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Abstract

We investigate the regularity issue for the diffuse reflection boundary problem to the stationary linearized Boltzmann equation 
for hard sphere potential, cutoff hard potential, or cutoff Maxwellian molecular gases in a strictly convex bounded domain. We 
obtain pointwise estimates for first derivatives of the solution provided the boundary temperature is bounded differentiable and the 
solution is bounded. This result can be understood as a stationary version of the velocity averaging lemma and mixture lemma.
© 2018 L’Association Publications de l’Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved.
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1. Introduction

In this article, we consider the stationary linearized Boltzmann equation

ζ · ∇f (x, ζ ) = L(f ), (1.1)

for ζ ∈ R
3 and x ∈ �, where � ⊂ R

3 is a C2 bounded strictly convex domain such that ∂� is of positive Gaussian 
curvature. Here, L represents the linearization of the collision operator. The collision operator in Boltzmann equation 
reads:

Q(F,G) =
∫
R3

2π∫
0

π
2∫

0

(
F(ζ ′)G(ζ ′∗) − F(ζ )G(ζ∗)

)
B(|ζ∗ − ζ |, θ)dθdεdζ∗, (1.2)

where ζ , ζ∗ and ζ ′, ζ ′∗ are pairs of velocities before and after the impact, and B is called the cross section, depending 
on interaction between particles. L is obtained by linearizing Q around the standard Maxwellian

M(ζ) = π− 3
2 e−|ζ |2 (1.3)

in the fashion
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F = M + M
1
2 f. (1.4)

L reads

L(f ) = M− 1
2 (ζ )[Q(M

1
2 f,M) + Q(M,M

1
2 f )]. (1.5)

Notice that Q and L only act on functions of ζ variable, while x is considered as a parameter rather a variable. The 
widely used angular cutoff potential is a mathematical model introduced by Grad [14] by assuming

0 ≤ B(|ζ − ζ∗|, θ) ≤ C|ζ − ζ∗|γ cos θ sin θ. (1.6)

In this article, we follow Grad’s idea and assume

B(|ζ − ζ∗|, θ) = |ζ − ζ∗|γ β(θ),

0 ≤ β(θ) ≤ C cos θ sin θ,

0 ≤ γ ≤ 1.

(1.7)

The range of γ we consider corresponds to the hard sphere model, cutoff hard potential, and cutoff Maxwellian 
molecular gases. We shall discuss the properties of L under our assumption (1.7) in detail in Section 2.

The boundary condition under the consideration is the diffuse reflection boundary condition:

(1) First, there is no net flux on the boundary.
(2) Secondly, the velocity distribution function reflected from the boundary is in thermal equilibrium with the bound-

ary temperature.

We use 
− to denote the incoming boundary:


− := {(x, ζ )|x ∈ ∂�, ζ · n(x) < 0}, (1.8)

where n(x) is the outward unit normal of Tx(∂�). In the context of the linearized Boltzmann equation, the mathemat-
ical formula of the aforementioned diffuse reflection boundary condition could be described as: for (x, ζ ) ∈ 
−,

f (x, ζ ) = ψ(x)M
1
2 + T (x)(|ζ |2 − 2)M

1
2 , (1.9)

ψ(x) = 2
√

π

∫
ζ ′·n>0

f (x, ζ ′)|ζ ′ · n|M 1
2 dζ ′. (1.10)

Here, T (x) is the temperature on the boundary. To state our main goal of mathematical analysis, we define, for given 
x ∈ �̄,

τ−(x, ζ ) = inf
{
t

∣∣∣ t > 0, x − tζ /∈ �
}
, and (1.11)

p(x, ζ ) = x − τ−(x, ζ )ζ. (1.12)

Under the assumption (1.7), L can be decomposed into a multiplicative operator and an integral operator:

L(f ) = −ν(|ζ |)f + K(f ). (1.13)

We take the integral operator K as the source term and rewrite (1.1) as

ζ · ∇f (x, ζ ) + ν(|ζ |)f (x, ζ ) = K(f ). (1.14)

The corresponding integral form of the solution to (1.14) is

f (x, ζ ) = f (p(x, ζ ), ζ )e−ν(|ζ |)τ−(x,ζ ) +
τ−(x,ζ )∫

0

e−ν(|ζ |)sK(f )(x − sζ, ζ )ds. (1.15)

We say f is a solution to (1.1) if f satisfies (1.15) almost everywhere. The existence of a solution to the presented 
problem has been established by Guiraud in 1970’s [15,16]. Recently, Esposito, Guo, Kim, and Marra extended 
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the result to non-convex domains in [12]. In particular, we notice that, under the assumption that T (x) is bounded, 
Proposition 4.1 of [12] implies the existence of L∞

x,ζ solution to (1.14) supplemented with the boundary conditions 
(1.9)–(1.10). Concerning L1 solutions, the linear case was done by Falk for convex domains [10], and the non-
linear case was solved by Arkeryd and Nouri for slab geometry [1]. In the present article, we shall assume that 
T (x) is bounded differentiable, i.e., T (x) is differentiable and its first derivatives are bounded, and we shall aim at 
proving the interior differentiability of the solution to the problem (1.14) supplemented with (1.9)–(1.10), see Theo-
rem 1.2.

It is worth mentioning that, in [12], they also proved that the solution is continuous away from the grazing set. For 
the higher regularity issue, by observing velocity averaging effect for the stationary linearized Boltzmann equation, the 
Hölder continuity up to 1

2 - away from the boundary was first established in [6] for inflow boundary value problems. 
In this article, we establish a pointwise estimate of the first derivatives of the solution. The main cruxes of this 
pointwise estimate are multifold. First, we need to overcome the difficulty brought by the diffuse reflection boundary 
condition. The diffuse reflection condition ((1.9) and (1.10)) involves the solution itself. Namely, inferring from (1.15)
and (1.9)–(1.10), since we only know that the solution f ∈ L∞

x,ζ , we cannot even take the formal derivative to f with 
respect to the space variable x. Secondly, we need to improve the regularity from Hölder continuity to differentiability. 
We shall discuss these issues in depth after introducing the main theorem. Regarding regularity issues for the time 
dependent Boltzmann equation, we refer the interested readers to [17–19].

We denote the distance of interior point x to ∂� by dx , namely

dx := inf
y∈∂�

|x − y|. (1.16)

We would like to specify the domain we are dealing with.

Definition 1.1. We say an open bounded strictly convex set � in R3 satisfies the positive curvature condition if ∂� is 
C2 and of positive Gaussian curvature.

The main result of this article is as follows.

Theorem 1.2. Assume � ⊂ R
3 satisfies the positive curvature condition defined in Definition 1.1 above. Under the 

assumption (1.7), suppose f ∈ L∞
x,ζ is a solution to the stationary linearized Boltzmann equation (1.1) with the 

diffuse reflection boundary condition (1.9)–(1.10) such that the boundary temperature T (x) (in (1.10)) is bounded 
differentiable, i.e., T (x) is differentiable and its first derivatives are bounded. Then, for ε > 0, we have

3∑
i=1

∣∣∣∣ ∂

∂xi

f (x, ζ )

∣∣∣∣+
3∑

i=1

∣∣∣∣ ∂

∂ζi

f (x, ζ )

∣∣∣∣≤ C(1 + d−1
x )

4
3 +ε, (1.17)

where x ∈ � and ζ ∈ R
3.

Remark 1.3. Notice that the right-hand side of the above estimate diverges to infinity as x approaches the boundary. 
This hints the possibility that regularity of solutions to Boltzmann equation may become worse near boundary. Actu-
ally, it was observed in a simpler geometrical setting, a slab domain, by numerical evidence that a jump discontinuity 
and a logarithmic singularity occurs at boundary [5,21].

Now we briefly recall some ideas about the velocity averaging effect for the stationary linearized Boltzmann 
equation on bounded convex domains introduced in [6]. We iterate the integral equation (1.15) again and ob-
tain
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f (x, ζ ) = f (p(x, ζ ), ζ )e−ν(|ζ |)τ−(x,ζ )

+
τ−(x,ζ )∫

0

∫
R3

e−ν(|ζ |)sk(ζ, ζ ′)e−ν(|ζ ′|)τ−(x−sζ,ζ ′)f
(
p(x − sζ, ζ ′), ζ ′)dζ ′ds

+
τ−(x,ζ )∫

0

∫
R3

τ−(x−sζ,ζ ′)∫
0

e−ν(|ζ |)sk(ζ, ζ ′)e−ν(|ζ ′|)tK(f )(x − sζ − tζ ′, ζ ′)dtdζ ′ds

=: I (x, ζ ) + II (x, ζ ) + III (x, ζ ).

(1.18)

For I and II , the regularity of the boundary is preserved by the transport. The velocity averaging effect would play 
an important role in the improvement of regularity for III . Notice that, thanks to nice property of the integral kernel, 
(2.6), in fact K(f ) is bounded differentiable in ζ provide f is bounded, i.e.,∥∥∥∥ ∂

∂ζi

K(f )

∥∥∥∥
L∞

ζ

≤ C‖f ‖L∞
ζ

. (1.19)

For time dependent kinetic equations defined on the whole space, it is well-known that velocity averaging effect com-
bining with transport effect can transfer regularity from velocity variables to space variables, e.g., famous Velocity 
Averaging Lemma [13] and Mixture Lemma [20]. As far as we know, there is no analogy result for the Mixture Lemma 
for stationary problems defined on bounded domains addressed elsewhere. To take care of the regularity of III , we 
change the variables ζ ′ to the spherical coordinates so that

ζ ′ = (ρ cos θ,ρ sin θ cosφ,ρ sin θ sinφ). (1.20)

Also, we change the traveling time to the traveling distance:

r = ρt. (1.21)

Let ζ̂ ′ = ζ ′
|ζ ′| . Then, we can rewrite III as

III =
τ−(x,ζ )∫

0

e−ν(|ζ |)s
∞∫

0

π∫
0

2π∫
0

|x−sζ−p(x−sζ,ζ ′)|∫
0

k(ζ, ζ ′)e− ν(ρ)
ρ

r
K(f )(x − sζ − rζ̂ ′, ζ ′)ρ sin θdrdφdθdρds

=:
τ−(x,ζ )∫

0

e−ν(|ζ |)sG(x − sζ, ζ )ds.

(1.22)

Notice that we can parametrize � by θ , φ, and r , thanks to the convexity of �. Therefore, by regrouping the inte-
grals, we can change the formulation to contain an integral over space: Let x0 = x − sζ and y = x − sζ − rζ̂ ′. We 
have

G(x0, ζ ) =
∞∫

0

∫
�

k

(
ζ, ρ

(x0 − y)

|x0 − y|
)

e
−ν(ρ)

|x0−y|
ρ K(f )

(
y,ρ

(x0 − y)

|x0 − y|
)

ρ

|x0 − y|2 dydρ. (1.23)

Notice that in the above formula, the velocity variables ζ ′ are replaced by the space variables x0 and y, and there-
fore the regularity in velocity variables can be transferred to space variables. However, the singularity in the above 
integral formula does not allow us to differentiate G(x0, ζ ) with respect to x0 directly. This is the reason why 
the result obtained in [6] is limited to the Hölder type continuity. In the present work, we overcome this obsta-
cle by bootstrapping the regularity from Hölder continuity to differentiability with the help of divergence theorem 
(see Section 10). Notice that there is only a very narrow window that one can carry out this strategy. To this 
aim, we make big efforts to significantly refine Hölder type estimates in Sections 6, 7, and 8. In addition, we 
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encounter not only the aforementioned cruxes but also the difficulties due to the diffuse reflection boundary con-
dition.

Now, we shall give a brief account of the strategy that we employ to overcome all the aforementioned subtleties. 
First, plugging (1.9) into (1.15), we have

f (x, ζ ) = (ψ(p(x, ζ )) + T (p(x, ζ ))(|ζ |2 − 2)
)
M

1
2 e−ν(|ζ |)τ−(x,ζ )

+
τ−(x,ζ )∫

0

e−ν(|ζ |)sK(f )(x − sζ, ζ )ds.
(1.24)

Notice that, by (1.10), ψ is only a bounded function provided f is bounded. Hence, we cannot even take a formal 
derivative on the first term of the right hand side of (1.24). To deal with the differentiability of the first term of the 
right hand side of (1.24), we only need to take care of the differentiability of ψ(p(x, ζ )). Plugging (1.24) into (1.10), 
we obtain

ψ(x) = 2
√

π

∫
ζ ·n(x)>0

T (p(x, ζ ))(|ζ |2 − 2)M(ζ )e−ν(|ζ |)τ−(x,ζ )|ζ · n(x)|dζ

+ 2
√

π

∫
ζ ·n(x)>0

ψ(p(x, ζ ))M(ζ )e−ν(|ζ |)τ−(x,ζ )|ζ · n(x)|dζ

+ 2
√

π

∫
ζ ·n(x)>0

τ−(x,ζ )∫
0

e−ν(|ζ |)sK(f )(x − sζ, ζ )M
1
2 (ζ )|ζ · n(x)|dsdζ

=: BT + Bψ + Df .

(1.25)

In the above expression, the domain of integration depends on the space variable x, which is not convenient for taking 
the formal derivatives. On the other hand, in the formula of Bψ , the integrand ψ is a function of p(x, ζ ). However, we 
only know that ψ is a bounded function. As we shall go into the details in Section 4, by using a sophisticated change 
of variables, we can rewrite Bψ as follows

Bψ(x) = 2

π

∞∫
0

∫
∂�

ψ(y)e−l2|x−y|2e− ν(l|x−y|)
l [(x − y) · n(x)]|(x − y) · n(y)|l3dA(y)dl. (1.26)

We notice that with the above expression, the domain of integration is fixed and the formal derivative of Bψ(x) with 
respect to x variable does not involve ψ . This creates a startup for our regularity analysis. We use the same fashion to 
deal with the regularity of BT .

