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Abstract

We investigate the regularity issue for the diffuse reflection boundary problem to the stationary linearized Boltzmann equation
for hard sphere potential, cutoff hard potential, or cutoff Maxwellian molecular gases in a strictly convex bounded domain. We
obtain pointwise estimates for first derivatives of the solution provided the boundary temperature is bounded differentiable and the
solution is bounded. This result can be understood as a stationary version of the velocity averaging lemma and mixture lemma.
© 2018 L’ Association Publications de 1’Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved.
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1. Introduction

In this article, we consider the stationary linearized Boltzmann equation

¢-Vfx,&)=L(f), (1.1)

for ¢ € R? and x € Q, where Q € R? is a C? bounded strictly convex domain such that 9 is of positive Gaussian
curvature. Here, L represents the linearization of the collision operator. The collision operator in Boltzmann equation
reads:

2 %
O(F,G) = / / / (F(CYG(EL) — F(©)G() B(t, — ¢, 6)dodeds,. (12)
R3O0 O

where ¢, ¢, and ¢’, ¢, are pairs of velocities before and after the impact, and B is called the cross section, depending
on interaction between particles. L is obtained by linearizing Q around the standard Maxwellian

—3 e leP
M) =n"2e (1.3)
in the fashion
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F=M+M:f. (1.4)
L reads
L(f) = M~1()[Q(M? £, M) + Q(M, M? f)]. (1.5)

Notice that Q and L only act on functions of ¢ variable, while x is considered as a parameter rather a variable. The
widely used angular cutoff potential is a mathematical model introduced by Grad [14] by assuming

0 < B(|¢ — ¢«],0) < C|¢ — £«|” cos@sinb. (1.6)
In this article, we follow Grad’s idea and assume

B(I¢ — &, 0) =1 — &V B(O),

0<pB(@) <CcosOsinb, (1.7)

O0<y=1l

The range of y we consider corresponds to the hard sphere model, cutoff hard potential, and cutoff Maxwellian
molecular gases. We shall discuss the properties of L under our assumption (1.7) in detail in Section 2.
The boundary condition under the consideration is the diffuse reflection boundary condition:

(1) First, there is no net flux on the boundary.
(2) Secondly, the velocity distribution function reflected from the boundary is in thermal equilibrium with the bound-
ary temperature.

We use I'_ to denote the incoming boundary:
Fo={(x, DIx €9, ¢-n(x) <0}, (1.8)

where n(x) is the outward unit normal of 7, (9€2). In the context of the linearized Boltzmann equation, the mathemat-
ical formula of the aforementioned diffuse reflection boundary condition could be described as: for (x,¢) € ',

O =Y @M+ T )22 —2)M?, (1.9)
V() =247 / Fe. e nM2de. (1.10)
¢’ n>0

Here, T (x) is the temperature on the boundary. To state our main goal of mathematical analysis, we define, for given
x e,

L(x,g“):inf{t‘t>0, x—t§¢Q}, and (1.11)

p(x. ) =x—1_(x,0). (1.12)
Under the assumption (1.7), L can be decomposed into a multiplicative operator and an integral operator:

L(f)=—vZDf + K(f). (1.13)
We take the integral operator K as the source term and rewrite (1.1) as

-V O +veDf(x, 8 =K(f). (1.14)
The corresponding integral form of the solution to (1.14) is

T (x,0)
f@ )= f(plx,5), e D=0 4 / e MK (f)(x = st £)ds. (1.15)
0

We say f is a solution to (1.1) if f satisfies (1.15) almost everywhere. The existence of a solution to the presented
problem has been established by Guiraud in 1970’s [15,16]. Recently, Esposito, Guo, Kim, and Marra extended
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the result to non-convex domains in [12]. In particular, we notice that, under the assumption that 7'(x) is bounded,
Proposition 4.1 of [12] implies the existence of L% solution to (1.14) supplemented with the boundary conditions
(1.9)—(1.10). Concerning L' solutions, the linear case was done by Falk for convex domains [10], and the non-
linear case was solved by Arkeryd and Nouri for slab geometry [1]. In the present article, we shall assume that
T (x) is bounded differentiable, i.e., T (x) is differentiable and its first derivatives are bounded, and we shall aim at
proving the interior differentiability of the solution to the problem (1.14) supplemented with (1.9)—(1.10), see Theo-
rem 1.2.

