0(1) o} and V(1) = (z € R o (2, 1) = Q1)).
In our Lemma 6.1, we thus derive a straightforward estimate of the function 7 (¢), that is

(1) <3lo® e sup V()N B, po(t)]4. &)
x€0(t)

Thanks to the non blow-up criterion (3) and (5), we show the non blow-up in finite time of the solutions of Euler
equations for Kerr’s numerical experiments [69-71] without additional numerical tests as it was the case in [42,
64], just by using the anisotropic structure of regions of high vorticity whose the features are described in [69-71].
Moreover, we show that the potential mechanism of blow-up introduced in [5] cannot lead to blow-up in finite time
for Euler equations. To go further in our estimate of the function 7, we use some assumptions characterizing the
anisotropic structure of regions of high vorticity whose the justifications are given at the beginning of subsection 7.2
and we show in Proposition 7.1 that

IIw(t)Iloo>
Qo )

which yield to Theorem 7.1.
In the case of Euler equations and 2D QG equations by using their Lagrangian formulation, after a fine and sharp
analysis of the expression of the function 7 (4) led thanks to our Lemmata 7.2,7.3 and 7.4, in Proposition 7.2 we go

() S141log" < (6)
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further in the non blow-up criteria by showing under mild assumptions based on the anisotropic structure of regions
of high vorticity, that

() =0(1). (7

We emphasize that according the "thickness’ of the structure of regions of high vorticity that these two estimates (6)
and (7) can be much better. Indeed from the analysis led in [72,73] for the study of collapse of vortex lines and agrees
with numerical experiments [74,75], we could expect that (see Remark 7.1)

(1) S 72,
and then obtain in this case, the non blow-up in finite time of the solutions of Euler equations if
T
/Ad(t)sz(t)—%dz < o0. ®)
0

We point out also that our geometric non blow-up criterion reveals the role of the geometric structures of the Incom-
pressible flows in the non blow-up in finite time of the solutions and presents the advantage to be established in an
Eulerian setting in comparison with all the recent geometric non blow-up criteria [41,42,64,46] using the Lagrangian
formulation of Incompressible Inviscid Flows, which requires much more computational effort as it is mentioned in
[76] and in section 5.4.5 of [67]. Furthermore, due to the existence of hyperbolic-saddle singularities suggested by the
generation of strong fronts in geophysical/meteorology observations (see [46,47]), and antiparallel vortex line pairing
observed in numerical simulations and physical experiments, it was important to take them into account in our geo-
metric non blow-up criterion. This is performed thanks to the term Dy (7, £(x + v, 1), £(x, 1)) (see (27), (28)) involved
in the definition of the function A, given at (39).
Then, the paper is organized as follows:

e In section 2, we give some notations and definitions.

e In section 3, we recall some results about the local regularity of solutions of Navier-Stokes, Euler and 2D QG
equations.

e In section 4, we give the reason for which we can assume for any time ¢ that || (#)||cc > 0 without loss of
generality.

e In section 5, in Theorem 5.1, we establish a new geometric criterion for the non blow-up in finite time of the
solutions of 3D Navier-Stokes, 3D Euler and 2D QG equations. We show that their solutions cannot blow up at a
finite time 7% if fOT* Ay () (t)dt < oo, where Ay (¢) is based on the regularity of the direction of the vorticity &
in regions shrinking to zero as time tends to 7* and containing the positions where the maximum of the magnitude
of the vorticity is reached (see definition of A at (39)).

e In section 6, we show the non-blowup in finite time of the solutions of the Euler equations in the numerical
experiments considered these last years, by using inequality (5) about the function 7 (4) and the anisotropic
structure of regions of high vorticity described in [69-71].

e In section 7, we show the estimates (5), (6) and (7) concerning the function 7 defined by (4), and obtain new non
blow-up criteria in Theorems 7.1 and 7.2.

Let us now introduce the 3D Navier-Stokes and Euler equations given by,

ou

— -V Vp—vAu =0,

8t+(u Ju+Vp—vAu ©)
V-u=0,

in which u = u(x, 1) = (u; (x, 1), ua(x, 1), usz(x, 1)) € R3, p=p,t)eRand v >0 (v =0 corresponds to the Euler
equations) denote respectively the unknown velocity field, the scalar pressure function of the fluid at the point (x, ¢) €
R3 x [0, oo[ and the viscosity of the fluid,

with initial conditions,

u(x,0) =ug(x) for aexeR3, (10)
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where the initial data u is a divergence free vector field on R3.
Regarding the 2D QG equation in R?, it is given by

ou

— 4+ v-Vu=0,

ot (11)

1

v=VIi(—=A)"2u,

with initial data,
u(x,0) =uyg. (12)

Here V1 = (—0x,, 0x,). For v we have also the following representation

v=Rtu, 13)

where we have used the notation, R+u = (—Rau, Ryu) with R, j =1, 2, for the 2D Riesz transform defined by (see
e.g. [77D)

1 (xj —yj)
Rjw)(x,1)=—P.V [ —L—Lu(y,ndy.
2 [x —y|
]RZ
2. Some notations and definitions

In this section, we assume that d € N, d > 2.

For any vector x = (x1, x2, ..., X4) € R4, we denote by |x| the euclidean norm of x given by |x| =

For any y € R?, y # 0, we denote by y the unit vector y = Ii_l For any m-dimensional subset A of R 1<m<d,

we denote by |A| its measure. We denote by M (R?) the set of real square matrices of size d. We denote by Id the

identity matrix of MR, For any vector field v defined from R4 to RY, we denote by Vv the gradient matrix of v,
av;

the matrix of M (Rd ) with i j-component, a—l forall 1 <i, j <d.Forany real a, we denote by a™ the real defined by
Xj

at def max(a, 0). For any function ¢ defined on R4 x [0, 400, for all # > 0, we denote by ¢(t) the function defined

on R? by x —> ¢(x, t). We denote by Cfo(Rd ) the space of infinitely differentiable functions with compact support

in R?. We denote by BC the class of bounded and continuous functions and by BC™ the class of bounded and m

times continuously derivable functions.
For any R > 0 and x¢ € R4, we denote by B(xg, R), the ball of R4 of centre xo and radius R. For any R > 0, we

denote by Bpg, the ball of R4 of centre 0 and radius R.

5

— Jx;
i=l
We denote A < B, B2 A or A= O(B) the estimate A < ¢ B where ¢ > 0 is an absolute constant. If we need c to
depend on a parameter, we shall indicate this by subscripts, thus for instance A <y denotes the estimate A < ¢, B for
some ¢s depending on s. We use A ~ B as shorthand for A < B < A.
For any f € LP(RY) (resp. LP(R¥)? or LP(R?)?*4) with 1 < p < +o0, we denote by [ fllp and || fllLr, the
L?-norm of f.

We denote by H® (R?) the Sobolev space JSL2(R?) where J = (1 — A)%. We denote by H; (R3) the Sobolev

space HS (R3) &ef {y € H*(R3)? : divyy = 0}. In order to unify our notations with the two dimensional case 2D QG,

we denote by H? (R?) the Sobolev space H*(R?).
We denote by P the well-known 3D matrix Leray’s projection operator with components,
a 0

Pi,j=5i,j—EgA71 =38i,j — RjRx, (14)
i 0Xj

We denote by div the differential operator given by, div =
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. 1 x;
where R; are the Riesz transform given by R; = a%{(—A)’% = — /4 (see [77] for more details), A~! is the

4 |x|*

*, with x the convolution operator.

inverse of Laplace operator given by Al =—
4| x|

3. Local regularity of the solutions

In this section, we deal with the main result on local regularity of 3D Navier-Stokes and Euler equations in its
general form. By introducing PP the matrix Leray operator, Euler equations (9)—(10) can be re-written as follows,

ou

E%—P(u-V)u:O, (15)
with initial conditions,

u(0) = uyg. (16)
For u solution of (15)—(16), @ =V x u the vorticity of u formally satisfies the vorticity equation,

ow

E—i—(wV)w—(a)-V)u—vAw:O, a7

with initial conditions,
®(0) = wo,

where wyg = V X uy is the vorticity of ug.
In the case of 2D QG equation, we get for u solution of (11), @ = V-1u the vorticity of u formally satisfies the
vorticity equation,

aa—c;)+(v-V)a)—(a)-V)v=O, (18)

with initial conditions,
w(0) = wo,
where wg = V4 ug is the vorticity of ug.
w
In the region where |w| > 0, we define & the direction of the vorticity by & = ﬁ
1)
3.1. Local regularity for 3D Navier-Stokes or 3D Euler equations

5
Assuming ug € HJ, (R3) with r > > thanks to Theorem 3.5 in [78], Theorem 1 in [79] (see also Theorem I in [80]

and the results obtained in [37]), we deduce that there exists a time 7 > 0 such that there exists an unique strong
solution u € C([0, T'[, H R3) nclo, T, Hé’z(]l@)) to the Navier-Stokes or Euler equations (15)—(16) and the
energy equality holds for u, that means for all ¢ € [0, T[,

1
IIM(t)||2+2v/ IVu(s)l3ds = lluol>. (19)
0
Moreover, if u ¢ C([0, T'], H (R3)), then we get (see [37,78,81]),
T
/ lw(t) |l codt = +00. (20)
0

Notice thanks to Remark 3.7 in [78], in the case of Euler equations, we get in addition that u € cl ([0, T, H;_l (RS)).
We retrieve the pressure p from the velocity u with the formula,
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p=—A"'div((u - Vu).
Furthermore, we get the local estimate (21). Indeed, thanks to remark 4.4 in [78], we get

o)l ar
lu@lar < T et} withtg <t < T, 1)

= clluo) | ar (t — 10)
provided that 1 — c||u(#y) || g~ (t — to) > 0, where ¢ > 0 is a constant.