For the term of Df , applying a similar approach as in [6], we can convert Df into the following formula

Df = 2π− 1
4

∞∫
0

∫
�

e
− ν(ρ)

ρ
|x−y|

K(f )

(
y,ρ

(x − y)

|x − y|
)

(x − y) · n(x)

|x − y| e− ρ2

2
ρ2

|x − y|2 dydρ. (1.27)

Similar to the treatment of III , the advantage we gain from the above transformation is that the regularity in velocity 
variables can be transferred to space variables. However, if we differentiate Df with respect to x variables directly, 
the formula has a singularity which damages the integrability of the resulting formula. Therefore, one can only claim 
the Hölder type regularity by an argument similar to [6]. Nevertheless, we can in fact further bootstrap the regularity 
to differentiability. For the details of the treatment, see Section 9.

The organization of the rest part of this article is as follows. We recapitulate the important properties of the lin-
earized collision operator L in Section 2. In Section 3, we prepare several useful auxiliary lemmas and propositions 
associated to the geometry of � which play crucial roles in the integrability arguments in the estimates of Section 4 – 
Section 9. In Section 10, we sum up the estimates from Section 4 to Section 9 and conclude the differentiability in x
variables. Section 11 is devoted to the differentiability in ζ variables.
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2. Properties of linearized collision operator

In this section, we summarize some known properties of the linearized collision operator L defined in (1.5) with a 
cross section satisfying our assumption (1.7) (see [2,7,14]). L can be decomposed into a multiplicative operator and 
an integral operator:

L(f ) = −ν(|ζ |)f + K(f ), (2.1)

where

K(f )(x, ζ ) =
∫
R3

k(ζ, ζ∗)f (x, ζ∗)dζ∗ (2.2)

is symmetric, i.e.,

k(ζ, ζ∗) = k(ζ∗, ζ ).

The explicit expression of ν is

ν(|ζ |) = β0

∫
R3

e−|η|2 |η − ζ |γ dη, (2.3)

where β0 = ∫ π
2

0 β(θ)dθ . Let 0 < δ < 1. The collision frequency ν(|ζ |) and the collision kernel k(ζ, ζ∗) satisfy

ν0(1 + |ζ |)γ ≤ ν(|ζ |) ≤ ν1(1 + |ζ |)γ , (2.4)

|k(ζ, ζ∗)| ≤ C1|ζ − ζ∗|−1(1 + |ζ | + |ζ∗|)−(1−γ )e
− 1−δ

4

(
|ζ−ζ∗|2+(

|ζ |2−|ζ∗|2
|ζ−ζ∗| )2

)
, (2.5)∣∣∣∣ ∂

∂ζi

k(ζ, ζ∗)
∣∣∣∣≤ C2

1 + |ζ |
|ζ − ζ∗|2 (1 + |ζ | + |ζ∗|)−(1−γ )e

− 1−δ
4

(
|ζ−ζ∗|2+(

|ζ |2−|ζ∗|2
|ζ−ζ∗| )2

)
. (2.6)

Here, the constants 0 < ν0 < ν1 may depend on the potential and C1 and C2 may depend on δ and the potential. Notice 
that (2.5) was established in [2] and (2.6) can be concluded by the observation in [7] in case the cross section satisfies 
(1.7).

Related to the above estimates, the following proposition from [2] is crucial in our study.

Proposition 2.1. For any ε, a1, a2 > 0,

∣∣∣ ∫
R3

1

|η − ζ∗|3−ε
e
−a1|η−ζ∗|2−a2

(|η|2−|ζ∗|2)2

|η−ζ∗|2 dζ∗
∣∣∣≤ C4(1 + |η|)−1, (2.7)

where C4 may depend on ε, a1, and a2.

Using the (2.6) and Proposition 2.1, we can conclude∥∥∥∥ ∂

∂ζi

k(ζ, ζ∗)
∥∥∥∥

L∞
ζ L1

ζ∗
< ∞,

∥∥∥∥ ∂

∂ζi

k(ζ, ζ∗)
∥∥∥∥

L∞
ζ∗L1

ζ

< ∞. (2.8)

Then, by Schur’s test, we can conclude the following smoothing effect of K in velocity variable mentioned in [7].

Proposition 2.2. For 1 ≤ p ≤ ∞,∥∥∥∥ ∂

∂ζi

K(f )

∥∥∥∥
L

p
ζ

≤ C‖f ‖L
p
ζ
. (2.9)
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3. Geometric properties

In this section, we shall prove several important auxiliary lemmas and propositions which play important roles in 
our regularity theory. We first briefly recapitulate some important ingredients of differential geometry from [9] that 
we are going to employ.

Definition 3.1. Let M be a differentiable Riemannian manifold equipped with the Riemannian connection ∇ . 
A parametrized curve φ(t) : [0, r] → M is called a geodesic curve if

∇φ′(t)φ
′(t) = 0 (3.1)

for t ∈ (0, r).

If |φ′(t)| ≡ 1, we call φ(t) a normalized geodesic. In this case, t is the arc length of the geodesic segment between 
φ(0) and φ(t). It is well-known that there exists a unique vector field on T M , the tangent bundle of M , whose 
trajectories are of the form t → (φ(t), φ′(t)), where φ is a geodesic on M . This vector field is called the geodesic 
field on T M and its flow is called the geodesic flow on T M . The general existence theory of ODE systems implies 
the following property of geodesic flow.

Proposition 3.2. Given p ∈ M , there exist a neighborhood V of p in M , a number ε > 0 and a C∞ mapping φ :
(−2, 2) ×U → M , U = {(q, w) ∈ T M; q ∈ V, w ∈ TqM, |w| < ε} such that t → φ(t, q, w), t ∈ (−2, 2), is the unique 
geodesic of M which, at the instant t = 0, passes through q with velocity w, for every q ∈ V and for every w ∈ TqM , 
with |w| < ε.

Let p ∈ M and U ⊂ T M given by the above proposition. The exponential map on U is defined as

Expq(v) = φ(1, q, v) = φ(|v|, q,
v

|v| ), (q, v) ∈ U. (3.2)

In the context of our theory, we shall use the C2 differentiable structure of the aforementioned geometric tools. The 
following lemma is our first main results of this section.

Lemma 3.3. Suppose � satisfies the positive curvature condition defined in Definition 1.1. Then, there exists a con-
stant C depending only on the geometry of domain � such that for any interior point x ∈ �, we have∫

∂�

1

|x − y|2 dA(y) ≤ C(
∣∣ lndx

∣∣+ 1), (3.3)

where dx = d(x, ∂�) and A(y) is the surface element of ∂� at point y ∈ ∂�.

Lemma 3.3 is crucial in the proof of the refined Hölder type estimate (6.5) in Lemma 6.1 as well as Proposition 10.4. 
We may get a hint by directly calculate the integral over a bounded set on a plane. A special regular case of Lemma 3.3
is the case where ∂� is a sphere, for which one may prove Lemma 3.3 by direct calculation. To deal with the general 
case, we need the following proposition.

Proposition 3.4. Suppose � satisfies the positive curvature condition defined in Definition 1.1. Then, there exists a 
constant r1 (see (3.14)) depending only on � such that for any x ∈ � and p0 ∈ ∂� satisfying that (p0 − x) is parallel 
to n(p0), where n(p0) is the unit outward normal of ∂� at p0, there holds the following inequality

|x − p0|2 + 1

2
|v|2 ≤ |Expp0(v) − x|2, (3.4)

for 0 ≤ |x − p0| ≤ r1 and v ∈ Tp0(∂�) with 0 ≤ |v| ≤ r1.

Here, Expp0 is the exponential map from the tangent space Tp0(∂�) to ∂�.



752 I-K. Chen et al. / Ann. I. H. Poincaré – AN 36 (2019) 745–782
Since � ⊂ R
3 is a C2 convex bounded domain such that ∂� is of positive Gaussian curvature, by continuity of 

curvatures and the compactness of ∂�, we see that there are uniform positive upper and lower bounds for normal 
curvature and Gaussian curvature of ∂�. Regarding the identity map as an immersion of ∂� into the Euclidean 
space R3, we equip ∂� with the induced metric and the corresponding the Riemannian connection (also known as 
Levi-Civita connection) structure. We use the notation

GB(p, r) := {Expp(v)
∣∣|v| < r

}
(3.5)

to denote the geodesic ball (which is also known as normal ball) on ∂� centered at p ∈ ∂� with geodesic radius r . 
Noting that

(1) d(Expq)0 is the identity map of Tq(∂�),
(2) ∂� is of positive Gaussian curvature,
(3) Gaussian curvature is the same as sectional curvature for two dimensional manifold,

and applying the Rauch theorem (see, for example, [3,9]), we see that there is a uniform radius, r0, and a positive 
constant a0 < 1 such that for every point p ∈ ∂� the exponential map Expp : Tp(∂�) → ∂� is one-to-one and the 
Jacobian satisfies

a0 ≤
∣∣∣det

(
∂Expp

∂X

)∣∣∣≤ 1 (3.6)

within the r0-neighborhood of Tp(∂�). With the above understanding, we now start to prove Proposition 3.4.

Proof. We are going to estimate the distance between x ∈ � and a point in the geodesic ball centered at p0. We 
choose the coordinate such that p0 = (0, 0, 0), x = (0, 0, −d). Without loss of generality, we only need to consider 
the points on the normal geodesic φ(s) = (φ1(s), φ2(s), φ3(s)) with φ(0) = (0, 0, 0) and φ′(0) = (1, 0, 0). Since 
normal curvature is bounded, there exist constants 0 < a < b independent of p0 and φ such that

0 < a ≤
∣∣∣∣ d2

ds2 φ(s)

∣∣∣∣≤ b, (3.7)

for all s ∈ (−r0, r0). By φ′(0) = (1, 0, 0), we derive from (3.7) that

1 − bs ≤ φ′
1(s) ≤ 1 + bs, (3.8)

−bs ≤ φ′
2(s) ≤ bs, (3.9)

−bs ≤ φ′
3(s) ≤ bs. (3.10)

Therefore,

s − 1

2
bs2 ≤ φ1(s) ≤ s + 1

2
bs2, (3.11)

−1

2
bs2 ≤ φ2(s) ≤ 1

2
bs2, (3.12)

−1

2
bs2 ≤ φ3(s) ≤ 1

2
bs2. (3.13)

For further discussion, we define

r1 := min
{
r0,

1

4b

}
. (3.14)

In the following analysis, we assume that

0 ≤ s ≤ r1, and 0 < d ≤ r1.

Case 1: d > 1
2bs2. In this case, we have

φ3(s) + d > d − 1
bs2,
2
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and

|φ(s) − x|2 ≥ φ2
1(s) + φ2

2(s) +
(

d − 1

2
bs2
)2

≥
(

s − 1

2
bs2
)2

+ 02 +
(

d − 1

2
bs2
)2

= d2 + (1 − bd − bs)s2 + 1

2
b2s4

≥ d2 + 1

2
s2.

Case 2: d ≤ 1
2bs2. In this case, we see that

|φ(s) − x|2 ≥ φ2
1(s)

≥
(

s − 1

2
bs2
)2

=
(

1

2
bs2
)2

+ (1 − bs)s2

≥ d2 + 1

2
s2.

Now, for v ∈ Tp0(∂�) with 0 ≤ |v| ≤ r1, by choosing the coordinate properly, we have φ(s) = Expp0(v) with s = |v|. 
Summing up Case 1 and Case 2, we conclude Proposition 3.4. �
Remark 3.5. Taking (3.14) into account, by (3.11), we see that

s ≤ 8

7
|φ(s) − φ(0)|. (3.15)

Proof of Lemma 3.3. Let GB(p, r) be the geodesic ball on ∂� centered at p with geodesic radius r . We first take 
care of the case where dx ≤ r1. We define

D0 := {p ∈ ∂�
∣∣(p − x)//n(p), dx ≤ |p − x| ≤ r1

}
, (3.16)

D1 :=
⋃

p∈D0

GB

(
p,

1

10
r1

)
. (3.17)

By the Vitali’s covering lemma, we see that there exists a countable subcollection D̃0 of D0 such that⋃
p∈D̃0

GB(p, 1
10 r1) is a disjoint union of geodesic discs GB(p, 1

10 r1) and

D1 ⊂
⋃

p∈D̃0

GB

(
p,

5

10
r1

)
. (3.18)

On the other hand, due to (3.6), there is a uniform lower bound A1 of the area of GB(p, 1
10 r1) for any p ∈ ∂�. Since ⋃

p∈D̃0
GB(p, 1

10 r1) is a disjoint union of GB(p, 1
10 r1) and the area of ∂� (denoted by A2) is finite, the cardinality 

of D̃0 satisfies

#(D̃0) ≤ A2

A1
< ∞. (3.19)

We remark that, by the above argument, the upper bound of the cardinality #(D̃0) is independent of the position of x. 
For the sake of convenience, we list all the elements of D̃0 as follows

D̃0 =
{
p1,p2, · · · ,pm

}
, (3.20)
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where m = #(D̃0), and define the sets

D2 :=
m⋃

i=1

GB(pi, r1) and

D3 := ∂� \ D2.

Note that since D2 is an open subset of ∂�, D3 is a compact set. Hence, there is a point p′ ∈ D3 that realizes the 
distance of x and D3.