It is worth mentioning that, in [12], they also proved that the solution is continuous away from the grazing set. For
the higher regularity issue, by observing velocity averaging effect for the stationary linearized Boltzmann equation, the
Holder continuity up to %- away from the boundary was first established in [6] for inflow boundary value problems.
In this article, we establish a pointwise estimate of the first derivatives of the solution. The main cruxes of this
pointwise estimate are multifold. First, we need to overcome the difficulty brought by the diffuse reflection boundary
condition. The diffuse reflection condition ((1.9) and (1.10)) involves the solution itself. Namely, inferring from (1.15)
and (1.9)—(1.10), since we only know that the solution f € Lif’g, we cannot even take the formal derivative to f with
respect to the space variable x. Secondly, we need to improve the regularity from Holder continuity to differentiability.
We shall discuss these issues in depth after introducing the main theorem. Regarding regularity issues for the time
dependent Boltzmann equation, we refer the interested readers to [17-19].

We denote the distance of interior point x to 32 by d,, namely

d, = inf |x — 1.16
" ylergglx yl. (1.16)

We would like to specify the domain we are dealing with.

Definition 1.1. We say an open bounded strictly convex set € in R3 satisfies the positive curvature condition if d<2 is
C? and of positive Gaussian curvature.

The main result of this article is as follows.

Theorem 1.2. Assume Q C R satisfies the positive curvature condition defined in Definition 1.1 above. Under the
assumption (1.7), suppose f € L°°§ is a solution to the stationary linearized Boltzmann equation (1.1) with the
diffuse reflection boundary condition (1.9)—(1.10) such that the boundary temperature T (x) (in (1.10)) is bounded
differentiable, i.e., T (x) is differentiable and its first derivatives are bounded. Then, for € > 0, we have

<C(+d; 1y3+e, (1.17)

2

i=1

—fx 0

—f(x ;>‘+Z

where x € Q and ¢ € R>.

Remark 1.3. Notice that the right-hand side of the above estimate diverges to infinity as x approaches the boundary.
This hints the possibility that regularity of solutions to Boltzmann equation may become worse near boundary. Actu-
ally, it was observed in a simpler geometrical setting, a slab domain, by numerical evidence that a jump discontinuity
and a logarithmic singularity occurs at boundary [5,21].

Now we briefly recall some ideas about the velocity averaging effect for the stationary linearized Boltzmann
equation on bounded convex domains introduced in [6]. We iterate the integral equation (1.15) again and ob-
tain
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fx, 8 = f(p(x, ), 0)e v IEhe=60)
7 (x,¢)

n / /e—V(IZI)sk(g’g/)e—V(\C/I)L(x—sM/)f(p(x —s2.¢)).¢)de'ds

o ® (1.18)
T_(x,0)  Tt-(x—s£.8))
+ f / f e UDSk(E, e VK (f)(x — ¢ — 12, )drde ' ds
0 R3 0
=I1(x,0)+11(x,¢)+111(x,¢).

For I and 71, the regularity of the boundary is preserved by the transport. The velocity averaging effect would play
an important role in the improvement of regularity for 771. Notice that, thanks to nice property of the integral kernel,
(2.6), in fact K (f) is bounded differentiable in ¢ provide f is bounded, i.e.,

For time dependent kinetic equations defined on the whole space, it is well-known that velocity averaging effect com-
bining with transport effect can transfer regularity from velocity variables to space variables, e.g., famous Velocity
Averaging Lemma [13] and Mixture Lemma [20]. As far as we know, there is no analogy result for the Mixture Lemma
for stationary problems defined on bounded domains addressed elsewhere. To take care of the regularity of 111, we
change the variables ¢’ to the spherical coordinates so that

a;, o S Wl (1.19)

' = (pcosb, psinfcos¢, psindsing). (1.20)

Also, we change the traveling time to the traveling distance:

r = pt. (1.21)
Let {’ —=7. Then, we can rewrite /11 as
T_(x,2) oo m 27 |x—st—p(x—s¢,¢)
1] = f —v(|;|>s///
O 00 0
k(, ¢ )e K(f)(x — 8¢ —r{’ N sinOdrdepdbdpds (1.22)
- (x,8)
=: / e "D G (x — sz, 0)ds.
0

Notice that we can parametrize Q2 by 6, ¢, and r, thanks to the convexity of 2. Therefore, by regrouping the inte-
grals, we can change the formulation to contain an integral over space: Let xo =x —s¢ and y =x —s{ —r¢’. We

have
(X0 =)'\ —v(p) o (xo —y) p
G xo. “‘// < |o—y|>e Km( o =) o —y P (1.23)

Notice that in the above formula, the velocity variables ¢ are replaced by the space variables xy and y, and there-
fore the regularity in velocity variables can be transferred to space variables. However, the singularity in the above
integral formula does not allow us to differentiate G(xg, ¢) with respect to xo directly. This is the reason why
the result obtained in [6] is limited to the Holder type continuity. In the present work, we overcome this obsta-
cle by bootstrapping the regularity from Holder continuity to differentiability with the help of divergence theorem
(see Section 10). Notice that there is only a very narrow window that one can carry out this strategy. To this
aim, we make big efforts to significantly refine Holder type estimates in Sections 6, 7, and 8. In addition, we
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encounter not only the aforementioned cruxes but also the difficulties due to the diffuse reflection boundary con-
dition.