3.2. Local regularity for 2D QG equation

This subsection is devoted to the local well-posedness of the 2D QG equation with a characterization of the maximal
time existence of strong solutions. By using the same arguments as the proof of Proposition 4.2 in [82], we get that the
H*-norm of u is controlled by the integral in time of the maximum magnitude of the vorticity of u. A such Proposition
has been proved in [46] for any integer s > 3, but here we extend this result to all real s > 2. This improvement is
obtained by using the logarithmic Sobolev inequality proved in [81,78] which requires only that s > 2 instead of using
the one proved in [37] as it is the case in [46] and which requires integer s > 3. Then by using the same arguments
as the proof of Proposition 4.3 in [82], we get the following result which gives an improvement in comparison with
Theorem 2.1 in [46]:

Assuming ug € H"(R?) with r > 2, we get that there exists a time 7 > 0 such that there exists an unique strong
solution u € C([0, T[, H" (R?)) to the 2D QG equation (11)—(12) and the energy equality holds for u, that means for
all pe[2,00]andt €0, T,

lu@®lp = lluoll p- (22)
Moreover, if u ¢ C([0, T1, H" (R?)), then

T
/Ilw(t)”Loodt = +00. (23)
0

Owing to u € C([0, T, H'"(R2)) and thanks to Lemma X4 in [78], from 2D QG (11), we get u € clqo, 1y,
Hr—l(RZ))_
Similarly as in (21), we have

t r
lu@ll ar < 1 lacteo) e fortg <t <T, (24)

clluto) || ar (t — to)

provided that 1 — c||u(to)|| g~ (t — t9) > 0, where ¢ > 0 is a constant.

4. Assumption on the maximum vorticity

d
Letd e (2,3}, r> -+ 1andugec H} (R?). Let T* > 0 be such that there exists a unique strong solution u to the
3D Navier-Stokes, 3D Euler or 2D QG equations (9)—(10) in the class

ue C(0, T*[; H.(RY) n ([0, T*[; H ~2(RY)).

Thanks to the results of the section 3, a such time 7* exists.
In this paper, we are concerned with the non blowup in finite time of the solutions u at times such 7*. Then, without
loss of generality, in the whole of this paper, we consider only times of existence T* such that for all ¢ € [0, T*[,

(@)oo > 0. (25)

Indeed, let us assume that there exists 7y € [0, T*[ such that ||w(79)||co = O.

In the case of 2D QG equations (11), we get that w(p) = 0 and then Vu(ty) = 0. Since x — u(#y, x) vanishes at
infinity, then we get u(fg) = 0. Then by using inequality (24) concerning the local regularity, we deduce that u(¢) =0
for all 7 € [tg, T*[ and no blowup can occur at the time T*.
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By following step by step the proof of Lemma 4 given in [42] but keeping the term ||u(7) || 2(ra) after using the
Cauchy-Schwarz inequality, we obtain for all 7 € [0, T*[,
2 _d_
lu®lloo S Nlu®lly ™l @15

2 4
< lluolly = o @®lls™,

(26)

where we have used (19) for the last inequality. Then thanks to (26) used with d = 3, we obtain that ||u(f)|lcoc =0
which implies that u(fg) = 0. Then by using the inequality (21) of local regularity, we deduce u(t) =0 for all t €
[to, T*[ and thus no blowup can occur at the time 7.

5. Geometric properties for non blow-up of the solutions

Historically, non blow-up criteria for the incompressible Euler equations and 2D QG equations commonly focus
on global features of the flow, such as norms of the velocity or the vorticity fields. This comes at the disadvantage of
neglecting the structures and physical mechanisms of the flow evolution. A strategy for overcoming such shortcomings
was established by focusing more on geometrical properties and flow structures (see e.g. [41,83]), such as vortex tubes
or vortex lines.

In particular, in [41,46] the authors showed that local geometric regularity of the unit vorticity vector can lead to
depletion of the vortex stretching. They prove that if there is up to time 7" an O(1) region in which the vorticity vector

is smoothly directed, i.e., the maximum norm of V& (here & = |—, o the vorticity) in this region is L? integrable
1)

in time from O to 7', and the maximum norm of velocity in some O (1) neighbourhood of this region is uniformly
bounded in time, then no blow-up can occur in this region up to time 7.

However, this theorem dealt with O (1) regions in which the vorticity vector is assumed to have some regularity,
while in numerical computations, the regions that have such regularity and contain maximum vorticity are all shrinking
with time (see [84,85,71,70,86,87]).

Inspired by the work of [41,46], in [42,64,65] the authors showed that geometric regularity of Lagrangian vortex
filaments, even in an extremely localized region containing the maximum of vorticity which may shrink with time,
can lead to depletion of the nonlinear vortex stretching, thus avoiding finite time singularity formation of the 3D Euler
equations and 2D QG equations.

However, all the recent geometric constraints for non blow-up criteria of Euler and 2D QG equations based on
local geometric regularity of Lagrangian vortex filaments [42,64,65] make the assumption that the position where the
maximum of vorticity is reached, is advected with the flow, however it is not always the case, as described in [66] (see
also section 5.4.5 of [67]).

Then in our Theorem 5.1, we establish in an Eulerian setting a new geometric non blow-up criterion for the Navier-
Stokes, Euler and 2D QG equations based on the regularity of the direction of the vorticity in extremely localized
regions containing the positions where the maximum of the magnitude of the vorticity are reached and shrinking
to zero as time increase to some 7* the alleged time of singularity. Our Eulerian geometric non blow-up criterion
should give also new impetus to the numerical experiments due to their ease of implementation in comparison with
Lagrangian geometric non blow-up criteria (see [76], see also section 5.4.5 of [67]). Moreover our geometric non
blow-up criterion is also valid for the Navier-Stokes equations that is not the case for the existing geometric non
blow-up criteria obtained in [41,42,64,65] based on a Lagrangian formulation of Incompressible Inviscid Flows.

To obtain our Theorem 5.1, we begin with Lemma 5.1.

Lemma 5.1. Let d e N*, T > 0 and f € C([0, T]; BC(R?%)) such that i[{)lfT] lf®]loo > 0 and for any t € [0, T],
t€l0,
|f(x,t)| = 0as |x| = +00. Then there exists R > 0 such that for all t € [0, T], || f (t)|lco = sup | f(x,1)].

x€BR

Proof. We set a = i[I(}fT] Ilf(®)]loo > 0. Since ¢ — f(¢) is a continuous function from the compact [0, T'] into the
1€l0,

metric space L°°(Rd) then it is uniformly continuous. Hence, there exists N € N* such that for all ¢, € [0, T,
[t —1t| < % we have || f(£) — f(t ) |loo < %. We introduce the subdivision {ti}{ieﬂo,N]]} of [0, T'] defined by #; = i%
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for i € [0, N]. Since for any ¢ € [0, T, | f(x,#)| = 0 as |x|] — +oo, then for each i € [0, N], there exists R; > 0
such that for all [x| > R;, | f(x, ;)] < %. We set R= max R;.Lett € [0, T'] then there exists j € [0, N] such that

ie[0,N]
0l

[t —tj] < % and hence for all [x] > R > R;, we have |f(x, )| <|f(x,1) — fC, )|+ f(x, 2j)] < % < >

Then, we infer that for all € [0, T], || f (¢)|lcoc = sup | f(x,?)|, which concludes the proof. O

xX€Bg

Before to prove Theorem 5.1, we need to introduce the following function D, defined from RYxRYx R0 R
with d € {2, 3} as follows: for d =3,

Dy(ai,az,a3) = (a; - a3) Det(ay, az, az).

The Det in Dy is the determinant of the matrix whose columns are the three unit column vectors ap, as, az. We observe
that Det(ay, az, a3) = ay - (az X a3), then, we get

Dy(ai,az,a3) = (a1 -a3) a; - (az x az), 27)
and ford =2,
Dy(a1,az, a3) = (a1 - a3) (a2 - a3), (28)

where for any z = (z1, z2) € R?, z+

second variable.
From (27) and (28) we get Dy(ay, a3, a3) = 0 then we deduce that for any aj, a», az € B(0, 1),

= (—2z2, z1). We can notice that for d € {2, 3} the function Dy is linear from its

IDa(ai, az, a3)| < |az —asl, (29)
and we get also
Dg(ay, az,a3)| < 1. (30)

Now, we turn to the proof of our Theorem.

d
Theorem 5.1. Let d € {2,3}, up € H], (R with r > = + 3. Let T* > 0 be such that there exists a unique strong
solution u to the 3D Navier-Stokes, 3D Euler equations (9)—(10) or 2D QG equations (11)—(12) in the class

u e C([0, T*[; HL(RY) N C'([0, T*[; H*(RY)). 31)
Let pg be the function defined from [0, T*[ to 10, +oo[ for all t € [0, T*[ by

def
po(t) = 36(T* — 1) |u(t) loc- (32)
Let Ag be the function defined from [0, T*[ to 10, +oo[ for all t € [0, T*[ by:

- +
Ao(h) def sup sup Dy(y,6(x+y,1),8(x,1)) ’ (33)

x€0(t) yeB(0, po(1))\{0} 1y

where for any t € [0, T*[

O = (x e RY; o (x, 0] = (1) ). (34)
Let Q be the function defined from [0, T*[ to 10, +o00[ by:
* _ \—1
O il (35)

8(1 +log* (4po(1)Ao (1))
We introduce also the set of high vorticity regions defined for all t € [0, T*[ by

V) ¥ (2 e R w(z. )] = Q1)) (36)
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Let 1t be the function defined from [0, T*[ to [0, +oo[, for all t € [0, T*[ by

def
w(t) = sup sup RIT
x€O()0<R=<pp(1) B HAVE)
x,

lw(z,t)|dz. 37

Let p be the function defined from [0, T*[ to [0, +o00[ for all t € [0, T*[ by

0(0) L 4(d + Deg(T* = D7 (1), (38)

where cg = % ifd=3,cqs= % else.
Let Ay be the function defined from [0, T*[ to [0, +oo] for all t € [0, T*[ by

A sup sup Dy(3,E(x+y,1),E(x, l))+‘ (39)
xeO(t) ye B(0,p())\{0} Iyl
Then if there exists t| € [0, T*[ such that
T+
/&mmm<+m, (40)

n
then the solution u cannot blowup at the finite time T*.
Moreover, we have for all t € [0, T*[ and x € O(1),

Viw|(x,t) =0and V - £(x,t) =0.