We claim that

|p′ − x| = d(x,D3) >
r1√

2
. (3.21)

Suppose, on the contrary, |p′ − x| = d(x, D3) ≤ r1√
2

. We first observe that if p′ is an interior point of D3, due to 

|p′ − x| = d(x, D3), we see that (p′ − x) //n(p′) and hence p′ ∈ D0. This violates to p′ ∈ D3. On the other hand, if 
p′ ∈ ∂D3, then there exists pj ∈ D̃0 such that p′ ∈ ∂GB(pj , r1). Therefore, there exists v ∈ Tpj

(∂�) with |v| = r1
such that Exppj

(v) = p′. Applying Proposition 3.4, we derive that

|x − pj |2 + 1

2
r2

1 ≤ |p′ − x|2 ≤ 1

2
r2

1 . (3.22)

This implies x = pj which is a contradiction. We then conclude the claim.
It is easy to see that∫

D3

1

|x − y|2 dA(y) ≤ 2

r2
1

∫
∂�

dA(y) ≤ 2A2

r2
1

. (3.23)

On the other hand,

∫
GB(pi ,r1)

1

|x − y|2 dA(y) ≤
r1∫

0

2π∫
0

1

|x − pi |2 + 1
2 s2

sdsdθ

≤ 2π

1
2 r2

1∫
0

1

d2
x + u

du

≤ 4π
∣∣ lndx

∣∣+ 2π

∣∣∣∣ln
(

d2
x + 1

2
r2

1

)∣∣∣∣
≤ C

(
1 + ∣∣ lndx

∣∣) .

(3.24)

Taking (3.23) and (3.24) into account, we prove Lemma 3.3 for the case where dx ≤ r1. For the case where dx > r1, 
we may bound the left hand side of (3.3) by the right hand side of (3.23). This completes the proof of Lemma 3.3. �

Next, we investigate the estimates given in the following lemma.

Lemma 3.6. Adopting the same geometric assumptions on � as stated in Definition 1.1, let r1 be as defined by (3.14)
in Lemma 3.3. Then, there exists a constant C such that for any x, y ∈ ∂� with y ∈ GB(x, r1), we have

|n(x) · (x − y)| ≤ C|x − y|2, (3.25)

|n(y) · (x − y)| ≤ C|x − y|2, (3.26)

|n(y) · v| = |n(y) · (v − v′)| ≤ C|x − y|, (3.27)

where v ∈ Tx(∂�) is a unit vector and v′ ∈ Ty(∂�) is the parallel transport of v from Tx(∂�) to Ty(∂�).

The above lemma is crucial in the proofs of the Lemma 4.2 and Lemma 9.1. These geometric observations can 
resolve the difficulty from seemingly critical singularity (barely non-integrable) on a surface encountered in the proofs.
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Proof. By choosing an appropriate coordinate system, we may assume x = (0, 0, 0), n(x) = (0, 0, 1) and φ(s) is the 
normal geodesic on ∂� connecting x and y within the geodesic disc GB(x, r1) such that⎧⎪⎨

⎪⎩
φ(0) = x,

φ′(0) = (1,0,0),

Expx((τ,0,0)) = φ(τ) = y.

Replacing s by τ in the estimates (3.11)–(3.13), we obtain

|x − y| ≥ |φ1(τ )| ≥ τ − 1

2
bτ 2 ≥ (1 − 1

2
br1)τ ≥ 1

2
τ, and

|n(x) · (x − y)| = |φ3(τ )| ≤ 1

2
bτ 2 ≤ 2b|x − y|2.

This proves (3.25). By symmetry, (3.26) is derived from (3.25). To see (3.27), by replacing s by τ in (3.8)–(3.10), we 
obtain

|n(y) · v| = |n(y) · (v − v′)| ≤ |v − v′|
= |φ′(0) − φ′(τ )| ≤ √

3bτ

≤ 2
√

3b|x − y|.
Finally, we may choose C = 4b so that (3.25)–(3.27) hold true. �

The next lemma is an important ingredient of the proof of the Hölder type estimate up to the boundary, Lemma 8.1.

Lemma 3.7. Suppose � satisfies the positive curvature condition defined in Definition 1.1. Then, there exists R0 > 0
depending only on � such that if x ∈ ∂�, y ∈ �, and

dy ≤ R0, (3.28)

then a point Y ∈ ∂� such that d(Y, y) = dy is unique. Furthermore, there exist C′
1, C′

2 > 0 such that, for y ∈ �

satisfying (3.28) and x ∈ ∂�, if

n(Y ) · (x − y) ≥ 0, (3.29)

then

|x − y| ≤ C′
1d

1
2
y , (3.30)

or if

n(Y ) · (x − y) ≤ 0, (3.31)

then

|x − y| ≥ C′
2d

1
2
y . (3.32)

Proof. It is well known that there exists R1 > 0 such that dy ≤ R1 implies the existence of unique projection Y on ∂�. 
The important task is to prove the second part of the lemma. Because of the assumption on �, there exist R3 > R2 > 0
such that for every point p on ∂� there exist a sphere So(p) with radius R3 and a sphere Si(p) with radius R2
both tangent to ∂� at p and So(p) contains the whole � and while Si(p) is contained completely within �. We let 
R0 = min{R1, R2} and consider y with dy ≤ R0. We name the centers of So(Y ) and Si(Y ) as Yo and Yi respectively. 
Also, we name the plane perpendicular to n(Y ) passing through y as L. L divides ∂� into two components. If 
n(Y ) · (x − y) ≥ 0 then x and Y fall in the same component. −→yx intersects So(Y ) at one point X′. Let L′ be the plane 
passing x, y, and Yo. There are two intersection points among L, L′, and So(Y ). We name the one closer to X′ as A. 
We can observe

|x − y| ≤ |X′ − y| ≤ |A − y|. (3.33)
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Let θ = � AYoy. Then,

cos θ = |y − Yo|
|A − Yo| = R3 − dy

R3
= 1 − dy

R3
. (3.34)

Therefore,

dy

R3
= 1 − cos θ = 2 sin2 θ

2
. (3.35)

We obtain

sin
θ

2
=
√

dy

2R3
. (3.36)

On the other hand, we have

|A − y| = R3 sin θ = 2R3 sin
θ

2
cos

θ

2
≤√2R3

√
dy. (3.37)

We finished the proof of (3.30). If n(Y ) · (x − y) ≤ 0, then x and Y are on different components. Let B be the 
intersection point between xy and Si(Y ). We have

|x − y| > |y − B|. (3.38)

We name the plane passing through y, Yi , and x as L1 and the plane perpendicular to n(Y ) passing through Yi as L2. 
There are two intersection points among L, L1, and Si(Y ). We denote the intersection point which is closer to B as U . 
If B lays between L and L2, then

� BUy ≥ π

2
. (3.39)

Therefore,

|B − y| ≥ |U − y|. (3.40)

Let θ ′ = � UYiy. Similarly, we have

sin
θ ′

2
=
√

dy

2R2
(3.41)

Therefore,

|y − U | = R2 sin θ ′ = 2R2 sin
θ ′

2
cos

θ ′

2
≥ √

2R2 sin
θ ′

2
≥√R2dy. (3.42)

For the case Y and B are on different side of L2,

|y − B| ≥ R2 ≥√R2dy. (3.43)

Hence, we finish the proof. �
4. Differentiability of Bψ and BT

By (1.10), the definition of ψ , we see that ψ is bounded whenever f ∈ L∞
x,ζ . In this section, we shall further prove 

that the first derivatives of BT and Bψ are bounded provided T and ψ are bounded. By the differentiability on the 
boundary of �, we refer to the directional derivatives:

Definition 4.1. Let x, η ∈ R
3 and D be a C1 surface in R3 and f : D ⊂ R

3 → R. Suppose φ : (−ε, ε) → D is a 
smooth space curve such that

φ(0) = x,
d

dt
φ(t)

∣∣∣∣ = η. (4.1)

t=0
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We define

∇x
η f (x) := d

dt
f (φ(t))

∣∣∣∣
t=0

(4.2)

when the limit at right-hand-side exists.

Our first result in this section is the following lemma.

Lemma 4.2. Suppose � satisfies the positive curvature condition defined in Definition 1.1 and x ∈ ∂�. Suppose T (x)

and ψ(x) are bounded. Then, the first derivatives of BT (x) and Bψ(x) are bounded.

Recall that, for x ∈ ∂�, we have

BT (x) := 2
√

π

∫
ζ ·n>0

T (p(x, ζ ))(|ζ |2 − 2)M(ζ )e−ν(|ζ |)τ−(x,ζ )|ζ · n|dζ, (4.3)

Bψ(x) := 2
√

π

∫
ζ ·n>0

ψ(p(x, ζ ))M(ζ )e−ν(|ζ |)τ−(x,ζ )|ζ · n|dζ. (4.4)

We shall only present the proof for Bψ because the proof for BT is similar. The following proposition gives a useful 
alternative formulation of Bψ .

Proposition 4.3.

Bψ(x) = 2

π

∞∫
0

∫
∂�

ψ(y)e−l2|x−y|2e− ν(l|x−y|)
l [(x − y) · n(x)]|(x − y) · n(y)|l3dA(y)dl. (4.5)

Proof. The idea of showing the equivalence between (4.4) and (4.5) is to do a change of coordinates. We first observe 
that, by the strictly convexity of �, for each ζ in the half space

H =
{
ζ ∈R

3
∣∣∣ζ · n(x) > 0

}
,

there exists exactly a unique pair (y, l) ∈ ∂� ×R+ such that

ζ = l(x − y). (4.6)

Secondly, since the bounded set � is C2 strictly convex, we can cover ∂� by finitely many local charts, i.e., for 
1 ≤ i ≤ k, there are{

simply-connected open set Di ⊂R
2, and

C2 local diffeomorphism φi : Di → ∂�

such that⋃
1≤i≤k

φi(Di) = ∂�.

Summing up from the above observations, we can parametrize the half space H by a union of a finite number of cone 
domains. That is to plug y = φi(α, β) into (4.6). This gives a coordinate change ζi : Di × (0, ∞) → H :

ζi(α,β, l) = l
(
x − φi(α,β)

)
. (4.7)

Denote Hi := ζi(Di × (0, ∞)). We see that H = ⋃k
i=1 Hi . On the other hand, direct calculation shows that the 

Jacobian of this coordinate change is given by∣∣∣∂ζi(α,β, l)
∣∣∣= l2

∣∣∣(x − φi(α,β)
) · (∂αφi × ∂βφi

)∣∣∣. (4.8)

∂(α,β, l)
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We readily see that

2
√

π

∫
Hi

ψ(p(x, ζ ))M(ζ )e−ν(|ζ |)τ−(x,ζ )|ζ · n|dζ

= 2

π

∞∫
0

∫
Di

ψ(φi(α,β))e−l2|x−φi(α,β)|2e− 1
l
ν(l|x−φi(α,β)|)

× [(x − φi(α,β)) · n(x)]|(x − φi(α,β)) · [∂αφi × ∂βφi]|l3dαdβdl

= 2

π

∞∫
0

∫
φi(Di)

ψ(y)e−l2|x−y|2e− ν(l|x−y|)
l [(x − y) · n(x)]|(x − y) · n(y)|l3dA(y)dl,

(4.9)

where y = φ(α, β), n(y) is the outward unit normal of ∂� at y and A(y) is the surface element of ∂� at y.
Combining all the pieces and excluding the repetitions, we obtain the desired formula. �

Definition 4.4. For x, y ∈ � and ζ ∈R
3, we define

τ−(x, ζ ) := inf{t > 0|x − tζ /∈ �}, (4.10)

p(x, ζ ) := x − τ−(x, ζ )ζ, (4.11)

dx := inf
{|x − y|∣∣y ∈ ∂�

}
, (4.12)

dx,y := min{dx, dy}, (4.13)

N(x, ζ ) := |n(p(x, ζ )) · ζ |
|ζ | . (4.14)

Now, we are ready to prove the Lemma 4.2

Proof of Lemma 4.2. Let α(t) be a normal geodesic and v ∈ Tx(∂�), |v| = 1 such that

α(0) = x,

d

dt
α(t)

∣∣∣∣
t=0

= v.
(4.15)

Then

∇x
v Bψ(x) := d

dt
Bψ(α(t))

∣∣∣∣
t=0

=
∞∫

0

∫
∂�

ψ(y)e−l2|x−y|2e− ν(l|x−y|)
l l3

×
[(

−2l2v · (x − y) − ν′(l|x − y|)v · (x − y)

|x − y|
)

(x − y) · n(x)|(x − y) · n(y)|

+ v · n(x)|(x − y) · n(y)| + (x − y) · d

dt
n(α(t))

∣∣∣∣
t=0

|(x − y) · n(y)|

+ (x − y) · n(x)sgn((x − y) · n(y))(v · n(y))
]
dA(y)dl.

(4.16)

We note that due to the convexity of �, sgn((x −y) ·n(y)) = −1. Let r1 > 0 be as defined by (3.14) in Proposition 3.4. 
Since � is a C2, bounded and strictly convex domain, there exists a positive number r such that for each x ∈ ∂�, we 
have

Br(x) ∩ ∂� ⊂ GB(x, r1).
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We now break the domain of integration into two parts: Br(x) ∩ ∂� and ∂� \ Br(x), and denote the corresponding 
integrals as ∇x

v Bs
ψ and ∇x

v Bl
ψ(x) respectively. First, we estimate ∇x

v Bl
ψ(x). We notice that

(i) v · n(x) = 0,
(ii) |y − x| ≥ r , for y ∈ ∂� \ Br(x),

(iii) d
dt

n(α(t)) is bounded due to smoothness and compactness of ∂�,
(iv) ν′(l|x − y|) ≤ C(1 + l|x − y|)γ−1, which is uniformly bounded,
(v) as mentioned in the beginning of this section, ψ is bounded since f ∈ L∞

x,ξ in our context.