Now, we shall give a brief account of the strategy that we employ to overcome all the aforementioned subtleties.
First, plugging (1.9) into (1.15), we have

£ 0 = (U (pe, 0) + T(px, O)(¢|* —2)) MDD
—(x,0)

+ / e VDS K () (x —s¢, ¢)ds.
0

(1.24)

Notice that, by (1.10), ¥ is only a bounded function provided f is bounded. Hence, we cannot even take a formal
derivative on the first term of the right hand side of (1.24). To deal with the differentiability of the first term of the
right hand side of (1.24), we only need to take care of the differentiability of ¥ (p(x, ¢)). Plugging (1.24) into (1.10),
we obtain

Y(x) =27 / T(p(x, DL = 2)M (e IEDT=CD 1 p(x)|de

£-n(x)>0
N / P (p(e. ENME@)e " V=00 e ()lde
¢n(6)>0 (1.25)
—(x,¢)
eV / / EDK () — 52, OMEQI - n(o)ldsde
cn(x)>0 0
=ZBT+Bw+Df.

In the above expression, the domain of integration depends on the space variable x, which is not convenient for taking
the formal derivatives. On the other hand, in the formula of By, the integrand v is a function of p(x, ¢). However, we
only know that ¥ is a bounded function. As we shall go into the details in Section 4, by using a sophisticated change
of variables, we can rewrite By, as follows

e ¢]

By == [ [ o U G- ) @l - ) )P aAGar (1.26)
0 30
We notice that with the above expression, the domain of integration is fixed and the formal derivative of By (x) with
respect to x variable does not involve 1. This creates a startup for our regularity analysis. We use the same fashion to
deal with the regularity of Br.
For the term of D ¢, applying a similar approach as in [6], we can convert D into the following formula

x
v(p) — — . 2 2
,J lx — ¥l |x — ¥l lx — ¥l

Similar to the treatment of /171, the advantage we gain from the above transformation is that the regularity in velocity
variables can be transferred to space variables. However, if we differentiate D s with respect to x variables directly,
the formula has a singularity which damages the integrability of the resulting formula. Therefore, one can only claim
the Holder type regularity by an argument similar to [6]. Nevertheless, we can in fact further bootstrap the regularity
to differentiability. For the details of the treatment, see Section 9.

The organization of the rest part of this article is as follows. We recapitulate the important properties of the lin-
earized collision operator L in Section 2. In Section 3, we prepare several useful auxiliary lemmas and propositions
associated to the geometry of 2 which play crucial roles in the integrability arguments in the estimates of Section 4 —
Section 9. In Section 10, we sum up the estimates from Section 4 to Section 9 and conclude the differentiability in x
variables. Section 11 is devoted to the differentiability in ¢ variables.
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2. Properties of linearized collision operator

In this section, we summarize some known properties of the linearized collision operator L defined in (1.5) with a
cross section satisfying our assumption (1.7) (see [2,7,14]). L can be decomposed into a multiplicative operator and
an integral operator:

L(f)=—v(¢Df+K(f), 2.1
where
K(f)(x,g“):/k(@s“*)f(x,{*)d{* (2.2)
IR3

is symmetric, i.e.,

k(Z, &) = k(8s, 0).

The explicit expression of v is

D =ﬂo/€"”'2|n ¢, 2.3)

R3
where By = f(f B(6)dO.Let 0 < § < 1. The collision frequency v(|¢|) and the collision kernel k(¢, ¢,) satisfy

vo(L+1¢DY <v(lgh = w1+ 15D, (2.4)

_1-8 _ 1817 =187 \2
k(. )1 < CLIE — 27 (A [g] 4 160 e (1= Peccty )), 2.5)

2 2
L e+ 10 :
‘ 3¢ ¢ — ¢l "
Here, the constants 0 < vy < v; may depend on the potential and C1 and C»> may depend on é and the potential. Notice
that (2.5) was established in [2] and (2.6) can be concluded by the observation in [7] in case the cross section satisfies
(1.7).