Proof. Let 0 < T < T*. We want first to apply Lemma 5.1 to the function w, then we check that the hypotheses of
the Lemma are satisfied.
Since u € C([0, T1; H" (R?)) N C([0, T1; H ~%(R%)), then we infer that w € C([0, T]; H"~'(R)) N C' (10, T'];

H"3(R?)). Thanks to the Sobolev embedding HS(RY) < BC™(RY) for s > 5 + m, m € N and since r > 5 +3
we deduce that w € C([0, T]; BC?(R%)) N C'([0, T]; BC(R?)). Thanks to (25), we get that i[gfﬂ lw(®)]loo > O.
tell,

d
Moreover, since w € C([0,TT; H’_l(Rd)) with r > 3 + 3, we have for any ¢ € [0, T], |o(x,t)] = 0 as |x| —
+00, the proof follows immediately by using the density of C§° (R4 in H"~'(R9) and the Sobolev embedding
d
H'Y(RY) — L®°[R?) forr > >+ 3.

Then thanks to Lemma 5.1, there exists R > 0 such that for all t € [0, T'], ||@(?)]lco = sup |w(x,t)|. Then for all
X€Bg

t €10, T], the set ®©(¢) defined by (34) can be rewritten as follows:
O@) ={x € Bp; lo(x,1)| = @ (t)loc}- 41

We introduce the direction of the vorticity & = % defined on the non empty open set O &ef {(x,1) e RY x
1)
[0, T]; |w(x,1)| > O}.
We set v = u in the case of 3D Navier-Stokes or 3D Euler equations and v = R+u with v = 0 in the case of 2D
QG equation.

Then by multiplying (17) or (18) by &, we get that for all (x,¢) € O,
A0 o1+ v ) - V0ol 1) = @Cx 1) - Vvl 1) - 6x.0)
—(x, v(x, 1) Viwo|(x,t) — (w(x, 1) - VIv(x,t) - E(x,
ot (42)

—vAJw|(x, 1) + Vo, )||VEE, DI =0.

We introduce the function ¢ defined for all ¢ € [0, T'] by

def
@)= sup |w(x,1)]
X€Bg
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and we search the expression of its derivative. For this, we use the main Theorem obtained in [68] or Theorem 1 in
[88] after verifying that the hypotheses of the Theorem are satisfied.
a
Since w € C([0, T]; BC*(R%)) N C([0, T]; BC(RY)), then we deduce that |w| € BC(O), % € BC(O) and
VZ|w| € BC(O). Since for any t € [0, T], ®(t) C O x {t}, then, thanks to the results obtained in [68] (see also
Theorem 1 in [88]), by using also (41) we obtain the expression of the derivative of ¢ given for any ¢ € [0, T'] by,

3o
©'(t)= sup a—(x,t). (43)
xe0®() 0t

Further for all x € ®(¢) C Bg, we have |w(x, )| = ¢(t) = ||w(t)] 0, We thus infer that
Viw|(x,t) =0and Alw|(x,1) <0. (44)
Therefore, we have for all x € ©(¢),

Aol =22 by v ) Viol )
—(x,t) = —(x, x,1) - V]w|(x,
ot ot

= (@, 1) - VYu(x, 1) - E(x, 1)+ vA|o|(x, 1) — v|w (@, )] VEK, )] (45)

< (@, 0)-Vv(x,1) -5, 1),

where we have used (42) for the second equality and (44) for the last inequality. We can notice that we get equality
for (45) in the case of 3D Euler or 2D QG equations, since for these equations we have not the terms vA|w|(x, t) and
v]w(x, 0l VEX, .

Then using (45), from (43), we obtain,

¢'(t) < sup (w(x,1)-VIv(x, 1) -&(x,1),
xe®(r)

which means that

d
d—llw(l)lloo < sup (w(x,0)-Vyv(x,1) -&(x,1), (46)
t xeO(r)

where equality holds in the case of 3D Euler or 2D QG equations. We use now the function « introduced in [60,30]
for the 3D Navier-Stokes or 3D Euler equations and in [46] for the 2D QG equation, defined for all (x, 7) € O by,
dy

Ol(xyf)=CdP-V-/Dd()A7,§(X+y7t),§(xaf))|0)(x+y9f)| W? (47)
R4

3
where y = |y_| and in the case of 3D Navier-Stokes or 3D Euler equations for which d =3, ¢y = = and in the case
y T

1

of 2D QG equation for whichd =2, ¢y = 3 We use the fact that |w(x + y,1)|E(x + y,1) = w(x + y, t) and the fact
4

that Dy is linear in comparison with its second variable, to rewrite (47) as follows:

d
a(x,t):ch.V./Dd()?,w(x+y,t),€(x,t))b}%. (48)
R

By using the Biot-Savart law (see [89]) for which in the case of Euler and Navier-Stokes equations, we have

1
v(x,1) = E/ Iy% x o(x + y)dy,
R3

and in the case of 2D QG equations, we get an equivalent formula

1 1
v(x, 1) = E/ ﬁw(x +y,0dy,
R2 Y
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we deduce as in [60,30] and [46] that for all (x,7) € O
(@, ) -Vv(x, 1) -&x, 1) =alx, D)o, )]
Therefore, from (46), we deduce that for all ¢ € [0, T'],

d
—llo@®llec < sup alx, H]w(x, )]

dt xe0(t)
(49)
= ( sup (Ot(x,t)> llw (@)oo,
x€0(r)
where we have used the fact that for all x € O(1), |w(x, t)| = ||w(?)| . Let us estimate now «(x, t) for any ¢ € [0, T']

and x € ©(¢). For this purpose, let us take ¢ € [0, T'] and x € ®(¢), then we decompose the term «(x, #) as the sum of
three terms,

ax,ty=hL+L+13 (50)
where,
. dy
h=co / Dy (5. s+ 3.0, 66,1 23 51)
B(0,min(p (1), 00(t)))
h=cq / Dy (5. o (x +y. 1), £(x. 1) fy% (52)

B(0,00(t))NB(0,min(p (1), 00(t)))¢
and
dy

lyld” 43

L=cq / Di(y,0(x+y,1),E(x,1))
B(0,po(1))*

Then, we estimate the three terms 1, I and I3. For the term I1, from (51) we get

I =ca Du 8t 2. 0 EC D)1y, ) dc}‘i]

_ [yl [y
B(0,min(p(r),po(r)))

lw(x 4y, 1)]

< cqAq(t) T

B(0,min(p (1), p0(1)))

dy

lw(z, )]
=cqA () / mdz

B(x,min(p (1), po(1)NV(1)°

lw(z, 1)
+ caAq(t) [P

B(x,min(p(t),00())NV(t)

dz

lw(z, 1)l

d
< cqAa(1)2(1) / M%-FCdAd(I) 1z =1 9%

B(0,p(1)) B(x,min(p(t), 00()NNV(t)
Furthermore, we have

dy
a1 =|B(0, D|p().

B(0,p(1))

4
Therefore, by using the fact that c4|B(0, 1)| < 1 (since |B(0, 1)| = ?n ford =3 and |B(0, 1)| = & for d = 2), we

deduce
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L=AOQLWPp@) +AsM) 11, (54)
where

lw(z, 1)]
|Z _ x|d—1 :
B(x,min(p (), 00(t))NV(1)

na e, (55)

t
Let g(¢) def L, then we have
llw (@)oo
w(z,t
I <ca |(7d)_|1d2+cd11,2, (56)
|z — x|
B(x,e(1))
with
def lw(z,1)]
La= ——dz. (57)
|z — x|

B(x,&(t))*NB(x,min(po(t), 00(1)))NV(t)
On one hand, we have

lw(z, 1) dz
Cd / Wdzfcd“w(t)”oo / |

z z—x|d-1
B(x.e(1)) B(x.£(1)) (58)

=cq|B(O0, Do (®)|loc £(1)
<m(t).
On the other hand, we estimate /1 7.

If V() =¥ or min(p(t), po(t)) < e(t) then from (57) we infer that I; = 0. Let us assume now that V(¢) # ¢ and
min(p(?), po(t)) > &(t). Then, from (57) we get

min(p(t),p0())

dy(z
Iio= Gl —LED | 4R
lz — x|
e(t) IB(x,R)NV (1) (59)
min(p (1), 00(t))
e(t) IB(x,R)NV (1)
We introduce the function F; defined from [0, po(#)] to [0, +o0o[ for all 0 < R < py(#) by
F(R)Y f lw(z, 1) dz. (60)
B(x,R)NV(1)
min(o (), p0(t))
We ob thtdF’(R) / lw(z, )| dy (z), then from (59) t1 dF’(R)dR
e observe that — = w(z, , then from (59) we ge = —_—
IR 2z vz get 112 R—T 4R
dB(x,R)NV(t) &(r)
and by using an integration by parts we obtain
F.(mi P min(p(t),po(t))F R
1), t t
o= z.(mln(,o( ), po(1)))  Fi(e(1) fd—1) 1( )dR. 1)
T min(p(@), po()?1 e(n)?! R4
e(t)
. Fi(R)
From (60), we notice that 7 (f) =  sup RIT’ then from (61) we deduce

0<R<po(t)
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min(p (), 00(t)) R
Lo <m(t)+(d— () f ax
e(t)
0 (14 0 g (M)
e(t)

Therefore whatever the case we get

Iia<7(t) (1+(d— 1)log* (W)) (62)
Since min(p (), po(t)) < p(¢) and thanks to (38) we get

i 00 _ 44 1 1yea (1% — Do)l

e(t)
SHT* =)o@ oo

Therefore from (62) we infer

Ly <7@) (14 d—Dlog" (4T* =)o ®)loo)) - (63)
Thanks to (55)—(58) and (63), we get

Iii <7 (@0) + cqm ()1 + (d — Dlog" (4(T* — D)l (1) ]| 0))- (64)
Then thanks to (64), from (54) we obtain

I <A@ Q) p (1) + 7 (1) + cam (1) (1 + (d — 1) log™ (4(T* = 1)@ (1)|00)))- (65)

By using the definition of the functions p and €2, for which we have Q(¢)p(t) <4cy(d + 1) (¢), from (65) we deduce
I <Ay (1) (4ea(d + 1) + 1+ ca(l+ (d — Dlogt (4(T* = 1)]|w®)llo0)))
<6A;(O)T (1) (1 +1og" (4(T* = D)@ (1)[l00)))-

For the term I given by (52), after using the change of variables z = x 4+ y, we decompose /> as the sum of two
terms 5,1 and I» 7 defined by

(66)

hy=ca / D= 0l 0,6 1) g 67)
B(x,p0())NB(x,min(p (), 00()) NV (1)°
and
— dz
Lo=cy Dd(z—x,w(z,l),é(x,t))m. (68)