Taking (i)–(v) into consideration, we obtain that

|∇x
v Bl

ψ | ≤ C

∞∫
0

∫
∂�\Br(x)

e−r2l2(l3 + l5)dA(y)dl ≤ C|∂�|. (4.17)

Secondly, since Br(x) ∩ ∂� ⊂ GB(x, r1), we may apply Lemma 3.6 to obtain

|∇x
v Bs

ψ(x)| ≤ C

∫
GB(x,r1)

∞∫
0

e−l2|x−y|2[l5|x − y|5 + l3|x − y|4 + l3|x − y|3]dldA(y)

≤ C

∫
GB(x,r1)

∞∫
0

e−z2[ z5

|x − y| + z3 + z3

|x − y|
]
dzdA(y)

≤ C

∫
GB(x,r1)

(1 + 1

|x − y| )dA(y)

≤ C

r1∫
0

2π∫
0

(1 + 1

r
)rdθdr ≤ C.

(4.18)

Notice that here z = |x − y|l and (r, θ) are polar coordinates for the Tx(∂�). Combining the estimates (4.17) and 
(4.18), the proof of Lemma 4.2 is complete. �
5. Hölder continuity of Df

Recall that in (1.25) we define

Df (x) := 2
√

π

∫
ζ ·n>0

τ−(x,ζ )∫
0

e−ν(|ζ |)sK(f )(x − ζ s, ζ )M
1
2 (ζ )|ζ · n|dsdζ, (5.1)

for x ∈ ∂�. In this section, we shall prove the Hölder continuity of Df . Let {n(x), e2, e3} be an orthonormal basis of 
Tx(∂�). We introduce spherical coordinates so that

ζ = ρ cos θn(x) + ρ sin θ cosφe2 + ρ sin θ sinφe3. (5.2)

With the further coordinate change: r = sρ, ζ̂ = ζ
|ζ | , y = x − rζ̂ , we can rewrite Df as

Df = 2π− 1
4

∞∫
0

π
2∫

0

2π∫
0

|p(x,ζ )x|∫
0

e
− ν(ρ)

ρ
r
K(f )(x − rζ̂ , ζ )e− |ζ |2

2 |ζ · n(x)|ρ sin θdrdφdθdρ (5.3)

= 2π− 1
4

∞∫
0

∫
�

e
− ν(ρ)

ρ
|x−y|

K(f )(y,ρ
(x − y)

|x − y| )
(x − y) · n(x)

|x − y| e− ρ2

2
ρ2

|x − y|2 dydρ.
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Lemma 5.1. Suppose x0 and x1 are any two points on ∂�. We have

|Df (x0) − Df (x1)| ≤ C‖f ‖L∞
x,ζ

|x0 − x1|
(
1 + ∣∣ ln |x0 − x1|

∣∣) . (5.4)

Proof.

|Df (x0) − Df (x1)| ≤
∣∣∣∣2π− 1

4

∞∫
0

∫
�

[
K(f )(y,ρ

(x0 − y)

|x0 − y| ) − [K(f )(y,ρ
(x1 − y)

|x1 − y| )
]

× e
− ν(ρ)

ρ
|x0−y|− ρ2

2 ρ2 n(x0) · (x0 − y)

|x0 − y|3 dydρ

∣∣∣∣
+
∣∣∣∣∣2π− 1

4

∞∫
0

∫
�

[K(f )(y,ρ
(x1 − y)

|x1 − y| )

×
[
e
− ν(ρ)

ρ
|x0−y|− ρ2

2 ρ2 n(x0) · (x0 − y)

|x0 − y|3 − e
− ν(ρ)

ρ
|x1−y|− ρ2

2 ρ2 n(x1) · (x1 − y)

|x1 − y|3
]

dydρ

∣∣∣∣∣
=: �Df K + �Df O.

(5.5)

We first estimate �DfK . We break the domain of integration into two parts, �1 = � ∩ B(x0, 2|x0 − x1|) and �2 :=
� \B(x0, 2|x0 −x1|), and denote the corresponding integrals as �D1

fK and �D2
fK respectively. Because of smallness 

of the domain of integration, by (2.2) and (2.5), one may readily derive that

|�D1
f K | ≤ C‖f ‖L∞

x,ζ
|x0 − x1|. (5.6)

To estimate D2
fK , by employing the Lipschitz continuity of K(f ):

|K(f )(y, ζ1) − K(f )(y, ζ2)| ≤ C‖f ‖L∞
x,ζ

|ζ1 − ζ2|, (5.7)

we get∣∣∣∣K(f )(y,ρ
(x0 − y)

|x0 − y| ) − K(f )(y,ρ
(x1 − y)

|x1 − y| )
∣∣∣∣

≤ C‖f ‖L∞
x,ζ

∣∣∣∣ρ(x0 − y)

|x0 − y| − ρ(x1 − y)

|x1 − y|
∣∣∣∣

≤ Cρ‖f ‖L∞
x,ζ

∣∣∣∣ |x1 − y|(x0 − y) − |x0 − y|(x1 − y)

|x0 − y||x1 − y|
∣∣∣∣

≤ Cρ‖f ‖L∞
x,ζ

∣∣∣∣ |x1 − y|(x0 − x1) + (|x1 − y| − |x0 − y|)(x1 − y)

|x0 − y||x1 − y|
∣∣∣∣

≤ C
ρ|x0 − x1|
|x0 − y| ‖f ‖L∞

x,ζ
.

(5.8)

Therefore,

|�D2
f K | ≤ C|x0 − x1|‖f ‖L∞

x,ζ

∞∫
0

∫
�2

e
− ν(ρ)

ρ
|x0−y|− ρ2

2
ρ3

|x0 − y|3 dydρ

≤ C|x0 − x1|‖f ‖L∞
x,ζ

∞∫
0

e− ρ2

2 ρ3dρ

R∫
2|x0−x1|

1

r
dr

≤ C|x0 − x1|(1 + |ln |x0 − x1||)‖f ‖L∞
x,ζ

.

(5.9)

Now, we proceed to estimate �DfO . Suppose 0 < r < r1 as chosen in the proof of Lemma 4.2 so that for every 
x ∈ ∂�, we have
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Br(x) ∩ ∂� ⊂ GB(x, r1).

CASE 1. If 2|x0 − x1| ≥ r , we see that

�Df O

|x0 − x1| ≤
C‖f ‖L∞

x,ζ

r
. (5.10)

CASE 2. In case of 2|x0 − x1| < r , we split the domain of integration into two parts: �1 = � ∩ B(x0, 2|x0 − x1|)
and �2 := � \ B(x0, 2|x0 − x1|), and denote the corresponding integrals as �D1

fO and �D2
f O respectively. Due to 

smallness of domain of integration, we have

|�D1
f O | ≤ C‖f ‖L∞

x,ζ
|x0 − x1|. (5.11)

To estimate �D2
fO , we let x(t) ⊂ GB(x0, r1) ⊂ ∂� be the normal geodesic connecting x0 and x1 with

x(0) = x0, x(s) = x1, (5.12)

where s is the geodesic distance between x0 and x1 on ∂�. We observe that

d

dt

(
e
− ν(ρ)

ρ
|x(t)−y| n(x(t)) · (x(t) − y)

|x(t) − y|3
)

= −ν(ρ)

ρ

x′(t) · (x(t) − y)

|x(t) − y| e
− ν(ρ)

ρ
|x(t)−y| n(x(t)) · (x(t) − y)

|x(t) − y|3

+
( ( d

dt
n(x(t))) · (x(t) − y)

|x(t) − y|3 − 3

(
n(x(t)) · (x(t) − y)

)(
x′(t) · (x(t) − y)

)
|x(t) − y|5

)

× e
− ν(ρ)

ρ
|x(t)−y|

.

Hence,

∣∣∣ d

dt

(
e
− ν(ρ)

ρ
|x(t)−y| n(x(t)) · (x(t) − y)

|x(t) − y|3
)∣∣∣≤ Ce

− ν(ρ)
ρ

|x(t)−y|( 1

|x(t) − y|3 + (1 + ν(ρ)

ρ
)

1

|x(t) − y|2
)
.

By the fundamental theorem of calculus, we derive that

�D2
f O =

∣∣∣∣∣2π− 1
4

∞∫
0

∫
�2

K(f )(y,
x1 − y

|x1 − y|ρ)

s∫
0

d

dt

(
e
− ν(ρ)

ρ
|x(t)−y|− ρ2

2 ρ2 n(x(t)) · (x(t) − y)

|x(t) − y|3
)

dtdydρ

∣∣∣∣∣
≤ C‖f ‖L∞

x,ζ

∣∣∣∣∣
s∫

0

∞∫
0

ρ(1 + ρ)e− ρ2

2

∫
�2

(
1

|x(t) − y|3 + 1

|x(t) − y|2 )dydρdt

∣∣∣∣∣
≤ C‖f ‖L∞

x,ζ

∣∣∣∣∣
s∫

0

∞∫
0

ρ(1 + ρ)e− ρ2

2

2π∫
0

π∫
0

R∫
|x0−x1|

(1 + 1

r
) sin θdrdθdφdρdt

∣∣∣∣∣
≤ C‖f ‖L∞

x,ζ
|x0 − x1|

(
1 + ∣∣ ln |x0 − x1|

∣∣) ,

(5.13)

where we have used the inequality

s ≤ 8

7
|x0 − x1|

addressed in Remark 3.5. Combining the above estimates of �D1
fK , �D2

f K , �D1
f O and �D2

f O , the proof of 
Lemma 5.1 is complete. �



762 I-K. Chen et al. / Ann. I. H. Poincaré – AN 36 (2019) 745–782
6. Hölder type estimates revisited

From the previous sections, we in fact can already claim interior Hölder continuity by an argument similar to [6]. 
In order to further bootstrap the regularity to differentiability, those estimates need to be significantly refined. In this 
section, we are going to prepare some estimates for I and II defined in (1.18). In the next section, Section 7, we will 
further improve the Mixture Lemma for stationary solution introduced in [6]. This series of discussions of Hölder 
continuity for Boltzmann equation was started from the observation for one spacial demensional problem in [4].

Our goal in this section is to prove the following lemma.

Lemma 6.1. Assume that � satisfies the geometric assumptions defined in Definition 1.1. Suppose that for fixed 
0 < ε < 1

6 , there exist a, M0 > 0 such that

|f (X, ζ ) − f (Y, ζ )| ≤ M0|X − Y |1−εe−a|ζ |2 , (6.1)

|f (X, ζ )| ≤ M0e
−a|ζ |2 , (6.2)

for all (X, ζ ), (Y, ζ ) ∈ 
−. Then, there exists a constant C such that for any x, y ∈ �,

|I (x, ζ ) − I (y, ζ )| ≤ C
1

dx,y

|x − y|1−εe− a
2 |ζ |2 , (6.3)

|I (x, ζ ) − I (y, ζ )| ≤ C

( |x − y|1−ε

N(x, ζ )
+ |x − y|

N(x, ζ )|ζ | + |x − y|1−ε

N(y, ζ )
+ |x − y|

N(y, ζ )|ζ |
)

e−a|ζ |2 (6.4)∫
R3

|k(ζ, ζ ′)||I (x) − I (y)|dζ ′ ≤ C(1 + d−1
x,y)

1
3 (
∣∣ lndx,y

∣∣+ 1)|x − y|1−ε, (6.5)

where I is defined in (1.18).

We need some observations in geometry to prove the above lemma.

Proposition 6.2. Let x and y be interior points of �. We denote p(x, ζ ) and p(y, ζ ) by X and Y respectively. Then

|x − X| ≥ dx

N(x, ζ )
. (6.6)

Further more, if |x − X| ≤ |y − Y |, then

|X − Y | ≤ 1

N(x, ζ )
|x − y|, (6.7)

∣∣|x − X| − |y − Y |∣∣≤ 2

N(x, ζ )
|x − y|. (6.8)

Proof. Let us first prove (6.6). Let F be the projection of x on the tangent plane TX(∂�). Because of convexity, xF

intersects ∂� at one point F ′. Then,

|x − X|N(x, ζ ) = |x − F | ≥ |x − F ′| ≥ dx, (6.9)

which implies (6.6).
When (x − y) //ζ , (6.7) and (6.8) are trivial. If not, we let

e1 := ζ

|ζ | , (6.10)

e3 := e1 × (y − x)

|e1 × (y − x)| , (6.11)

e2 := e3 × e1. (6.12)
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Also, we denote

n1 = n(X) · e1, (6.13)

n2 = n(X) · e2, (6.14)

n3 = n(X) · e3 (6.15)

n′ = n1e1 + n2e2. (6.16)

Notice that n2
1 + n2

2 + n2
3 = 1 and N(x, ζ ) = |n1|. Let E be the plane containing x, y, X and Y and 
∗ = ∂� ∩ E. We 

are going to discuss plane geometry on the plane E. Since |X − x| ≤ |Y − y|, the point y∗ := y + X − x lies on the 
line segment yY . If y∗ = Y , it is obvious that (6.7) and (6.8) hold true. In what follows, we assume y∗ �= Y . Due to 
the convexity of �, the tangent line of 
∗ passing X would intersect the half line 

−→
yY at a single point Y ∗. For the sake 

of convenience, we define

θ1 = � XYy∗, θ2 = � XY ∗Y, θ3 = � Yy∗X.

By the law of sines, we see that

Xy∗
sin θ1

= XY

sin θ3
and

Xy∗
sin θ2

= XY ∗
sin θ3

.

In case θ1 ≥ π
2 it is obvious that

XY < Xy∗ = xy. (6.17)

In case θ1 < π
2 , by monotonicity of sine function on the interval [0, π2 ] and the fact θ1 > θ2, we see

XY = sin θ2

sin θ1
XY ∗ < XY ∗ <

1

sin θ2
Xy∗ = 1

sin θ2
xy. (6.18)

On the other hand, one may readily see that

sin θ2 =
∣∣∣∣e1 · n′

|n′|
∣∣∣∣=
∣∣∣∣∣∣∣

n1√
n2

1 + n2
2

∣∣∣∣∣∣∣ .
Summing up of (6.17) and (6.18), in any case, we obtain that

|X − Y | ≤ 1

sin θ2
|x − y| ≤ 1

|n1| |x − y| = 1

N(x, ζ )
|x − y|. (6.19)

Finally,

∣∣|x − X| − |y − Y |∣∣≤ |X − Y | + |x − y| ≤ 2

N(x, ζ )
|x − y|. (6.20)

This completes the proof of Proposition 6.2. �
Next, we shall prove the following proposition which has been mentioned in [6].

Proposition 6.3. Let � be a C1 bounded convex domain in R3. Suppose x ∈ �, X = p(x, ζ ) ∈ ∂�, and z ∈ xX. Then,

dz ≥ dx

R
|z − X|, (6.21)

where R is the diameter of �.

Proof. We denote a point on ∂� that realizes dz by Z. Let Lx be the plane passing x perpendicular to ζ . Let LZ be 
the plane passing Z, z, and x. We denote the intersection point of Lx , LZ , and ∂� on the same side with Z on LZ to 
Xx by A. Let θ1 = � ZXz, θ2 = � XZz, and θ ′ = � AXz. Due to the convexity of �, we have
1
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1 ≥ sin θ1 ≥ sin θ ′
1 = |A − x|

|A − X| ≥ dx

R
, (6.22)

where R is the diameter of �. By the law of sines,

dz ≥ dz sin θ2 = |X − z| sin θ1 ≥ |X − z|dx

R
. (6.23)

This concludes the proposition. �
Now, we are ready to prove Lemma 6.1.

Proof. Without loss of generality, we may assume |X − x| ≤ |Y − y|. Hence,

|I (x, ζ ) − I (y, ζ )| = |f (X, ζ )e
−ν(|ζ |) |X−x|

|ζ | − f (Y, ζ )e
−ν(|ζ |) |Y−y|

|ζ | |
≤ |f (X, ζ ) − f (Y, ζ )|e−ν(|ζ |) |X−x|

|ζ | + |f (Y, ζ )|∣∣e−ν(|ζ |) |X−x|
|ζ | − e

−ν(|ζ |) |Y−y|
|ζ |
∣∣

≤ Ce−a|ζ |2
(

(
|x − y|
N(x, ζ )

)1−ε + (
ν(|ζ |)|x − y|
N(x, ζ )|ζ | )

)
e
−ν(|ζ |) dx

N(x,ζ )|ζ |

≤ Ce−a|ζ |2
(

(
|ζ ||x − y|

dx

)1−ε + (
|x − y|

dx

)

)

≤ Cd−1
x |x − y|1−εe− a

2 |ζ |2 .

(6.24)

Notice that we have used the mean value theorem and Proposition 6.2 in the above estimate. We observe that the third 
line of (6.24) gives

|I (x, ζ ) − I (y, ζ )| ≤ C

( |x − y|1−ε

N(x, ζ )
+ |x − y|

N(x, ζ )|ζ |
)

e−a|ζ |2 . (6.25)

Due to the symmetry of x and y, by (6.24) and (6.25), we obtain (6.3) and (6.4). To prove (6.5), we first divide the 
domain of integration into two:

B0 := {ζ ′ ∈ R
3
∣∣|ζ − ζ ′| < d

1
3
x,y

}
, (6.26)

Bc
0 := R

3 \ B0. (6.27)

We denote the corresponding integrals by K�I1 and K�I2 respectively. Using (6.3), we have

|K�I1| ≤ C

∫
B0

|x − y|1−ε

|ζ − ζ ′|dx,y

e− a
2 |ζ ′|2dζ ′

≤ C
|x − y|1−ε

dx,y

d
1
3
x,y∫

0

π∫
0

2π∫
0

r sin θdφdθdr

≤ Cd
− 1

3
x,y |x − y|1−ε,

(6.28)

where we used the spherical coordinates centered at ζ in the above inequality.
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Using (6.4) and changing variable similar to Section 4, we have

|K�I2| ≤ C

∫
Bc

0

e−a|ζ ′ 2|

d
1
3
x,y

( |x − y|1−ε

N(x, ζ ′)
+ |x − y|

N(x, ζ ′)|ζ ′| + |x − y|1−ε

N(y, ζ ′)
+ |x − y|

N(y, ζ ′)|ζ ′|
)

dζ ′

≤ C

∞∫
0

∫
∂�

e−al2|x−z|2

d
1
3
x,y

( |x − z||x − y|1−ε

|(x − z) · n(z)| + |x − y|
|(x − z) · n(z)|l

)
l2|(x − z) · n(z)|dA(z)dl

+ C

∞∫
0

∫
∂�

e−al2|y−z|2

d
1
3
x,y

( |y − z||x − y|1−ε

|(y − z) · n(z)| + |x − y|
|(y − z) · n(z)|l

)
l2|(y − z) · n(z)|dA(z)dl

≤ C

d
1
3
x,y

∫
∂�

∞∫
0

e−al2|x−z|2 (l2|x − z||x − y|1−ε + l|x − y|)
)

dldA(z)

+ C

d
1
3
x,y

∫
∂�

∞∫
0

e−al2|y−z|2 (l2|y − z||x − y|1−ε + l|x − y|)
)

dldA(z)

≤ C

d
1
3
x,y

∫
∂�

∞∫
0

e−as2
(
s2|x − y|1−ε + s|x − y|)

)
ds

(
1

|x − z|2 + 1

|y − z|2
)

dA(z)

≤ C

d
1
3
x,y

|x − y|1−ε

∫
∂�

(
1

|x − z|2 + 1

|y − z|2
)

dA(z)

≤ C

d
1
3
x,y

|x − y|1−ε(
∣∣ lndx

∣∣+ ∣∣ lndy

∣∣+ 1) ≤ C

d
1
3
x,y

|x − y|1−ε(
∣∣ lndx,y

∣∣+ 1).

(6.29)

Notice that, in the above estimates, we changed the variable s = |x − z|l, s = |y − z|l and applied Lemma 3.3. The 
proof of Lemma 6.1 is complete. �
7. Regularity due to mixing

We shall elaborate the smoothing effect due to the combination of collision and transport in this section. In the 
following proposition, we improve the estimate in [6] from Hölder continuity with order 1

2 - to almost Lipschitz 
continuous.

Proposition 7.1. Suppose f ∈ L∞
x,ζ is a solution to the stationary linearized Boltzmann equation. Then, for all x0, x1 ∈

� and ζ ∈R
3,

|G(x0, ζ ) − G(x1, ζ )| ≤ C‖f ‖L∞
x,ζ

|x0 − x1|(1 + ∣∣ ln |x0 − x1|
∣∣). (7.1)

Proof. As in [6], we observe that

|G(x0, ζ ) − G(x1, ζ )| ≤
∣∣∣∣

∞∫
0

∫
�

k

(
ζ, ρ

(x0 − y)

|x0 − y|
)

ρe
−ν(ρ)

|x0−y|
ρ

|x0 − y|2

×
[
K(f )

(
y,ρ

(x0 − y)

|x0 − y|
)

− K(f )

(
y,ρ

(x1 − y)

|x1 − y|
)]

dydρ

∣∣∣∣
+
∣∣∣∣∣∣

∞∫ ∫
K(f )

(
y,ρ

(x1 − y)

|x1 − y|
)

(7.2)
0 �
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×
⎡
⎣k

(
ζ, ρ

(x0 − y)

|x0 − y|
)

ρe
−ν(ρ)

|x0−y|
ρ

|x0 − y|2 − k

(
ζ, ρ

(x1 − y)

|x1 − y|
)

ρe
−ν(ρ)

|x1−y|
ρ

|x1 − y|2

⎤
⎦dydρ

∣∣∣∣∣∣
=: GK + GO.

The estimate for GO has already been done in [6]. We only need to estimate GK . We break the domain of integration 
into two, �1 = � ∩B(x0, 2|x0 − x1|) and �2 := � \B(x0, 2|x0 − x1|), and name the corresponding integrals G1

K and 
G2

K respectively. Because of smallness of the domain of integration, we have

|G1
K | ≤ C‖f ‖L∞

x,ζ
|x0 − x1|. (7.3)

To deal with G2
K , we need to use the Lipschitz continuity of K(f ) (5.8),∣∣∣∣K(f )

(
y,ρ

(x0 − y)

|x0 − y|
)

− K(f )

(
y,ρ

(x1 − y)

|x1 − y|
)∣∣∣∣≤ Cρ

|x0 − x1|
|x0 − y| ‖f ‖L∞

x,ζ
.

Therefore, by taking the change of coordinates

y − x0 = (r cos θ, r sin θ cosφ, r sin θ sinφ),

we see that

|G2
K | ≤ C|x0 − x1|‖f ‖L∞

x,ζ

∞∫
0

∫
�2

∣∣∣∣k
(

ζ, ρ
(x0 − y)

|x0 − y|
)∣∣∣∣ ρ2e

−ν(ρ)
|x0−y|

ρ

|x0 − y|3 dydρ

≤ C|x0 − x1|‖f ‖L∞
x,ζ

∫
R3

|k(ζ, ζ ′)|
R∫

2|x0−x1|

1

r
drdζ ′

≤ C|x0 − x1|
(
1 + ∣∣ ln |x0 − x1|

∣∣)‖f ‖L∞
x,ζ

. �

(7.4)

With the above proposition, we can prove the following estimate.

Proposition 7.2. Suppose � satisfies the geometric assumptions defined in Definition 1.1 and ε > 0. Then, the follow-
ing inequality holds

|III (x, ζ ) − III (y, ζ )| ≤ C‖f ‖L∞
x,ζ

(1 + d−1
x,y)|x − y|1−ε . (7.5)

Proof. Let X = p(x, ζ ) and Y = p(y, ζ ). We will demonstrate the proof for the case when |X − x| ≤ |Y − y|. The 
other case can be proved in the same fashion. Noting that

τ−(x, ζ ) = |X − x|
|ζ | and τ−(y, ζ ) = |Y − y|

|ζ | ,

we have

|III (x, ζ ) − III (y, ζ )| ≤
|X−x|

|ζ |∫
0

e−ν(|ζ |)s |G(x − sζ, ζ ) − G(y − sζ, ζ )|ds

+
|Y−y|

|ζ |∫
|X−x|

|ζ |

e−ν(|ζ |)s |G(y − sζ, ζ )|ds

=: �1 + �2.

(7.6)

By applying Proposition 7.1, we have
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�1 ≤ C‖f ‖∞|x − y|1−ε . (7.7)

On the other hand

�2 ≤ C‖f ‖∞

|Y−y|
|ζ |∫

|X−x|
|ζ |

e−ν(|ζ |)sds

≤ C‖f ‖∞
∣∣∣∣e −ν(|ζ |)

|ζ | |X−x| − e
− ν(|ζ |)

|ζ | |Y−y|
∣∣∣∣

≤ C‖f ‖∞e
−ν(|ζ |)

|ζ | |X−x|
∣∣∣∣ν(|ζ |)

|ζ | (|Y − y| − |X − x|)
∣∣∣∣ ,

(7.8)

where we have applied the mean value theorem and used the assumption |X − x| ≤ |Y − y|. We the apply Proposi-
tion 6.2 and get

�2 ≤ C‖f ‖∞e
− ν(|ζ |)

|ζ |
dx

N(x,ζ )
ν(|ζ |)
|ζ |

|x − y|
N(x, ζ )

≤ C‖f ‖∞
|x − y|

dx

.

(7.9)

We can treat the case when |Y − y| ≤ |X − x| similarly and conclude

�2 ≤ C‖f ‖∞
|x − y|
dx,y

. (7.10)

By (7.7) and (7.10), we obtain (7.5) and the proof of Proposition 7.2 is complete. �
8. Behavior near the boundary

In this section, we investigate the behavior of f near the boundary. This is a preparation for proving the differen-
tiability of Df .

Lemma 8.1. Assume � satisfied the positive curvature condition defined in Definition 1.1. Assume f ∈ L∞
x,ζ is a 

solution to the stationary linearized Boltzmann equation such that for fixed 0 < ε < 1
6 , there exist 0 < a, M0 > 0 such 

that

|f (X, ζ ) − f (Y, ζ )| ≤ M0|X − Y |1−εe−a|ζ |2 , (8.1)

|f (X, ζ )| ≤ M0e
−a|ζ |2 (8.2)

for all (X, ζ ), (Y, ζ ) ∈ 
−. Then, for x ∈ ∂� and y ∈ �,

|f (x, ζ ) − f (y, ζ )| ≤ C

(
1 + 1

|ζ |
)

|x − y| 1
2 (1−ε). (8.3)

The above estimate not only gives a description on how singular f can be when ζ is small near the boundary but 
also plays an important role in proving the differentiability of boundary flux and therefore the solution itself, which 
will be elaborated in next section.

Proof. Without loss of generality, we may only consider the case |x − y| < min( 1
5R0, 1), where R0 is introduced in 

Lemma 3.7. This case gives the unique projection of y on ∂� denoted by Y⊥, i.e., |y − Y⊥| = dy .
STEP 1. We start with the case ζ · n(Y⊥) < 0 and denote Y0 = p(y, ζ ). We observe that

|x − Y0| ≤ |x − y| + |y − Y0| ≤ C|x − y| 1
2 , (8.4)

where we have applied Lemma 3.7 by taking x = Y0 ∈ ∂� in (3.30) and used the fact |x − y| ≤ 1.
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Noting that x, Y0 ∈ ∂�, by (8.1) and the mean value theorem, we see that

|f (x, ζ ) − f (y, ζ )| =

∣∣∣∣∣∣∣∣
f (x, ζ ) − f (Y0, ζ )e

−ν(|ζ |) |y−Y0|
|ζ | −

|y−Y0|
|ζ |∫

0

e−ν(|ζ |)tK(f )(y − ζ t, ζ )dt

∣∣∣∣∣∣∣∣
≤ |f (x, ζ ) − f (Y0, ζ )| + |f (Y0, ζ )|

∣∣∣∣1 − e
−ν(|ζ |) |y−Y0|

|ζ |
∣∣∣∣

+

∣∣∣∣∣∣∣∣

|y−Y0|
|ζ |∫

0

e−ν(|ζ |)tK(f )(y − ζ t, ζ )dt

∣∣∣∣∣∣∣∣
≤ M0|x − Y0|1−ε + C‖f ‖L∞

x,ζ

|y − Y0|
|ζ |

≤ C

(
1 + 1

|ζ |
)

|x − y| 1
2 (1−ε).