B(x, po(t)NB(x,min(p (1), p0 (1)) NV(t)
Let us estimate the terms /1 and I» . For this purpose, we introduce the function y defined for all 7 € [0, T*[ by
y (t) = min (W, ,oo(t)>. From (67), we observe

lw(z, )]
|z — x|

hi<cq f Dy(z —x, &z, 1), E(x,0)*
B(x,po(1)NV(1)¢

Dy(Z — x,£(z, 1), E(x, 1)) T
|z — x|4

dz

<cqQt)
B(x,p0(t))

Dy(z —x,&(z,1), E(x, 1))* p
Z
lz — x4

dz

(69)

=caf2(1)
B(x.y(1)

Dy(z —x,&(z, 1), E(x, 1))*

+ ca€2(t) Z— x|

B(x,p0(t)NB(x,y (1))°

dz.
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Furthermore, on one hand, by (33) we have for all z € B(x, y()),

Dy(z —x,&(z, 1), E(x, )T < Ag(0)]z — x|,
and hence, we obtain

Dy(z —x,&(z,1), E(x, 1)) dz

Q) IZ—x|d dz < Ap(1)Q2(1) m
B(x,y (1)) B(x,y (1)) 0
— B0, )| Ao(Q(1)y () (70)
_ 1BO.DI
T 4(T*—1)

where we have used the definition of the function y. On the other hand, since |Dy (z/—\x, E(z,1),&(x,1))| <1, we get

Dz —x,E(z.1), E(x, 1)) T

dz
|z — x|4
B(x.po(0)NB(x.y ()¢
- dz
- |z — x|
B(x.po(0))NB(x,y (1)
po(t)ds (71)
=|B(0, 1)| —
y (1)
t
= |B(0. 1)|log (”0—())
140

<|B(0, D|log* (4p0(t) Ao()QUN(T* — 1)),

where we have used again the definition of the function y. Owing to (70) and (71), from (69), we deduce

Ir,1 = cq|B(0, D] ( +Q(1) log™ (40(1) Ao () Q(0)(T* — t))) . (72)

4(T* — 1)
For the term 1o 2, if V(t) =¥ or if p(¢) > po(¢) then from (68) we infer that I » = 0. Let us assume now that
V(t) # @ and p(t) < po(t). Then, from (68) we get

po(1)

dy(z
12,2=Cd/ / |0)(Z,[)||Zi(x|)d dR

p(t) 9B(x,R)NV(r)

(73)
po(t) 1
—a [ | [ eeoive|ar
o(t) 0 B(x,R)NV(1)
By using (60) and an integration by parts we obtain
F F “ F (R
t t
ba=cy 1(po(®))  Fi(p(1) d/ 1( )dR _ (74)
’ po(1)4 p ()4 Ra+1
p(1)
. Fi(R)
Since w(¢) =  sup 1 then from (74) we deduce
0<R=po(t)

po(t)

b <ca | 22 4 drna / dR
ho<cq| ——+dn —
po(t) R?

p(t)
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<catd+ ™2
- p()’

where we have used the fact that p(f) < po(t). Therefore whatever the case, we obtain that

b <catd+ 12D (75)

o)
By using (38) the definition of the function p, from (75) we deduce

hyp<———. 76
222 1y (76)
Owing to (72) and (76), since also that I, = I> 1 + I 2 and ¢4|B(0, 1)| < 1 we thus obtain
1
L < ———+Q(t)log" (4po(t) Ag()QE)(T* —1)). 77
2_2(T*—t)+ (1) log™ (40 (1) Ao (1)Q2(1)( ) (77

For the term I3 given by (53), to obtain a precise non blowup criterion for 3D the Navier-Stokes, 3D Euler and 2D
QG equations that could be used easily in numerical experiments, it was important to explicit the constant involved
in the estimate of the term I3. For this purpose, we deal first with the case of the 3D the Navier-Stokes and 3D Euler
equations, then after we consider the case of the 2D QG equations.

In the case of the 3D Euler or 3D Navier-Stokes equations for which d = 3, we get D3 (3, o(x + y, 1), &(x, 1)) =
(G-&@.0)det(, w(x +y, 1), £(x,1). Since det(P, @ (x +y, 1), £(x, 1) = E(x, D x $) - @(x+y. 1) and w(x +y, 1) =
Vy X u(x +y,t), we deduce

D33, w(x+y,0,6§0, 1) = -EC,))EC, 1) x ) Vy X ulx +y,1).

Then, after using an integration by parts, from (53), we deduce,

I =c3 Vy X ((y 5O, t)|)y(|$3(x’ s y)) ‘u(x +y,t)dy
B(0,p0(1))¢
. R (78)
. ((y'é(x,t)l)y(i(x,l)XY)>.§Xu(x+y,t)dy(y).

3B(0,00(1))

(- -&@x, 1)

IyI?
Vi x V4 (V x V)¥, we obtain after elementary computations, that for all y # 0,

‘Vy x <(§1.§(x,t))($3(x,t) X }7))‘ < ‘v <i3)‘ AR (g(x;z) <
] ] |

After setting ¥ (y) = and V(y) = (§(x,t) x ), by using the following vectorial identity V x (V) =

We have

5 3
v (%)‘ < 3 Furthermore, we have Vy x (£(x,) x $) = (Vy - E(,1) = (§(x.1) - V) and then
y y :

3
we deduce [V, x (§(x,1) x )| < |V -J|+|VF| < ﬁ After gathering these results, we obtain that for all y # 0,
y

‘V ((ﬁ-é(x,t))(é(x,t)xﬁ))‘ 6
y X

3 =a
|yl |yl
Therefore, from (78) we obtain

lu(x +y, 1) d
Tﬁydwﬂ / Iu(X+y,t)||y%dy(y)- (79)

B(0,p9(1))¢ dB(0,p0(1))
In the case of 2D QG equations for which d =2, we get D2 (3, w(x + v, 1), E(x, 1)) = (3 - E(x, D D) (w(x + y, 1) -
E(x,t)1). Since w(x +y,1) = Viru(x + y, 1), we deduce

Dy(§, 0(x +y,10),E(x, D) = (-0, NDIEX, D Viulx +y,1).

I3 < 6c3
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Then, after using an integration by parts, from (53), we deduce,

ol ((& £ DhEE. Dt
Y Iyl

Iz =—c )u(x—i—y,t)dy
B(0,p0(1))¢

<<9 e 0b)Ex D
e BE

(80)

) ~yLu(x + y,1).
9B(0,p0(1))

G-E@x,nH)

2
V + ¢ curlV, we obtain after elementary computations, that for all y # 0,

G -E(x,HEE, ¥
v ) = ()
y e = e

After setting Y (y) = and V(y) =&(x, Ht, by using the following vectorial identity curl(y V) = VJ‘I/f .

- 2
TP
Therefore, from (80) we obtain
ux+y,t ulx+y,t
I <2c |(|y7|3y)|dy+cz / %dy(y). 81)
B(0,p0(1))¢ 9B(0,p0(1))

Therefore, whatever the case considered, 3D Navier-Stokes, 3D Euler or 2D QG equations, from (79) and (81) we get

ulx+y,t ulx+y,t
Iy <d(d—1)eq %dﬁm / “wi'dy)'dy(y). (82)
B(0,po(1))¢ 9B(0,p0(1))
Then from (82), we obtain
d dy ()
I3 < callu®lloo [ dd = 1) MTyH + |Vy|§
B(0,po(1))¢ 9B(0,p0(1))
+00
ds B0, 1)) (83)
=callu®lloo | dd = DIBO. D] [ S +—=
s 0o (1)
po(t)
BN IOIES
po(1)

Then, owing to (66), (77) and (83), from (50) we deduce that for any ¢ € [0, T] and x € O(¢),

a(x, 1) <6A ()T ()1 +logt (4HT* — D)o ®)llo0)))
QIS (84)

+ Q1) log™ (4p0(t) Ao (LT ™ — 1)) +
oo(1)

1
+ 2(T* — 1)
By using (32), we deduce that for any ¢ € [0, T] and x € O(),

a(x,1) < 6A¢ ()7 (1) (1 +1log ™ (4H(T™ = )| (1) [l0)))

3 . . (85)
+ 3 = T RO 1T (Ge® AT ~1).

1
Furthermore, thanks to (35) we get (T* — 1)Q2(¢) logJr (Bpo(t)Ap(2)) < 3 and (T* — t)Q(¢) < 1 which implies that
log™ ((T* — t)Q2(¢)) = 0 and hence we obtain that for all ¢ € [0, T*[,
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(T* = Q1) log™ (4p0(DA(NQ)(T* — 1))
< (I* = Q) (log™ (4po(1)Ag(1)) +logt (Q)(T™* — 1))

= (T* —1)Qt) log" (4po(H)Ao(t))
1

<-.
-8
Therefore from (85), we deduce that for any 7 € [0, T] and x € O(¢),

7
a(x,1) < 6A4 () (1) (1 +1og " (4HT* = ) [|w(1)llo0)) + 8T 0 (86)

Then from (49) we deduce

d
27 10Wlleo = <6Ad(t)ﬂ(t)(1 +log " (H(T* = Do) ) + ) o) lloo. 87)

_
8(T*—1)

which is valid for all # € [0, T] and T < T* and then inequality (87) is valid for all ¢ € [0, T*[. Let tg € [0, T*[ such
that

4T* —19) < 1. (88)
Then we get that for all # € [fg, T*[, 4(T* —t) < 1 and hence

logt(4(T* — )llw(®)lloo)) < log™ (4(T* — 1)) +log™ & (t) oo

(39)
=log" ()l co-
Owing to (89), from (87) we deduce that for all 7 € [rg, T*[
d
E”w(t)”oo < <6Ad(t)7f(t)(1 +1og™ [|o(1)lloo) + m) llw () lloo- (90)
Thanks to Gronwall inequality, from (90) we deduce that for all 7 € [tg, T*[,
" + ;
0 (0)loo < llo (1) g o (AP IHOE Tl g7 )
1)

;
T —1\8 JH6A(r (@ 1+logt lo(T)lloo) de
= ( T* ¢ ) lew (20) | o€’ .