(8.5)

Notice that we only used the fact |e−a|ζ |2 | ≤ 1 in the above estimate. The assumptions in Lemma 8.1 are the same 
with those in Lemma 6.1, which will be used in the proof.

STEP 2. In case ζ · n(Y⊥) ≥ 0, we define

D0 = {b ∈ �|d(b, ∂�) ≥ 4|x − y|}, (8.6)

D1 = {b ∈ �|d(b, ∂�) ≥ 5|x − y|}. (8.7)

Notice that D0 is also a smooth convex domain. We denote Y0 = p(y, ζ ) and X0 = p(x, ζ ). If either xX0 or yY0
intersects ∂D0 less than twice, we can conclude that

|x − X0| ≤ C|x − y| 1
2 , |y − Y0| ≤ C|x − y| 1

2 . (8.8)

Therefore, we can show (8.3) holds as we proved in Step 1. Namely, if one of xX0 or yY0 intersects ∂D0 less than 
twice, then both of xX0 and yY0 intersect ∂D1 less than twice. Hence, by the proof of Lemma 3.7, we have

|x − X0| ≤ C′
1(5|x − y|) 1

2 and (8.9)

|y − Y0| ≤ C′
1(5|x − y|) 1

2 . (8.10)

This implies (8.4), and hence (8.3) holds.
Next, we shall discuss the case that both line segments xX0 and yY0 intersect ∂D0 twice. Let X1 and X2 be 

intersection points of xX0 and ∂D0 in the order x, X1, X2, and X0 on xX0. Also let Y1 and Y2 be intersection points 
of yY0 and ∂D0 respectively. Let X1⊥ be the unique projection of X1 on ∂�. Since |X1 − X1⊥| realizes the distance 
between ∂� and ∂D0, we have

n(X1⊥) = n(X1) = (X1⊥ − X1)

|X1⊥ − X1| . (8.11)

Taking the tangent plane of ∂D0 at X1 into consideration and applying Lemma 3.7, we have

|X1 − x| ≤ 4C′
1|x − y| 1

2 . (8.12)

By the same fashion, we have

|X0 − X2| ≤ 4C′
1|x − y| 1

2 . (8.13)

|Y0 − Y2| ≤ 4C′
1|x − y| 1

2 , (8.14)

|y − Y1| ≤ 4C′
1|x − y| 1

2 . (8.15)
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In what follows, we shall discuss estimates for the differences of I , II , and III defined on (1.18).
Regarding the estimate for I , we start with the following claim.

|X0 − Y0| ≤ C|x − y| 1
2 , (8.16)∣∣|X0 − x| − |Y0 − y|∣∣≤ C|x − y| 1

2 . (8.17)

Without loss of generality, we may assume |Y0 − y| < |X0 − x|. Let X′ = Y0 + (x − y). Notice that since |x − y| <
4|x − y| and |Y0 − y| < |X0 − x|, we see that X′ ∈ X2X0. The unique projection of X′ on ∂� is denoted by X′⊥. 
Notice that by the convexity of the set {b|d(b, ∂�) ≥ dX′ }, we have n(X′⊥) · (X0 − X′) ≥ 0. Therefore, we can apply 
Lemma 3.7 and prove the claim. Now, we have

|I (x, ζ ) − I (y, ζ )| =
∣∣∣∣f (X0, ζ )e

−ν(|ζ |) |X0−x|
|ζ | − f (Y0, ζ )e

−ν(|ζ |) |Y0−y|
|ζ |
∣∣∣∣

≤
∣∣∣∣f (X0, ζ )e

−ν(|ζ |) |X0−x|
|ζ |
∣∣∣∣
∣∣∣∣1 − e

−ν(|ζ |) |Y0−y|−|X0−x|
|ζ |

∣∣∣∣
+ |f (X0, ζ ) − f (Y0, ζ )|e−ν(|ζ |) |Y0−y|

|ζ |

≤ C

(
1 + 1

|ζ |
)

|x − y| 1
2 (1−ε).

(8.18)

Similarly, for III , without loss of generality we may assume |Y0 − y| ≤ |X0 − x|. By applying Proposition 7.1, 
we see that

|III (x, ζ ) − III (y, ζ )| ≤

∣∣∣∣∣∣∣∣

|Y0−y|
|ζ |∫

0

e−ν(|ζ |)s |G(x − sζ, ζ )ds − G(y − sζ, ζ )|ds

∣∣∣∣∣∣∣∣

+

∣∣∣∣∣∣∣∣

|X0−x|
|ζ |∫

|Y−y|
|ζ |

e−ν(|ζ |)sG(x − sζ, ζ )ds

∣∣∣∣∣∣∣∣

≤ C‖f ‖L∞
x,ζ

⎡
⎢⎢⎣

|Y0−y|
|ζ |∫

0

e−ν(|ζ |)s |x − y|1−εds +
∣∣|X0 − x| − |Y0 − y|∣∣

|ζ |

⎤
⎥⎥⎦

≤ C

(
1 + 1

|ζ |
)

|x − y| 1
2 .

(8.19)

To estimate the difference of II , thanks to X′ = Y0 + (x − y) ∈ X2X0, we may express

|II (x, ζ ) − II (y, ζ )| =
∣∣∣∣

τ−(x,ζ )∫
0

e−ν(|ζ |)t
∫
R3

k(ζ, ζ ′)I (x − tζ, ζ ′)dζ ′dt

−
τ−(y,ζ )∫

0

e−ν(|ζ |)t
∫
R3

k(ζ, ζ ′)I (y − tζ, ζ ′)dζ ′dt

∣∣∣∣

≤
|x−X1|

|ζ |∫
e−ν(|ζ |)t

∫
3

|k(ζ, ζ ′)||I (x − tζ, ζ ′)|dζ ′dt
0 R
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+
|x−X1|

|ζ |∫
0

e−ν(|ζ |)t
∫
R3

|k(ζ, ζ ′)||I (y − tζ, ζ ′)|dζ ′dt

+
|x−X2|

|ζ |∫
|x−X1|

|ζ |

e−ν(|ζ |)t
∫
R3

|k(ζ, ζ ′)||I (x − tζ, ζ ′) − I (y − tζ, ζ ′)|dζ ′dt

(8.20)

+
|x−X0|

|ζ |∫
|x−X2|

|ζ |

e−ν(|ζ |)t
∫
R3

|k(ζ, ζ ′)||I (x − tζ, ζ ′)|dζ ′dt

+
|y−Y0|

|ζ |∫
|x−X2|

|ζ |

e−ν(|ζ |)t
∫
R3

|k(ζ, ζ ′)||I (y − tζ, ζ ′)|dζ ′dt

=: DII1 + DII2 + DII3 + DII4 + DII5.

Notice that

DII1 + DII2 + DII4 + DII5 ≤ C
|x − y| 1

2

|ζ | (8.21)

because of smallness of the domain of integration, (8.13)–(8.15). We are now focus on DII3. Let ζ̂ = ζ
|ζ | . We can 

rewrite

DII3 =
|x−X2|∫

|x−X1|

1

|ζ |e
− ν(|ζ |)

|ζ | r

∫
R3

|k(ζ, ζ ′)||I (x − rζ̂ , ζ ′) − I (y − rζ̂ , ζ ′)|dζ ′dr (8.22)

Let z(r) = x − rζ̂ and z′(r) = y − rζ̂ . Notice that since X′ = Y0 + (x − y) lies on X2X0, we see that z′(r) =
y − rζ̂ ∈ yY0 for |x − X1| ≤ r ≤ |x − X2| and

dz′ ≥ 1

2
dz + (

1

2
dz − |z − z′|) ≥ 1

2
dz ≥ 2|x − y|. (8.23)

Inferring from (6.5), we have

∫
R3

|k(ζ, ζ ′)||I (z(r), ζ ) − I (z′(r), ζ )|dζ ′ ≤ C
(

1 + d−1
z(r)

)( 1
3 +ε′) |x − y|1−ε, (8.24)

for 0 < ε′ < 1. Let Z be the midpoint of X1 and X2. Notice that dZ ≥ 4|x − y|.
Therefore, with the help of Proposition 6.3,

DII3 ≤ C

|x−Z|∫
|X1−x|

|x − y|1−ε

|ζ | (1 + 1

|x − y|r )
1
3 +ε′

dr + C

|X0−Z|∫
|X2−X0|

|x − y|1−ε

|ζ | (1 + 1

|x − y|r )
1
3 +ε′

dr

≤ C
|x − y| 2

3 −ε−ε′

|ζ |

(8.25)

Choosing small enough ε′, we can conclude the lemma. �
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9. Differentiability of boundary flux

Let g(t) be a normal geodesic on ∂� such that

g(0) = x, (9.1)

g′(0) = v, (9.2)

where v ∈ Tx(∂�).
Recall that by definition

∇x
v Df (x) = d

dt
Df (g(t))

∣∣∣∣
t=0

, (9.3)

where

Df (g(t)) = 2π− 1
4

∞∫
0

∫
�

∫
R3

e
− ν(ρ)

ρ
|g(t)−y|

k

(
ρ

g(t) − y

|g(t) − y| , ζ
′
)

(g(t) − y) · n(g(t))

|g(t) − y|3

× e− ρ2

2 ρ2f (y, ζ ′)dζ ′dydρ.

(9.4)

We will devote this section to prove the following lemma.

Lemma 9.1. There exists a constant C such that for any v ∈ Tx∂� with |v| = 1, we have

|∇x
v Df (x)| ≤ C. (9.5)

If we differentiate the formula (9.4) directly, we will obtain a singularity of |x−y|−3, which is barely not integrable 
in �. However, by subtracting and adding f (x, ζ ′), we can use the local Hölder continuity in Lemma 8.1 to make 
it integrable. To deal with additional term we introduced, we observe that, in the integrand of formula (5.1), every x
is paired up with y in the form of x − y, except for n(x). Therefore, we can convert derivatives with respect to x to 
those with respect to y with a change of sign and rewrite all the terms except the term with derivative of n(x) as a 
divergence form with respect to y and apply the divergence theorem. More precisely, we can write

2−1π
1
4 ∇x

v Df (x) =
∞∫

0

∫
�

∫
R3

∇x
v

(
e
− ν(ρ)

ρ
|x−y|

k

(
ρ

x − y

|x − y| , ζ
′
)

(x − y) · n(x)

|x − y|3
)

× [f (y, ζ ′) − f (x, ζ ′)
]
e− ρ2

2 ρ2dζ ′dydρ

−
∞∫

0

∫
R3

∫
�

divy

([
e
− ν(ρ)

ρ
|x−y|

k

(
ρ

x − y

|x − y| , ζ
′
)

(x − y) · n(x)

|x − y|3 e− ρ2

2 ρ2f (x, ζ ′)
]
v

)
dydζ ′dρ

+
∞∫

0

∫
R3

∫
�

e
− ν(ρ)

ρ
|x−y|

k

(
ρ

x − y

|x − y| , ζ
′
)

(x − y) · ∇x
v (n(x))

|x − y|3 e− ρ2

2 ρ2f (x, ζ ′)dydζ ′dρ

=: ∇xD1
f + ∇xD2

f + ∇xD3
f .

(9.6)

Notice that since ∂� is smooth, we can see that ∇xD3 is bounded. Regarding ∇xD1 , by direct calculation, we have
f f
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∇x
v D1

f =
∣∣∣

∞∫
0

∫
R3

∫
�

e
− ν(ρ)

ρ
|x−y|

k

(
ρ

x − y

|x − y| , ζ
′
)

e− ρ2

2 ρ2[f (y, ζ ′) − f (x, ζ ′)]

×
[
− ν(ρ)

ρ

(x − y) · v
|x − y|

(x − y) · n(x)

|x − y|3 + v · n(x)

|x − y|3 + (x − y) · ∇x
v n(x)

|x − y|3
− 3

(x − y) · n(x)

|x − y|4
(x − y) · v

|x − y|
]

+ [f (y, ζ ′) − f (x, ζ ′)]e− ν(ρ)
ρ

|x−y| (x − y) · n(x)

|x − y|3

× e− ρ2

2 ρ3
(

gradζ k

(
ρ

x − y

|x − y| , ζ
′
))

·
(

v

|x − y| − (x − y) · v
|x − y|3 (x − y)

)
dydζ ′dρ

∣∣∣
≤ C

∞∫
0

∫
R3

∫
�

{
1

|ρ x−y
|x−y| − ζ ′|e

− 1
8 |ρ x−y

|x−y| −ζ ′|2
[

1

|x − y| 3
2 + ε

2

+ 1

|x − y| 5
2 + ε

2

]
ρ2

+ 1 + |ρ x−y
|x−y| |

|ρ x−y
|x−y| − ζ ′|2 e

− 1
8 |ρ x−y

|x−y| −ζ ′|2 1

|x − y| 5
2 + ε

2

ρ3

}
(1 + |ζ ′|−1)e− ρ2

2 dydζ ′dρ

≤ C

∫
R3

∫
R3

R∫
0

1

|ζ − ζ ′|e
− 1

8 |ζ−ζ ′|2
(

1 + 1

|ζ ′|
)

e− |ζ |2
2 [r 1

2 − ε
2 + r− 1

2 − ε
2 ]

+
(

(1 + |ζ |)2

|ζ − ζ ′|2 + 1 + |ζ |
|ζ − ζ ′||ζ ′|

)
e− 1

8 |ζ−ζ ′|2e− |ζ |2
2 r− 1

2 − ε
2 drdζ ′dζ

≤ C.

(9.7)

Notice that gradζ appears due to the chain rule. In the above derivation, in addition to (2.5) and (2.6), we have used 
the fact

e
− ν(ρ)

ρ
|x−y| ν(ρ)

ρ
≤ C|x − y|−1 (9.8)

and the triangle inequality |ζ | ≤ |ζ ′| + |ζ ′ − ζ |. Next, we shall prove that ∇xD2
f is bounded in the senses of improper 

integral. We define �ε = � \ B(x, ε) and name the corresponding integral ∇xD
2,ε
f . Applying the divergence theory, 

we have

∇xD
2,ε
f = −

∞∫
0

∫
R3

∫
∂�\B(x,ε)

e
− ν(ρ)

ρ
|x−y|

k

(
ρ

x − y

|x − y| , ζ
′
)

(x − y) · n(x)

|x − y|3

× e− ρ2

2 ρ2f (x, ζ ′)[v · n(y)]dA(y)dζ ′dρ

−
∞∫

0

∫
R3

∫
∂B(x,ε)∩�

e
− ν(ρ)

ρ
|x−y|

k

(
ρ

x − y

|x − y| , ζ
′
)

(x − y) · n(x)

|x − y|3

× e− ρ2

2 ρ2f (x, ζ ′)
[
v · x − y

|x − y|
]

dA(y)dζ ′dρ

=: Sε + Bε.

(9.9)

For Sε , we further break the domain of integration by GB(x, r1), where r1 is as defined in Proposition 3.4. It is not 
hard to see that the integral outside GB(x, r1) is bounded. Inside the GB(x, r1), by applying Lemma 3.6, we have



I-K. Chen et al. / Ann. I. H. Poincaré – AN 36 (2019) 745–782 773
∣∣∣
∞∫

0

∫
R3

∫
GB(x,r1)\B(x,ε)

e
− ν(ρ)

ρ
|x−y|

k

(
ρ

x − y

|x − y| , ζ
′
)

(x − y) · n(x)

|x − y|3

× e− ρ2

2 ρ2f (x, ζ ′)[v · n(y)]dA(y)dζ ′dρ
∣∣∣

≤ C‖f ‖L∞
x,ζ

∞∫
0

∫
GB(x,r1)

e− ρ2

2 ρ2dydρ ≤ C‖f ‖L∞
x,ζ

.

(9.10)

We are going to deal with Bε and will see that it in fact forms a “residue”. We introduce spherical coordinates on 
B(x, ε) so that −n(x) is the north pole so that

ζ̂ := x − y

|x − y| = sin θ cosφv + sin θ sinφ(n(x) × v) + cos θn(x). (9.11)

We use Dε to denote the domain in the chart that maps to ∂B(x, ε) ∩ �. Let

D′
ε := {ρ[sin θ cosφv + sin θ sinφ(n(x) × v) + cos θn(x))]|(θ,φ) ∈ Dε,ρ > 0}. (9.12)

We have

Bε = −
∞∫

0

∫
R3

π∫
0

2π∫
0

χDε (θ,φ)e
− ν(ρ)

ρ
ε
k(ρζ̂ , ζ ′)e− ρ2

2 ρ2f (x, ζ ′) cos θ sin2 θ cosφdφdθdζ ′dρ

= −
∫
R3

∫
R3

χD′
ε
(ζ )e

− ν(|ζ |)
|ζ | ε

k(ζ, ζ ′)e− |ζ |2
2 f (x, ζ ′)ζ · n(x)

|ζ |
ζ · v
|ζ | dζdζ ′

(9.13)

We can conclude from the dominated convergence theorem that

lim
ε→0

Bε = −
∫

ζ ·n(x)≤0

∫
R3

k(ζ, ζ ′)e− |ζ |2
2 f (x, ζ ′)ζ · n(x)

|ζ |
ζ · v
|ζ | dζdζ ′ (9.14)

We notice that

|∇xD
2,ε
f | ≤ C‖f ‖L∞

x,ζ

∞∫
0

∫
�

1

|x − y|2 e− ρ2

2 ρ2dyddρ

≤ C‖f ‖L∞
x,ζ

.

(9.15)

We conclude the lemma.

10. Differentiability of f

The main result of this article is summarized in the following lemma.

Lemma 10.1. Under the assumption of Theorem 1.2, regarding the solution of (1.1), for ε > 0, we have the following 
estimates∣∣∣∣ ∂

∂xi

f (x, ζ )

∣∣∣∣≤ C(1 + d−1
x )

4
3 +ε, (10.1)∣∣∣∣ ∂

∂ζi

f (x, ζ )

∣∣∣∣≤ C(1 + d−1
x )

4
3 +ε . (10.2)

This section is devoted to the proof of (10.1). We leave the proof of (10.2) to the next section. In view of (1.18), to 
prove (10.1), we shall proceed the estimates of ∂

∂xi
I (x, ζ ), ∂

∂xi
I I (x, ζ ) and ∂

∂xi
I I I (x, ζ ) respectively. We first show 

that I and II defined in (1.18) preserve the regularity from boundary.
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Lemma 10.2. Let � be the domain introduced before. Suppose there exist constants 0 < a < 1
2 , M > 0 such that

|∇x
η f (X, ζ )| ≤ M|η|e−a|ζ |2 , (10.3)

|f (X, ζ )| ≤ Me−a|ζ |2 , (10.4)

for all (X, ζ ) ∈ 
− and η ∈ TX(∂�). Then, for x ∈ �, the following estimates hold∣∣∣∣ ∂

∂xi

I (x, ζ )

∣∣∣∣≤ Cd−1
x e− a

2 |ζ |2 , (10.5)∣∣∣∣ ∂

∂xi

II (x, ζ )

∣∣∣∣≤ C(1 + d−1
x )

4
3 +ε′

, (10.6)∣∣∣∣ ∂

∂xi

II (x, ζ )

∣∣∣∣≤ C[(1 + d−1
x )

1
3 +ε′

(
1 + 1

|ζ |
)

+min(d−1
x ,

1

N(x, ζ )|ζ | )e
− a

2 |ζ |2 ]. (10.7)

To prove Lemma 10.2, we have the following observation.

Proposition 10.3. Let τ−(x, ζ ) and p(x, ζ ) be as defined in (1.11) and (1.12). Then

| ∂

∂xi

p(x, ζ )| ≤ 1

N(x, ζ )
, (10.8)

| ∂

∂xi

τ−(x, ζ )| ≤ 2

N(x, ζ )|ζ | , (10.9)

τ−(x, ζ ) ≥ dx

N(x, ζ )|ζ | . (10.10)

We notice that

(a) (10.8) is a direct result of (6.7) of Proposition 6.2.
(b) (10.9) is derived from (1.12), (10.8) and the fact that N(x, ζ ) ≤ 1.
(c) (10.10) is a direct result of (1.12) and (6.6) of Proposition 6.2.

We are now in a position to prove (10.5).

Proof of (10.5). Let ei be the i-th unit vector in R3. Formal calculation gives

∂

∂xi

I (x, ζ ) = d

dt

(
f (p(x + tei , ζ ), ζ )e−ν(|ζ |)τ−(x+tei ,ζ )

)∣∣∣∣
t=0

= d

dt
(f (p(x + tei , ζ ), ζ ))

∣∣∣∣
t=0

e−ν(|ζ |)τ−(x,ζ )

− ∂

∂xi

τ−(x, ζ ) ν(|ζ |)f (p(x, ζ ), ζ )e−ν(|ζ |)τ−(x,ζ )

(10.11)

Note that by (10.3) and (10.8), we have∣∣∣∣ d

dt
(f (p(x + tei , ζ ), ζ ))

∣∣∣∣
t=0

∣∣∣∣≤ M

N(x, ζ )
e−a|ζ |2 . (10.12)

Therefore, summing up the above two equations and applying Proposition 10.3, we obtain∣∣∣∣ ∂

∂xi

I (x, ζ )

∣∣∣∣≤ C
( 1

N(x, ζ )
e
−ν(|ζ |) dx

N(x,ζ )|ζ | + ν(|ζ |) 1

N(x, ζ )|ζ |e
−ν(|ζ |) dx

N(x,ζ )|ζ |
)
e−a|ζ |2 (10.13)

≤ Cd−1
x (|ζ | + 1)e−a|ζ |2 ≤ Cd−1

x e− a
2 |ζ |2 . � (10.14)
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Taking the derivative on II with respect to xi , we have

∂

∂xi

II (x, ζ ) =
τ−(x,ζ )∫

0

e−ν(|ζ |)s
∫
R3

k(ζ, ζ ′) ∂

∂xi

I (x − sζ, ζ ′)dζ ′ds

+ e−ν(|ζ |)τ−(x,ζ )

∫
R3

k(ζ, ζ ′)f (p(x, ζ ), ζ ′)dζ ′ ∂

∂xi

τ−(x, ζ )

=: IIA + IIB.

(10.15)

By Proposition 10.3, we see that

|IIB | ≤ C‖f ‖L∞
x,ζ

e
−ν0

dx
N(x,ζ )|ζ | 1

N(x, ζ )|ζ |e
− a

2 |ζ |2 ≤ C‖f ‖L∞
x,ζ

d−1
x . (10.16)

By an analysis similar to Lemma 2 in [8], we have

|
∫
R3

k(ζ, ζ ′)f (p(x, ζ ), ζ ′)dζ ′| ≤ Ce− a
2 |ζ |2 . (10.17)

Therefore, we also have

|IIB | ≤ C
1

N(x, ζ )|ζ |e
− a

2 |ζ |2 . (10.18)

We let

H(x, ζ ) =
∫
R3

k(ζ, ζ ′)I (x, ζ ′)dζ ′. (10.19)

Then, we have

IIA =
τ−(x,ζ )∫

0

e−ν(|ζ |)s ∂

∂xi

H(x − sζ, ζ ′)ds (10.20)

Concerning ∂
∂xi

H , we have the following estimate.

Proposition 10.4. Let H be as defined in (10.19). We have∣∣∣∣ ∂

∂xi

H(x, ζ )

∣∣∣∣≤ Cd
− 1

3
x

(∣∣ lndx

∣∣+ 1
)
. (10.21)

Proof. In order to get a good estimate near the boundary, we shall break the domain of integration into two, B(ζ, d
1
3
x )

and R3 \ B(ζ, d
1
3
x ), and name the corresponding integrals DHs and DHl respectively. For the estimate of DHs , by 

applying the estimate (10.5), we obtain

|DHs | ≤

∣∣∣∣∣∣∣∣∣
∫

B(ζ,d
1
3
x )

k(ζ, ζ ′) ∂

∂xi

I (x − sζ, ζ ′)dζ ′

∣∣∣∣∣∣∣∣∣
≤ C

1

dx

∫
1
3

|k(ζ, ζ ′)|dζ ′
B(ζ,dx )



776 I-K. Chen et al. / Ann. I. H. Poincaré – AN 36 (2019) 745–782
≤ C
1

dx

∫
B(ζ,d

1
3
x )

1

|ζ − ζ ′|dζ ′ (10.22)

≤ C
1

dx

π∫
0

d
1
3
x∫

0

1

ρ
ρ2 sin θdρdθ

≤ Cd
− 1

3
x .

Regarding the estimate of DHl , we first notice that (10.13) and (2.4) imply∣∣∣∣ ∂

∂xi

I (x, ζ ′)
∣∣∣∣≤ C

(
1

N(x, ζ ′)
+ 1

N(x, ζ ′)|ζ |
)

e−a|ζ ′|2, (10.23)

since 0 ≤ γ < 1. Next, we consider the coordinate change ζ ′ = l(y − x) as we employed in Section 1 together with 

the fact |k(ζ, ζ ′)| < Cd
− 1

3
x in the domain R3 \ B(ζ, d

1
3
x ) to obtain

|DHl | ≤ Cd
− 1

3
x

∞∫
0

∫
∂�

∣∣∣∣ ∂

∂xi

I (x, ζ ′)
∣∣∣∣ l2|n(y) · (x − y)|dA(y)dl

≤ Cd
− 1

3
x

∞∫
0

∫
∂�

(
1

N(x, ζ ′)
+ 1

N(x, ζ ′)l|x − y|
)

e−al2|x−y|2 l2|n(y) · (x − y)|dA(y)dl

≤ Cd
− 1

3
x

∞∫
0

∫
∂�

( |x − y|
|n(y) · (x − y)| + 1

l|n(y) · (x − y)|
)

e−al2|x−y|2 l2|n(y) · (x − y)|dA(y)dl (10.24)

≤ Cd
− 1

3
x

∞∫
0

∫
∂�

e−al2|x−y|2(l2|x − y| + l)dA(y)dl

≤ Cd
− 1

3
x

∫
∂�

∞∫
0

e−az2
(z2 + z)dz

1

|x − y|2 dA(y)dz

≤ Cd
− 1

3
x

∫
∂�

1

|x − y|2 dA(y)

≤ Cd
− 1

3
x (| lndx | + 1).