Since the function z — log™ (z) is non-decreasing on 10, +-00[, then after applying the function 1 + log™ to the
inequality (91) and using the fact that log™ (ab) <log™ a + log™ b, we thus obtain that for all ¢ € [#, T*[

*

,
T —1to\?8
1+1logt lo(t)[loo <1+ log (( ) ) +log™ o (1)l

T —t
t 92)
+6 / Ad(@)7 (@)1 +log* (7)) .

4]

7
Since the function ¢ — log ((%) 8) is increasing over [fg, T*[ then thanks to Gronwall Lemma, by (92) we

deduce that for all ¢ € [rg, T*[,

;
T* —1)\3 !
1+ logt ()l < <log (( T ) ) +1+log" ||w(to)||oo> Oy Mm@ T, (93)

Since log |w(t)]loo < 1 +1og™ | (?)]lc0, then from (93) we infer that for all ¢ € [z, T*[,
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7
T —10\3 !
o) |loo <exp <<10g (( T to) ) + 1+ logJr ||a)(l0)||oo> e()fto Ad(‘[)ﬂ(l’)d‘r)

- ze(,/‘,’o Ag(mm(r)de
61" Aul d —1)\?
= exp <(1 + 10g+ ||a)(t0)”oo) e fro (O T) ( T* — ¢ )

(94)

Let us assume that there exists #; € [0, T*[ such that leT* A (t)m(t)dt < +00. Then, in addition of (88), we choose

to € [t1, T*[ such that My, défftoT* As(Dr(t)dt < %log (%) We thus get for all ¢ € [y, T™[,

7 6y Aar@dr _ % oM 1.

Therefore with 1y, def %eGM’O, from (94) we deduce that for all 7 € [ro, T*[
T — to Mg
lo®)lloo < exp ((1+ log™ llo(10) ) €0 ) <ﬁ) : (95)

Since 1, < 1, from (95) we thus deduce that ftOT* lo(t)lloo dt < +o00. Since u € C([0, T*[; H., (R9)) and thanks to the

d
Sobolev embedding H” (R%) — BC3(RY) due to r > T 3, we infer that w € C ([0, T*[; BC%(R?)) which implies
T*

fo
that / lo(?)]lco dt < +00. Therefore we deduce that / lw(®)|lco dt < +00. If u blows up at the finite time 7* then
0 0

T*

thanks to (20) and (23) we have / llw(t)]loo dt = +00 which leads to a contradiction. Then, we deduce that u cannot

0
blow up at the time 7* which concludes the first part of proof.
Thanks to (44), we have already V|w|(x,?) =0. Since V - @ =0 and o = |w|&, then we get

0=V-w=|o|V -£+&- Vol (96)

However, for all x € O(¢), |w(x, )] = ||lw()]||co > 0 and from (44), we have V|w|(x, t) = 0. Therefore, from (96), we
deduce that for all t € [0, T] and x € ©(¢),

V. E(x,1) =0, 97)

which completes the proof. O
6. No blow up in finite time for numerical experiments

In this section, we show the non-blowup in finite time of the solutions of the 3D Euler equations in the numerical
experiments considered these last years.

First, we emphasize that the singularity discovered in [2] which lies right on the boundary is not relevant in the
case of the whole domain R3. Indeed recently, the authors found a convincing numerical evidence for a singular
solution to the Euler equations in a fluid with periodic boundary condition along the axial direction and no-flow
boundary condition on the solid wall [2] (see also [1]), for which the point of the potential singularity, which is also
the point of the maximum vorticity, is always located at the solid boundary. However thanks to Theorem 5.1, we
deduce that such singularity can not exist in the whole domain R3. Indeed, in the whole domain of R at any point of
the maximum vorticity, go € R>, thanks to Theorem 5.1 we get V|w|(qo, t) = 0 for any time ¢ before the alleged time
of singularity 7*, then this result combined with the fact that the vorticity w is a divergence-free vector field, yields
to get V - £(qo, t) =0 in Theorem 5.1. However in [2], the presence of a solid boundary and the fact that g¢ the point
of the maximum vorticity is always located on the solid boundary, prevent to get V|w|(go, t) = 0 and this allows to
get V- &(qo,t) ~ (T* — t)_z'9165 # 0 as it is observed in their numerical test. This latter is the main element used to
invalidate the Deng-Hou-Yu non-blowup criterion [42,64].



L. Agélas / Ann. I. H. Poincaré — AN 36 (2019) 1503-1537 1523

There have been many computational attempts to find finite-time singularities of the 3D Euler and Navier-Stokes
equations: see, e.g. [90-92,84,93,94,69]. One example that has been studied extensively in these numerical inves-
tigations is the interaction of two perturbed antiparallel vortex tubes. All the subsequent calculations assumed an
anti-parallel geometry, for which there are two symmetry planes. One in y — z is between the vortices and was called
the ’dividing plane’. The other in x — z is at the position of maximum perturbation and was called the ’symmetry
plane’. The difficulty faced in each computational attempts cited was to find a better initial condition within this ge-
ometry (see [95]). From these computational attempts, a numerical controversy takes place around the question to
know whether or not there is finite-time blow-up of the solutions of Euler equations (see [95]).

In this section, we propose an answer to this controversy by using our Theorem 5.1. By using the anisotropic
structure of regions of high vorticity described in [69,70], we show straightforward thanks to our Theorem 5.1 that the
solutions of Euler equations cannot blow up in finite time in these numerical experiments [69—71].

For this purpose, we give a first bound of the function 7 defined by (37) in the following Lemma. The bound given
in Lemma 6.1 of the function 7 is not a sharp bound but obtained without assumptions.

d
Lemma 6.1. Letd € (2,3}, up € H], (R withr > — +3. Let T* > 0 be such that there exists a unique strong solution
u to the 3D Navier-Stokes, 3D Euler equations (9)—(10) or 2D QG equations (11)—(12) in the class

ue C(0, T*; Hy R N C' (0, T*[; H 2 R)).
Under the definitions (32)—(37) in the Theorem 5.1, we have the following estimate: for all t € [0, T*[

7(0) <3lo®le sup V()N B, po(t)]4.
x€0(r)

Proof. Forany ¢ € [0, T*[, x € ©(¢) and 0 < R < pg(t), we get

lw(z,t)|dz < lo@lleeV() N B(x, R)|.

Rd-1 Rd—1

B(x,R)NV(1)

Furthermore, we have

V(1) N B(x, R)| = [V(t) N B(x, R)|7|V(t) N B(x, R)|“T"
< V() N B, R)|7[B(x, R)| ‘T
=B, D|“T V(1) N B(x, R)|7 R4~
<3V() N B(x, R)|7 R~!

2
47\ 3
where we have used the fact that [B(0, 1)|3 = (771) ifd=3o0r|B0,1)|? =n% ifd=2.
Then, we deduce for that any ¢ € [0, T*[, x € ®(¢) and 0 < R < po(t),

1
R lw(z, D dz < 3llw(®)llec V(1) N B(x, R)|4. (98)
B(x,R)NV(1)

Owing to (98), we thus conclude the proof. 0O

Now, we can show straightforward thanks to Theorem 5.1 and Lemma 6.1 that the solutions of Euler equations
cannot blow up in finite time in the numerical experiments [69-71].

For this purpose, we recall that in the numerical experiments [69,70], the author show that the blow-up rates at
some time 7™ the alleged time of singularity, to be considered for ||@ (¢)] 0o, [|t(?) ||co and || VE(2) |0 in [69,70] are

lo@lloo ~ (T* =~ u (@) lloo ~ (T* = )72 and [ VED)[loo ~ (T* —1)"2, 99)

for time 7 € [tg, T*[ with fy € [0, T*[ sufficiently close to T*. Moreover for time ¢ € [ty, T*[ with o sufficiently close
to 7%, the author showed that the support of the maximum vorticity
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£ ={x eR o, D]~ 0@}
is characterized by two length scales (T* — t) and (T* — t)% and its volume is bounded by

EDI S (T* =) (100)
Thanks to the blow-up rates (99), from (32) we get that for all ¢ € [7y, T*[

po(t) ~ (T* = 1)7.

From (33), thanks again to (99) we have that for all ¢ € [tg, T*[

Ao(t) < sup [IVE@) Lo (B(x,p0(1)))
x€eO(t)

ST -n7h,
Then we deduce that for all ¢ € [rg, T*[
Ao(t)po(?) S 1. (101)
Therefore thanks to (101), from the definition (35) of the function 2, we deduce for all ¢ € [7g, T*[
Q) > (T*—n~L (102)

Owing to (102) and since for all ¢ € [fg, T*[, [|& () |lco ~ (T* — 1)~! thanks to (99), for the set V(¢) defined by (36)
we deduce that for all ¢ € [zg, T*[

V() ={x e R Jo(x, )| ~ o))

Then thanks to (100) we get that for all ¢ € [7y, T*[

V() S (T* — 1) (103)

Thanks to Lemma 6.1, inequality (103) and the fact that ||w(¢)|lco ~ (T* — 1)~ ! thanks to (99), for the function 7
defined by (37), we get that for all 7 € [#g, T*[

7)< (T* —1)73. (104)

Furthermore, thanks to (99), for the function A3 defined by (39) for d = 3, we get that for all ¢ € [¢y, T*[

1
As(t) < IVE@D)lloo S(T*—1)72. (105)
Owing to (104) and (105) we deduce that for all ¢ € [fg, T*[

As(Om(t) < (T* —1)7s. (106)
Then, we deduce

T*

/A3([)7‘L’([) <(T* - to)% < +00. 107)

fo
Therefore, thanks to (107) and Theorem 5.1, we deduce that the solutions of the Euler equations considered for the
numerical experiments [69,70] cannot blow-up in finite time at the alleged time of singularity 7*. If one considers the
plausible scenario of blow up proposed in [5], one observed that we get also the blow-up rates (99) and the estimate

(100) (see [96, section 4]), hence the potential mechanism proposed for the blow-up in finite time of solutions of Euler
equations in [5] cannot in fact lead to the blow-up in finite time of the solutions of Euler equations.
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7. Toward the non blowup in finite time of the solutions

In this section, under mild assumptions deriving from the structure of the regions of high vorticity, we obtain the
non-blowup in finite time at some time 7* of the solutions of 2D QG, 3D Euler and 3D Navier-Stokes equations in
the case where

IVE@lloo ~ (T —1)7", 0<ye < 1.

In the previous section, we have outlined that the estimate obtained in Lemma 6.1 for the function 7 defined by (37)
is not sharp, then in the subsection 7.2 we propose a better estimate for the function 7 and go further in the non
blow-up criteria. However, before to deal with new non blow-up criteria in the subsection 7.2 we need to introduce in
the subsection 7.1 the Lagrangian flow map X and the definitions of vortex lines and vortex tubes in order to justify
the assumption (121) used in Proposition 7.1 and for their use in Lemmata 7.2, 7.3, 7.4 and in the Proposition 7.2.

7.1. Lagrangian flow map, vortex lines and vortex tubes

d
Letd e (2,3}, up € H, (R?) with r > = 4 2. Let T* > 0 be such that there exists a unique strong solution u to the
3D Euler equations (9)—(10) or 2D QG equations (11)—(12) in the class

ue (0, T*[; H.(RY)) nCl ([0, T*[; H ~'(RY)). (108)

Solutions in this class exist thanks to section 3. We set v = u in the case of 3D Euler equations and v = R1u in the
case of 2D QG equation.

d
Owing to u € C([0, T*[, H.(R4)) N C' ([0, T*[, H ~'(R?)) with r > 7+ 2 and thanks to the L2-boundedness of

d
the Riesz transforms, we infer that v € C ([0, T*[, H" (R%)) N C' ([0, T*[, H"~'(RY)) with r > >+ 2. Then by using

the Sobolev embedding, H™ (RY) < BC™"(RY) with n =[m — %] andm > ¢

7, We deduce that forany 0 < T < T*,

ue BCYR? x [0, T]), Vu € C([0, T*[; BC'(RY)) (109)
and
ve BC'(RY x [0, T]), Vv e C([0, T*[; BC'(R?)). (110)

In Proposition 7.1, in the case of 3D Euler equations and 2D QG equations, we give an estimate of the function 7
defined by (37). For this purpose, we need to give the definition of a vortex line and recall some results about the
Lagrangian flow map.

We thus introduce the flow map X («, 7, 7) the particle path that passes by o € R? at time t € [0, T*[. That is for
T € [0, T*[ fixed, X («, 7, t) solves on [0, T*[ (see chapter 4 in [97] for more details on the flow map X)

IX@ LD _ (X (e 1).1),

ot (111)
X(@,1,71)=aeR?,

Thanks to Cauchy-Lipschitz Theorem (see Theorems 2.2 and 2.13 in [98]), for any o € R and 7 € [0, T*[ thanks
to (110) we get that there exists an unique solution X (a, 7, -) € C'([0, T*[) to equation (111). For all ¢ € [0, T*[
and 7 € [0, T*[, the map X (-, 7, ) defined by equation (111) is a volume preserving C'-diffeomorphism from R¢
on itself. Indeed thanks to (110) and the Theorems 2.2, 2.10 and 2.13 in [98], we deduce that for any ¢ € [0, T*[
and T € [0, T*[, X(-,7,1) is a Cl—diffeomorphism from R? on itself with inverse X(-,t,t), we notice also X €
CHR? x [0, T*[x[0, T*[). Moreover for any t € [0, T*[ and T € [0, T*[, X (-, T, 1) is a volume preserving mapping
thanks to Proposition 1.4 in [97], for which we get

det(Vy X (@, 7, 1)) = 1. (112)

Furthermore, we have for all T € [0, T*[, t € [0, T*[ and « € R4 (see Proposition 1.8 in [97] or Proposition page 24
in [89] for Euler equations and see [65] for 2D QG equation),
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oX(a,1,1),t) =V X(a,7,H(a, T). (113)

Recall that a vortex line in a fluid is an arc on an integral curve of the vorticity w(x, t) for fixed ¢, and a vortex tube
is a tubular neighbourhood in R¢, d € {2, arising as a union of vortex lines. In what follows, we give a parametrization
of vortex lines and vortex tubes.

We set O déf{(x, ) €e R x [0, T*[; |w(x, T')| > 0} and for any ¢ € [0, T*[, O(r) oo {x e R%; |w(x,t)| > 0}. From
(25), we get that for any 7 € [0, T*[, O(¢) is nonempty. Thanks to (109), we get that w is continuous on R x [0, T*[
and then we deduce that O is an open subset of R4 x [0, T*[ and also that for all ¢ € [0, T*[, O(r) is an open
subset of RY. Notice thanks again to (109) that & and V& are continuous on . Then, we get that for all ¢ € [0, T*[,
£(.0) e ClOW)).

Then, for all € [0, T*[ and « € O(z), we denote by x;(c, -) : Jo.1 —> R¥ the vortex line that passes through « at
the time ¢ and defined by the ordinary differential equation:

0x;(a, s) .
T_E(Xt(avs)’t)5 (114)
X (o, 0) = a.

The set Ju,; C R not reduced to {0} denotes the maximal interval of existence of the unique solution x;(c, -) of (114),
this is ensured thanks to Cauchy-Lipschitz Theorem (see e.g. Theorems 2.2 and 2.13 in [98]). For any ¢ € [0, T*[, we
introduce U; = {(«, 5) € O(t) x R; x,(e, 5) € O(2)} the set of definition of the function x,. For any ¢ € [0, T*[ since
£(-, 1) € C(O(1)), then from Theorem 2.9 in [98], we get that X, is continuous on U;. We notice that U, = x,_1 O@))
and hence we obtain that U, is an open subset of O(f) x R.

From Theorem 2.10 in [98], we obtain that

x; € CH(U)). (115)

Any vortex tube ¥ at a time ¢ € [0, T*[ can be defined as ¥ &ef {x;(a, 8); ¢ € Ao, s € Iys C Ja.r} Where Ap is a
bounded smooth surface (resp. curve) of R3 (resp. of R?) and for each « € Ay, Iy ; s an interval of R containing 0.

7.2. Anisotropic structure for the improvement of non blow-up criteria

In this subsection, in Proposition 7.1 we propose to show that the function 7 (¢) defined by (37) involved The-
t

orem 5.1 is bounded by C (1 +log™ <%
collapse of regions of high vorticity containing the positions of the maximum vorticity. In Proposition 7.2, in the case
of the Euler and 2D QG equations, we improve logarithmically the result obtained in Proposition 7.1 by showing that
the function 7 is bounded.

These results come from the special feature of the structure of regions of high vorticity surrounding the peak of
vorticity {y € R4, lw(y,t)] Z lo(t)]leo} observed in the numerical experiments [70,69,74,75] and from analytical

models [75, section 3], [97, sections 1.4 and 1.5], namely they are pancake-like structure characterized by two length

1
scales whose one of it is bounded by O <7> and plays the role of the thickness of the pancake-like structure.

lo()lloo
This suggests that for any ¢ € [tg, T*[ with 19 € [0, T*[, x € O(1), A > Q(¢) the set {y € R?; |w(y,1)| > A} may be

)) by using assumptions related to the anisotropic scaling in the

1
characterized by three length scales whose one of them is of order % where 2 and © are respectively defined by (35)

and (34). Since for any 0 < R < po(¢) the set V) r(?) def {y € B(x, R); lw(y,t)| = A} C B(x, R), we thus expect that
1

the set V) g(¢) may have two of its length scales of order R and the third one of order T Then we expect that for any

tety, T*[,x € O@), L > Q() and 0 < R < po(1),

d—1
Vi, R St

(116)

In Lemma 7.1 we give an argument in favour of the assumption (116) in the case of 3D Euler equations and 2D
QG equation by using their Lagrangian structure. In Lemma 7.1, the property (P1) expresses the fact that we expect
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the length of any segment of a vortex line included in the structure V, g(#) is bounded by O(R), since V) g(t) C
B(x, R). Furthermore property (P2) expresses the pancake structure of regions of high vorticity observed in numerical
experiments. Indeed for the case of 3D Euler equations, if one assumes that the set VE’ r® dof x-! W, r(t), 10, 1) 1s
characterized by three length scales ZO, Eg, Zg associated to three main directions orthogonal between them pairwise,
then we should have for one of these length scales K(l) < EE’R(t) or Zg < Z%R(t) or Eg < Eg’R(t) (117). Let us say that
E(l) < Zgy & (1). Assuming that during the time between f¢ and 7 €]#, T*[ the set Vf\)’ g (t) becomes a pancake-shaped
structure, we thus expect that Eg <Ror Eg < R since V, g(f) C B(x, R). Let us say that Z(Z) < R. For the last length
scale Eg, we just expect that 2=0(0.

In the case of 3D Euler equations, we thus expect that |VE’ FIEOIBS Zg, r(OR.

In the case of 2D QG equations, we will have only the two length scales Z(l) and Kg and then we expect that

|VS, FIEOIBS 62’ (). Then Lemma 7.1 gives an explanation of assumption (116).

Lemma 7.1. Under the definitions (31)—(35) in the Theorem 5.1, we assume that there exists to € [0, T*[ such that
for any t € [0, T*[, 0 < R < po(t) and & = Q1) the sets Vi g(t) = {y € B(x, R); |o(y, D] = A} and VY (1) &

XYW r(1), 10, 1) satisfy:

(P1) |L; NV, r(t)| < R for any vortex line L; at time t,
(P2) V) g S €0 p(t)RI™% where

def
EE,R(I)é sup ILZODVS,R(t)I (117)

Ly CT (t0)

and T (ty) denotes the set of all vortex lines Ly, at time t.