Notice that we let z = |x − y|l in the third last line in the above derivation and applied Lemma 3.3 to draw our 
conclusion in the last line. Combining (10.22) and (10.24), the proof of Proposition 10.4 is complete. �
Proof of (10.6) and (10.7). Now, we set l = |x − p(x, ζ )|. Applying Proposition 6.3 and Proposition 10.4, we obtain

|IIA| ≤ C

τ−(x,ζ )∫
0

e−ν(|ζ |)sd−( 1
3 +ε′)

(x−sζ ) ds

≤ C

⎛
⎜⎜⎝
(

dx

2

)−( 1
3 +ε′)

dx
2|ζ |∫
0

e−ν(|ζ |)sds +
l∫

dx
2

e
− ν(|ζ |)r

|ζ | d
−( 1

3 +ε′)
x |l − r|−( 1

3 +ε′) 1

|ζ |dr

⎞
⎟⎟⎠ . (10.25)
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We observe that
l∫

dx
2

e
− ν(|ζ |)r

|ζ | d
−( 1

3 +ε′)
x |l − r|−( 1

3 +ε′) 1

|ζ |dr

≤

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C

l∫
dx
2

d
−( 1

3 +ε′)
x |l − r|−( 1

3 +ε′) 1

r
dr

l∫
dx
2

d
−( 1

3 +ε′)
x |l − r|−( 1

3 +ε′) 1

|ζ |dr.

Hence,

|IIA| ≤

⎧⎪⎨
⎪⎩

C(1 + d−1
x )

4
3 +ε′

C(1 + d−1
x )

1
3 +ε′ 1

|ζ | .
(10.26)

Finally, combining (10.16) and (10.26), we obtain (10.6) and (10.7). This completes the proof of Lemma 10.2. �
Combining Lemma 10.2 and Proposition 7.2, we have a refined estimate

|f (x, ζ ) − f (y, ζ )| ≤ C‖f ‖L∞
x,ζ

(1 + d−1
x )

4
3 +ε |x − y|1−ε (10.27)

in case |x − y| < dx

2 .
We are now in a position to perform bootstrapping the regularity.

Lemma 10.5. Let f ∈ L∞
x,ζ be a stationary solution to the linearized Boltzmann equation and x be an interior point 

of �. Suppose that there exist 0 < σ < 1, 0 < δ < d(x, ∂�), and M > 0 such that,

sup
ζ∈R3

|f (x, ζ ) − f (y, ζ )| ≤ M|x − y|σ , (10.28)

whenever y ∈ B(x, δ).
Then, G is differentiable at x. Furthermore,∣∣∣∣ ∂

∂xi

G(x, ζ )

∣∣∣∣≤ C(‖f ‖L∞
x,ζ

(1 + | ln δ|) + Mδσ ). (10.29)

Proof. Recall that

G(x, ζ ) =
∞∫

0

∫
�

∫
R3

k

(
ζ, ρ

(x − y)

|x − y|
)

e
−ν(ρ)

|x−y|
ρ k

(
ρ

(x − y)

|x − y| , η
)

f (y,η)
ρ

|x − y|2 dηdydρ. (10.30)

We first formally differentiate the above formula with respect to xi and divide the domain of integration into two parts: 
B(x, δ) and � \ B(x, δ). We denote the corresponding integrals as gs and gl . Regarding the estimate of gl , the typical 
term is

|gl1| :=

∣∣∣∣∣∣∣−2

∞∫
0

∫
�\B(x,δ)

∫
R3

k

(
ζ, ρ

(x − y)

|x − y|
)

e
−ν(ρ)

|x−y|
ρ k

(
ρ

(x − y)

|x − y| , η
)

f (y,η)
ρ

|x − y|3
xi − yi

|x − y|dηdydρ

∣∣∣∣∣∣∣
≤ C‖f ‖L∞

x,ζ

∞∫ ∫
k

(
ζ, ρ

(x − y)

|x − y|
)

ρ

|x − y|3 dydρ
0 �\B(x,δ)
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≤ C‖f ‖L∞
x,ζ

∞∫
0

∫
S2

R∫
δ

k(ζ, ρω)
ρ

r3 r2drdωdρ (10.31)

≤ C‖f ‖L∞
x,ζ

(1 + | ln δ|),
where R is the diameter of �. By using (2.8), in the same fashion, we readily see that

|gl | ≤ C‖f ‖L∞
x,ζ

(1 + | ln δ|). (10.32)

Regarding the estimate of gs , in order to utilize the Hölder continuity, we subtract and add f (x, η) in the integrand 
as follows:

gs(x, ζ ) =
∞∫

0

∫
B(x,δ)

∫
R3

(f (y, η) − f (x,η))
∂

∂xi

[
k

(
ζ, ρ

x − y

|x − y|
)

e
−ν(ρ)

|x−y|
ρ k

(
ρ

x − y

|x − y| , η
)

ρ

|x − y|2
]

dηdydρ

+
∞∫

0

∫
B(x,δ)

∫
R3

f (x,η)
∂

∂xi

[
k

(
ζ, ρ

x − y

|x − y|
)

e
−ν(ρ)

|x−y|
ρ k

(
ρ

x − y

|x − y| , η
)

ρ

|x − y|2
]

dηdydρ

=: gs1 + gs2.

(10.33)

For gs1, the Hölder continuity of f in space variables, see (10.28), makes the integrand integrable. We have

|gs1| ≤ CMδσ . (10.34)

For gs2, we first remove an ε-ball and integrate:

gε
s2 :=

∞∫
0

∫
B(x,δ)\B(x,ε)

∫
R3

f (x,η)

∂

∂xi

[
k

(
ζ, ρ

x − y

|x − y|
)

e
−ν(ρ)

|x−y|
ρ k

(
ρ

x − y

|x − y| , η
)

ρ

|x − y|2
]

dηdydρ

=
∞∫

0

∫
B(x,δ)\B(x,ε)

∫
R3

f (x,η)

(
−
(

∂

∂yi

[
k

(
ζ, ρ

x − y

|x − y|
)

e
−ν(ρ)

|x−y|
ρ k

(
ρ

x − y

|x − y| , η
)

ρ

|x − y|2
])

dηdydρ (10.35)

=
∞∫

0

∫
R3

⎛
⎜⎝−

∫
S2(x,δ)

+
∫

S2(x,ε)

⎞
⎟⎠f (x,η)

[
k

(
ζ, ρ

x − y

|x − y|
)

e
−ν(ρ)

|x−y|
ρ k

(
ρ

x − y

|x − y| , η
)

ρ

|x − y|2
]

ni(y)dA(y)dηdρ

=
∫
R3

∫
R3

f (x,η)k(ζ, ζ ′)
(

−e
− ν(|ζ ′|)

|ζ ′| δ + e
− ν(|ζ ′|)

|ζ ′| ε
)

k(ζ ′, η)
1

|ζ ′|
ζ ′
i

|ζ ′|dζ ′dη.

Notice that the integrand in the last integral above is bounded by

2‖f ‖L∞
x,ζ

k(ζ, ζ ′)k(ζ ′, η)|ζ ′|−1, (10.36)

which is integrable in (ζ ′, η). Therefore, we can pass the limit ε → 0 and, furthermore
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|gs2| ≤ C‖f ‖L∞
x,ζ

. (10.37)

Inferring from (10.32), (10.34) and (10.37), we obtain (10.29). �
Finally, to complete the proof of (10.1), we now estimate ∂

∂xi
I I I (x, ζ ). PROOF OF (10.1).

Proof. Differentiating III directly and applying (10.9), (10.10), (10.27) and (10.29), we obtain

∣∣∣∣ ∂

∂xi

III (x, ζ )

∣∣∣∣≤
∣∣∣∣∣∣∣

τ−(x,ζ )∫
0

e−ν(|ζ |)s ∂

∂xi

G(x − sζ, ζ )ds

∣∣∣∣∣∣∣
+
∣∣∣ ∂

∂xi

τ−(x, ζ )e−ν(|ζ |)τ−(x,ζ )G(p(x, ζ ), ζ )

∣∣∣
≤ C‖f ‖L∞

x,ζ

∣∣∣∣∣∣∣
τ−(x,ζ )∫

0

e−ν(|ζ |)s(1 + d
− 1

3 −2ε

x−sζ )ds

∣∣∣∣∣∣∣+ C‖f ‖L∞
x,ζ

d−1
x .

(10.38)

Letting l = |x − p(x, ζ )| and applying Proposition 6.3, we readily obtain∣∣∣∣∣∣∣
τ−(x,ζ )∫

0

e−ν(|ζ |)s(1 + d
− 1

3 −2ε

x−sζ )ds

∣∣∣∣∣∣∣
≤ C

(
1 + d

− 1
3 −2ε

x

) dx
2|ζ |∫
0

e−ν(|ζ |)sds +
l∫

dx
2

e
− ν(|ζ |)

|ζ | r

(
1 + d

− 1
3 −2ε

x−rζ̂

)
1

|ζ |dr

≤ C

(
1 + d

− 1
3 −2ε

x

)
+ Cd−1

x

l∫
dx
2

(
1 + d

− 1
3 −2ε

x |l − r|− 1
3 −2ε

)
dr

≤ C
(

1 + d−1
x

) 4
3 +2ε

.

(10.39)

Therefore, we see that∣∣∣∣ ∂

∂xi

III (x, ζ )

∣∣∣∣≤ C‖f ‖L∞
x,ζ

(
1 + d−1

x

) 4
3 +2ε

. (10.40)

Taking (10.5), (10.6) and (10.40) into account, by (1.18), the proof of (10.1) is complete. �
Notice that

l∫
dx
2

e
− ν(|ζ |)

|ζ | r

(
1 + d

− 1
3 −2ε

x−rζ̂

)
1

|ζ |dr ≤

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

C
(

1 + d−1
x

) 1
3 +2ε 1

|ζ |

Cd−1
x

l∫
dx
2

(
1 + d

− 1
3 −2ε

x |l − r|− 1
3 −2ε

)
dr.

Hence, if we allow the singularity at ζ = 0, we can estimate∣∣∣∣ ∂

∂xi

III (x, ζ )

∣∣∣∣≤ C
(

1 + d−1
x

) 1
3 +2ε

(
1 + 1

|ζ |
)

. (10.41)
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11. Derivative with respect to velocity

In this section, we shall discuss the derivative of f (x, ζ ) with respect to microscopic velocity ζ , i.e., (10.2). Dif-
ferentiating the integral equation (1.15) directly, we have

∂

∂ζi

f (x, ζ ) = e−ν(|ζ |)τ−(x,ζ )

[
∇x

∂
∂ζi

p(x,ζ )
f (p(x, ζ ), ζ ) + ∂

∂ζi

f (p(x, ζ ), ζ )

]

+ f (p(x, ζ ), ζ )e−ν(|ζ |)τ−(x,ζ )

[
−ν′(|ζ |) ζi

|ζ |τ−(x, ζ ) − ν(|ζ |)∂τ−(x, ζ )

∂ζi

]

+ ∂τ−(x, ζ )

∂ζi

e−ν(|ζ |)τ−(x,ζ )K(f )(p(x, ζ ), ζ )

+
τ−(x,ζ )∫

0

−ν′(|ζ |) ζi

|ζ |e
−ν(|ζ |)sK(f )(x − sζ, ζ )sds (11.1)

−
τ−(x,ζ )∫

0

e−ν(|ζ |)s ∂

∂xi

K(f )(x − sζ, ζ )sds

+
τ−(x,ζ )∫

0

e−ν(|ζ |)s ∂

∂ζi

K(f )(x − sζ, ζ )ds

=: D1
v + D2

v + D3
v + D4

v + D5
v + D6

v .

From the fact ν′(|ζ |) is bounded, we can conclude that D4
v is bounded. Using the estimate∥∥∥∥ ∂

∂ζi

K(f )

∥∥∥∥
L∞

ζ

≤ C‖f ‖L∞
ζ

, (11.2)

we can prove that D6
v is bounded. Using (10.21), (10.7), and (10.41), we have

∣∣∣∣ ∂

∂xi

K(f )(x − sζ, ζ )

∣∣∣∣≤ C
(

1 + d−1
x−sζ

) 1
3 +ε

. (11.3)

Then, applying Proposition 6.3, we have

|D5
v | ≤ C

τ−(x,ζ )∫
0

e−ν(|ζ |)s(1 + [dx |ζ |(τ−(x, ζ ) − s)]− 1
3 −ε
)
sds

≤ C

l∫
0

e
− ν(|ζ |)

|ζ | r(1 + [dx |(l − r))]− 1
3 −ε
) r

|ζ |2 dr

≤ C
(

1 + d−1
x

) 1
3 +ε
(

1 + 1

|ζ |
)

.

(11.4)

If we do not want the singularity in the expression, we can have

|D5
v | ≤ C(1 + d−1

x )
4
3 +ε . (11.5)

To deal with the rest of terms, we need to discuss the derivative of τ− and p with respect to ζ .
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Proposition 11.1. Suppose that � is a C1 bounded convex domain in R3, x ∈ �, and ζ , ζ ′ ∈ R
3. Then,∣∣∣∣ ∂

∂ζi

τ−(x, ζ )

∣∣∣∣≤ τ−(x, ζ )

N(x, ζ )|ζ | (11.6)∣∣∣∣ ∂

∂ζi

p(x, ζ )

∣∣∣∣≤ τ−(x, ζ )

(
1 + 1

N(x, ζ )

)
. (11.7)

The above proposition is a direct consequence from the explicit formula in Lemma 2 in [11].
Let

η =
∂

∂ζi
p(x, ζ )∣∣∣ ∂

∂ζi
p(x, ζ )

∣∣∣ . (11.8)

Then,

∇x
∂

∂ζi
p(x,ζ )

f (p(x, ζ ), ζ ) = ∇x
η f (p(x, ζ ), ζ )| ∂

∂ζi

p(x, ζ )| ≤ C| ∂

∂ζi

p(x, ζ )|. (11.9)

Notice that

e−ν(|ζ |)τ−(x,ζ ) τ−(x, ζ )

N(x, ζ )
≤ Cd−1

x . (11.10)

We conclude the lemma.
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