Then, we get that for any t € [ty, T*[
d—1

NZWIGIPS lleo0) oo ——

Proof. Let us take ¢ € [7o, T*[. If | Vi r(¢)| = O the proof follows immediately. Then we assume that |V g(¢)| > 0.
We have |V r(t)| = |V£ g @] since X (-, 19, 1) is a volume preserving C L_diffeomorphism from R? to R4, then we

get |V)(\)’ (@] > 0 and Property (P2) yields to
Vi S € (ORI (118)

Furthermore for any vortex line L, at time fy, we notice X (L, N VE’ g, 10,1) = L NV, g(t) where L, is the vortex
line at time ¢ defined by L; = X (L4, fo, t). Then, for any vortex line L, at time fy such that |L; N VE’ r®] >0, by
using the equation just below of (3.12) in [42] and the definition of the set V), r(¢), we obtain
1L OVa O] A
1Ly NV O]~ leot0)lle

(119)

By using Property (P1), for any vortex line L, at time fy such that |L, N VS’ r®] > 0, we deduce from (119) that
R

|Liy NV ] ™ o) llso
R > o
6 @)~ o)l

which implies

(120)

Rd—l
Therefore by using (120), from (118) we thus infer |V, g ()| < [l@(10) oo 5 which concludes the proof. O

Thanks to assumption (116), we obtain the following Proposition 7.1.
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d
Proposition 7.1. Let d € {2,3}, up € H}, (R?) with r > = 4 3. Let T* > 0 be such that there exists a unique strong
solution u to the 3D Navier-Stokes, 3D Euler equations (9)—(10) or 2D QG equations (11)—(12) in the class

we C([0, T*[; HyRD) N C' ([0, T*[; H'>(RY).
Under the definitions (32)—(37) in the Theorem 5.1, we assume that there exists ty € [0, T*[ such that for any t €
[0, T*[, x € O(t), we get that for all A > Q(t) and 0 < R < py(t)
d—1

I{y € B(x,R): lw(y,1)| = A} <y :

(121)

Then we get that for all t € [ty, T*[

||w(t)||oo>.

() Sp 1+ logh ( 20

Proof. We have for all 7 € [tg, T*[, x € ©(¢) and 0 < R < pg(t)
lw(z,0)|
/ lw(z,t)|dz = / / drdz

B(x,R)NV(t) B(x,Rm)NV() 0

lo(z,0)]
=Q@®)|Bx, R)NV({@)| + / / didz
B(x,R)NV(1) Q)

= Q(1)|B(x, R) N V()| + / didz
{zeB(x,R), Q(t)<i<|w(z,1)|}
=Q()|B(x, R)NV(1)|
+ / {z € B(x, R); |w(z, )| > A} dA,
[ o () o]

where we have used Fubini-Tonelli Theorem. Thanks to (121) we deduce that for all ¢ € [fy, T*[, x € ©(¢) and
0<R < po(t)

N dh
lw(z,0)|dz <y RV 1+ -~
B(x,R)NV(1) [0, lo (1) loo] (122)

i (1ot (1001
=K (Hlog ( Q) ))

Owing to (122), we thus conclude the proof. O

Remark 7.1. The analysis led in [72,73] for the study of collapse of vortex lines and agrees with numerical experi-

1
ments [74,75] suggests that the thickness of the regions of high vorticity {y € B(x, R); |w(y, )| > A} is — and since
A2
d—1

these regions are included in the ball B(x, R), we expect that |{y € B(x, R); |o(y, )| = A}| <, ——- Then under
A2
this assumption and by using the same arguments as previously, we obtain

() < Q2.

Thanks to Theorem 5.1 and Proposition 7.1 we obtain Theorem 7.1.
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d
Theorem 7.1. Let d € {2,3}, up € H}, (R with r > = + 3. Let T* > 0 be such that there exists a unique strong
solution u to the 3D Navier-Stokes, 3D Euler equations (9)—(10) or 2D QG equations (11)—(12) in the class

ueC(0, T*[; H.(RY) nC' ([0, T*[; H ~2(RY)).

Under the definitions (32)—(35) in the Theorem 5.1, we assume that there exists ty € [0, T*[ such that for any t €
[to, T*[, x € ©(t), we get that for all .. > Q(t) and 0 < R < po(t)

d—1
A
Then if there exists t| € [ty, T*[ such that

|{y € B(-x’ R)v |w()’, t)' 2 )"}| 5[0

*

4 lo®llso
/Ad(t) (1 + log (790) )) dt < +o00,

1
then the solution u cannot blowup at the finite time T* where

A def Dd(f’,g(x+y’t),$(x,t))+
d(t) = sup sup
x€0(t) ye B(0, p(t)\{0} [yl

B . +(llo®lls
p(t)—0<(T t)(1+10g <7Q(t) )))

Remark 7.2. Under the considerations of Remark 7.1, the non blow-up of the solutions of Euler equations is obtained
if there exists #] € [fg, T*[ such that

T*
/Ad(t)sz(t)*% dt < +oo.

|

Now, in the case of Euler equations and 2D QG equations by using their Lagrangian formulation, after a fine and
sharp analysis of the expression of 7w (37) we go further in the non blow-up criteria by showing in Proposition 7.2
under mild assumptions based on the anisotropic structure of regions of high vorticity, that 7(t) = O(1). For this
purpose, we need the Lemmata 7.2, 7.3 and 7.4.

d
Lemma 7.2. Letd € {2,3}, ug € H. (R?) with r > 5 +3. Let T* > 0 be such that there exists a unique strong solution
u to the 3D Navier-Stokes, 3D Euler equations (9)—(10) or 2D QG equations (11)—(12) in the class

ue C(0, T*[; H.(RY)) n ([0, T*[; H ~2(RY)).

Let Ay be a smooth surface of R3 with boundary if d =3 or a curve of R? if d = 2. For any to € [0, T*[, let

Altg, t) def X (Ao, to, t) be the evolution of Ay through the flow map X from the time tq to t, for any t € [0, T*[. For
any to € [0, T*[ and t € [0, T*[, let

def

[(1,1) = f lw(y, 1) -n(y)|do(y),
Alto,1)

where n;(-) denotes a unit normal vector of A(ty, t).
Then for any tog € [0, T*[ we get that T'(ty, -) is constant over [0, T*[, that is to say for all t € [ty, T*],

['(tp, 1) = I' (20, 1o).
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Proof. Thanks to Lemma 5 and Remark 3 of [99] (see also (4.9) chapter 9 in [100]) and Lemma 7 of [99], we infer
that for any 79 € [0, T*[ and ¢ € [0, T*[

/ |w(y,t)"t(Y)|dG(Y)=/|CU(X(01,IOJ)J)(VX(OQ tO’t))_Tn(a)|dO(a)7
Alto, ) Ao

where n is a unit normal vector of Ag. Thanks to (113), we infer that for any o € Ay, 1o € [0, T*[ and ¢ € [0, T*[

o(X(a,tg,1),1) - (VX(a,ty, t))an(a) =w(a, ty) - n(x).

Therefore, we thus obtain that for any #y € [0, T*[ and # € [0, T*[

f lo(y,t) - n(y)ldo(y) = f |o(a, 1) - n(a)| do (o),
Alto,1) Ao

which concludes the proof. O

d
Lemma 7.3. Letd € (2,3}, up € H}, (R with r > > +3. Let T* > 0 be such that there exists a unique strong solution
u to the 3D Navier-Stokes, 3D Euler equations (9)—(10) or 2D QG equations (11)—(12) in the class

ue C(0, T*[; H.(RY) n ([0, T*[; H ~2(RY)).

Let t € [0, T*[ and X, a vortex tube at this time. Let A; and B; be two connected smooth orientable surfaces of R3
(resp. curves of R? if d = 2) with boundary such their boundary encircle the vortex tube %, and such that any vortex
line of the vortex tube X, intersects both A; and B; once each of them.

Then we get

/Iw(y,t)'nz(y)ldﬁ(y)=/Iw(y,l)'ﬁz(y)ldﬁ(y),
Ay B;

where n; and n; are respectively the unit normal vector varying smoothly on the surfaces (resp. curves if d =2) A,
and B,, oriented to be outward to the portion of the tube T, delimited by A, and ;.

Proof. For any x € A;, we denote by T, (x) the vortex line passing through x at time ¢, we get ¥, (x) C ¥, and there
exists an unique yy ; € B3; such that T, (x) N B; = {yx.;}. We thus introduce the function ®; defined from A; to 5, for
all x € A; by ®;(x) = y, ;. Since any vortex line of the vortex tube ¥, intersects both A, and 3; once each of them
and since also A; and I5; are smooth surfaces (smooth curves if d = 2), we infer thanks also to (115) that the function

®, is a homeomorphism from A; to ;.
We introduce the pairwise disjoints subsets of A;, namely A;" & {ye A, o(y, 1) - n(y) > 0}, A7 &ef {y e

Ao (v, 1) - n(y) < 0} and A? dof {y € Ai;(y, 1) - n;(y) = 0}. By the Sobolev embedding H"~!(R?) —
BC™ (R, m, =[r—1— %] > 2, we get w(t) € BC™ (R?). Then A;" and A, are open subsets of the surface
(curve if d =2) A, and thus they are also smooth surfaces (smooth curves if d = 2). On one hand, we have

[ 1000 mide = [106.0-mmidem + [ 1000 0ida)

A, At Al
+ [loG0 mmldo) 123)
a0

=/w(y,r)'nt<y>do<y>—/w(y,n-nf(y)do(y),
A Al
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where we have used the definition of the sets A", A" and .A?. Since ®; is a homeomorphism from A; to 5;, we get
that ®,(A") c B;, ®,(A;7) C B; and ®;(A) N ®,(A;) = @. On the other hand, thanks to Helmholtz’s first vortex
Theorem (see e.g. [101, chapter 2]), we have

/ 0(v.1) - my(V)do (y) = — / (1) - (N (), (124)
AF @ (A

and
/ 0y, 1) -1 (y)do(y) = — / 0y, 1) - iy (0)dG (3). (125)
Ar @, (A;)

Then owing to (124) and (125), from (123) we deduce

/ w(y. 1) - m(Wldo(y) = — / 00, 1) - iy (4)d5 (7)
A, @, (A
+ / 0y, 1) -ii ()5 (1),
@, (A))

which implies

/ 00, 1) - 1 ()]do () < / 00y, 1) - e ()45 (). (126)
A; B;

It remains to show that
/ 00y, 1) - iy ()]G () < / 00, 1) - m ()]do (). (127)
Br At

By introducing the pairwise disjoints subsets of 5;, namely B,+ def {y € Biyo(y,t) -, (y) > 0}, By def {y e

B, w(y,t) - n(y) <0} and B? def {y € B;; w(y,t) - n;(y) = 0} and using the fact that <I>;1 is a homeomorphism
from B; to A;, we deduce with the same arguments used to get (126), inequality (127). Then, owing to (126) and
(127) we conclude the proof. O

Before to turn to the proof of Lemma 7.4, Proposition 7.2 and Theorem 7.2, we need to introduce some definitions.
Letr > % 4+ 3 and T* > 0 be such that there exists an unique strong solution u to the 3D Navier-Stokes, 3D Euler
equations (9)—(10) or 2D QG equations (11)—(12) in the class

u e C([0, T*[; Hy(R) N C'([0, T*[; H'~*(R)).

For any ¢ € [0, T*[ and any vortex tube ¥, at time ¢, we define by

S(Z,) the set of the connected smooth orientable surfaces of R3 (curves of R? if d = 2) with boundary that is
intersected only once by any vortex line of ¥; and such that their boundary encircle the vortex tube T;.

We define also the function I'g, defined from S(%;) to [0, +oo[ for all A € S(T;) by

def
I, (A) S / lw(y, 1) -n(y)ldo(y). (128)
A
Thanks to Lemma 7.3, we deduce that for any ¢ € [0, T*[ and any vortex tube T, at time #
I'g, is constant over S(%;). (129)

Owing to (129), for any ¢ € [0, T*[ and any vortex tube ¥, at time 7, we define Tops(T,) that we call the absolute
strength of the vortex tube T, by
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Tabs(T1) & T, (Ay), (130)

with Ay an arbitrary element of S(%;). As vortex tube moves with the fluid characterized by the flow map X (thanks
to Helmholtz’s first vortex Theorem), then for any vortex tube T, at a time ¢ € [0, T*[, we deduce that X (%;,¢,7) isa
vortex tube at time 7 for any t € [0, T*[.

Thanks to Lemma 7.2, we infer that for any ¢ € [0, T*[ and any vortex tube T; at time ¢,

Tabs(Tr) = Tabs (X (%4, 1, 7)) for any 7 € [0, T, (131)

which means that the absolute strength of any vortex tube ¥; at a time 7 € [0, T*[ moving with the fluid does not
change with the time.

d
Lemma7.4. Letd € {2,3}, up € H, (R withr > — +3. Let T* > 0 be such that there exists a unique strong solution
u to the 3D Navier-Stokes, 3D Euler equations (9)—(10) or 2D QG equations (11)—(12) in the class
we C(0, T*[; Hy(R) N C' ([0, T*[; H' > (RY)).
Lett € [0, T*[ and X, a vortex tube at time t defined by %, &ef (% (a, 8); ¢ € As, s € Ji} with Ay a connected smooth
orientable surface of R? (curve of R? if d = 2) with boundary and J, an interval of R containing 0 such that

L Jl C ﬂ 30{,[)
ac A,
e any vortex line of the tube X, intersects A; only once, i.e.

VBeA, {x(B,s);s€Jp s NA ={B}. (132)
Then we have

/Iw(z,t)IdZ=IJz|rabs(Tz)-

%
Proof. If J, = 0 then the result follows immediately. Therefore we assume that J, # {0}. For any s € J;, we define
the smooth surface of R3 (curve of R%ifd = 2) with boundary,

Ar() € (% (o 5): @ € Ay,

Due to the definition of the vortex tube T;, we get that for any s € J;, the boundary of A4, (s) encircles the vortex tube
T;. Thanks to (114), we get

/Iw(z,t)ldz=/ / lw(y, D] |ni(s) - E(y, )| do (@)ds,
T sedr A (s)

where n; (s) is a unit normal vector of A (s). Since w(y, t) = |w(y, 1)|(y, t) then we obtain

flw(z,t)le=/ / lw(y, 1) -n:(s)| do(a)ds
T

seld;
sedr A;(s) (133)

= / [z, (A (s)) ds.
sel;

We show now that for any sg € J;, any vortex line of the vortex tube ¥, intersects .4, (sg) only once. For this purpose,
let oy € A;(sg). Thanks to Cauchy-Lipschitz Theorem (see e.g. Theorem 2.2 in [98]) used for (114), we deduce that
there exists an unique 8 € A, such that & = x, (81, o). Suppose for a contradiction that

{x:(B1,8); s 63/31,1} N A (so) # {o1}.
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Then there exists ap # o1 such that oo € {x;(B1,5); s € Jg,,+} N As(s0). Therefore we get that ap = x;(B1, 52) with
52 € Jp,.1» $2 # 80 since ap # 1. We get also that there exists an unique B, € A; such that oy = x;(8>, s9) where
B2 # B1 since op # a1. We thus infer that

X, (B1,52) =x,(B2, 50). (134)

By the maximality of x,, from (134) we infer that s — s € Jg,,, and B> = X,;(B1, 52 — So) which implies {81, B2} C
{x:(B1,5); s € Jp,,+} N A;. This latter contradicts (132). Therefore, we deduce that

{x:(B1.8); s 63/31,1} N A (so) = {o1}.

This means that the vortex line of the vortex tube ¥; passing through «; € A, (sg) intersects 4, (so) only once, which
matches to our desired result. Then we get that for any s € J;, A;(s) € S(%;) and hence thanks to (129) and (130),

from (133) we obtain / lw(z,t)|dz = |J;| Taps(%;). Then we conclude the proof. O
Y

d
Proposition 7.2. Let d € {2,3}, up € H}, (R?) with r > — + 3. Let T* > 0 be such that there exists a unique strong
solution u to the 3D Navier-Stokes, 3D Euler equations (9)—(10) or 2D QG equations (11)—(12) in the class
we C([0, T*[; HyR) nC' ([0, T*[; H'>(RY).
Under the definitions (32)—(37) in the Theorem 5.1, we assume that there exists ty € [0, T*[ such that for any t €

[to, T*[, x € O(t) and 0 < R < po(t) there exists a vortex tube T)If), defined by ‘I)If’t dof {x(at,8); ¢ € Af’t, s € I)ft}

with Af,z a connected smooth orientable surface of R? (curve of R? ifd =2) and I XR)I an interval of R containing 0
such that:

(P1) V()N B(x,R) C TX .

(P2) any vortex line of the tube Tf,, intersects .Af) ; only once.

(P3) IS SR

(P4) Fabs(‘zf’l) < v(h) RY™2 where V(to) > 0 is a real which depend only on ty (and have the characteristic of a
velocity).

Then we get that for all t € [ty, T*[
(1) S v(io).
Proof. Let? € [7, T*[, x € ©(¢) and 0 < R < py(t). Thanks to property (P1) we have
lw(z,t)|dz < / lw(z,1)|dz. (135)
B(x,R)NV(1) TR,
Furthermore, thanks to property (P2) and Lemma 7.4 we get
[ 10 ldz =118, TR, (136)
=¥
Thanks to the properties (P3) and (P4), from (136) we deduce
/ lo(z, 1) dz < R 0(10). (137)
=

Owing to (137), from (135) we infer
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lo(z, D) dz < RT10(1). (138)
B(x,R)NV(1)
From the definition (37) of the function 7, thanks to (138) we thus deduce that for all ¢ € [#y, T*[

(1) Sv(t),

which concludes the proof. O
In the two following Remarks, we give explicit values for v(z).

Remark 7.3. In the case of 2D QG equation for which d = 2, we have that for all ¢ € [ty, T*[,

(1) < lluolloos
if we replace the hypothesis (P4) by the assumption that the real-valued function w (-, #) - n keeps a constant sign over
Af, ;» Where n is a unit normal vector varying smoothly on Aﬁ P
Indeed in this case, we get fAf,t lw(a,t) - n(a)|da = ‘fAf,t w(a,t) -n(a)da| and furthermore thanks to Stokes
Theorem we have f AR, w(a,t) -n(a)doa =u(a,t) — u(ag, t) where oy and o are the two endpoints of the line
segment .Af’t. We thu<syinfer fAfJ (e, t) -n(a)|da <2||u(t)]lco = 2||uo]lco thanks to (22) and then we take v (7)) =
ltollco- Then with the properties (P1)—(P3), we thus obtain that for all ¢ € [z, T*[, 7 (¢) < ||uo]loo-

Remark 7.4. For any ¢ € [tp, T*[, x € ©(¢) and 0 < R < pg(¢) let us assume that there exists #1 € [0, #p] depending on

(ZR det

t, x and R such that for the vortex tube Ty,

X (%5 R .t 1) at time 7| we have

inf Al <RI,
AeSEE )

then Property (P4) holds with v(zp) = ||| LR x[0,10]) - Indeed thanks to (131) we have

lqabs( ;) = rabs(zx tl)
Furthermore, thanks to (129) and (130), we deduce that

Tabs( xn)— inf /Ia)(y 1) -n(y)ldo(y)
AeS(TR

xtl

Sllw(n)lloo inf | A

AeS(T Xf1)
5 ||CU||L0°(]RJX[0JO 1) R
Therefore, we deduce that I'abs( ) < o]l Lo (R4 x[0.10]) R?=2 which matches with Property (P4) for v(x) =

||60||L00(]Rd x[0,70])*

Then thanks to Theorem 5.1 and Proposition 7.2 we deduce Theorem 7.2.

d
Theorem 7.2. Let d € {2,3}, up € H}, (R with r > 3 + 3. Let T* > 0 be such that there exists a unique strong
solution u to the 3D Navier-Stokes, 3D Euler equations (9)—(10) or 2D QG equations (11)—(12) in the class

ue C(0, T*[; H.(RY) n ([0, T*[; H ~2(RY)).

Under the definitions (32)—~(36) in the Theorem 5.1, we assume that there exists ty € [0, T*[ such that for any t €

[to, T*[, x € O(t) and 0 < R < po(t) there exists a vortex tube T deﬁned by ‘ER def {x(ct, 8); ¢ € Af,, s € IRt}
with ARt a connected smooth orientable surface of R® (curve ofR2 ifd=2)and I t an interval of R containing 0
such that:
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(P1) V()N B(x,R) C TX,.

(P2) ISR

(P3) any vortex line of the tube ‘If,t intersects .Af’ ; only once.

(P4) I‘abs(‘Ifyt) < ﬁ(t())Rd_2 where V(tg) > 0 is a real depending only on ty (and have the characteristic of a veloc-

ity).
Then if there exists t| € [ty, T*[ such that
T*
/Ad(t) dt < +o0,
131
then the solution u cannot blowup at the finite time T* with
Dy(y, 1), E(x, )"
A E sup sup a (V. §(x +y,1),§(x, 1))
x€®(1) yeB(0,p(1)\{0) [yl
p(t) = O((T* — t)v(tp)).
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