Related to the above estimates, the following proposition from [2] is crucial in our study.

k(g &) < (2.6)

Proposition 2.1. For any €, ay, a> > 0,
1 arin—, P—a WPl |
‘ We [n—Cx| dé'* S C4(1 + |n|) ’ (27)
— 6%

where C4 may depend on €, a1, and a;.
Using the (2.6) and Proposition 2.1, we can conclude

< oo (2.8)
gL

k(C Zx)

k(& ) e

< 9
ooyl
LC Lé’*

&

Then, by Schur’s test, we can conclude the following smoothing effect of K in velocity variable mentioned in [7].

Proposition 2.2. For 1 < p < oo,

,=Clf - (2.9)

34“1
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3. Geometric properties

In this section, we shall prove several important auxiliary lemmas and propositions which play important roles in
our regularity theory. We first briefly recapitulate some important ingredients of differential geometry from [9] that
we are going to employ.

Definition 3.1. Let M be a differentiable Riemannian manifold equipped with the Riemannian connection V.
A parametrized curve ¢ (¢) : [0, 7] — M is called a geodesic curve if

V' (1) =0 3.1)
fort € (0, r).

If |¢'(2)| = 1, we call ¢ (¢) a normalized geodesic. In this case, 7 is the arc length of the geodesic segment between
¢(0) and ¢ (7). It is well-known that there exists a unique vector field on 7'M, the tangent bundle of M, whose
trajectories are of the form ¢ — (¢ (¢), ¢'(¢)), where ¢ is a geodesic on M. This vector field is called the geodesic
field on T M and its flow is called the geodesic flow on 7M. The general existence theory of ODE systems implies
the following property of geodesic flow.

Proposition 3.2. Given p € M, there exist a neighborhood V of p in M, a number € > 0 and a C*™ mapping ¢ :
(2,2)xU—->MU={(q,w)eTM;qeV,weTyM,|w| <e}suchthatt — ¢(t,q,w), t € (=2,2), is the unique
geodesic of M which, at the instant t = 0, passes through q with velocity w, for every q € V and for every w € TyM,
with |w| < €.

Let p e M and U C T M given by the above proposition. The exponential map on U is defined as

Exp,(v) = (1,q,v) = (v].q. %x (q.v) € U. (3.2)

In the context of our theory, we shall use the C? differentiable structure of the aforementioned geometric tools. The

following lemma is our first main results of this section.

Lemma 3.3. Suppose Q2 satisfies the positive curvature condition defined in Definition 1.1. Then, there exists a con-
stant C depending only on the geometry of domain Q2 such that for any interior point x € 2, we have

/ 1sz(y)§C(}lndx\+1), (3.3)
oA lx — yl

where d, = d(x, 02) and A(y) is the surface element of 0<2 at point y € 9S2.

Lemma 3.3 is crucial in the proof of the refined Holder type estimate (6.5) in Lemma 6.1 as well as Proposition 10.4.
We may get a hint by directly calculate the integral over a bounded set on a plane. A special regular case of Lemma 3.3
is the case where 92 is a sphere, for which one may prove Lemma 3.3 by direct calculation. To deal with the general
case, we need the following proposition.

Proposition 3.4. Suppose 2 satisfies the positive curvature condition defined in Definition 1.1. Then, there exists a
constant ry (see (3.14)) depending only on 2 such that for any x € Q2 and pgy € 9S2 satisfying that (po — x) is parallel
to n(po), where n(po) is the unit outward normal of 92 at py, there holds the following inequality

o 2 l 2 2
lx — pol” + 2IUI <|Expp,(v) — xI7, (3.4)
Jor0<|x — pol <ryandv € Tp,(32) with 0 < |v| <ry.

Here, Exp, is the exponential map from the tangent space Tp,(0$2) to dS2.
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Since ©  R? is a C? convex bounded domain such that 32 is of positive Gaussian curvature, by continuity of
curvatures and the compactness of 92, we see that there are uniform positive upper and lower bounds for normal
curvature and Gaussian curvature of 9€2. Regarding the identity map as an immersion of 92 into the Euclidean
space R3, we equip 92 with the induced metric and the corresponding the Riemannian connection (also known as
Levi-Civita connection) structure. We use the notation

GB(p,r):={Exp,v)|lv| <r} (3.5)

to denote the geodesic ball (which is also known as normal ball) on d€2 centered at p € 92 with geodesic radius .
Noting that

(1) d(Expg)o is the identity map of 7, (9€2),
(2) 0% is of positive Gaussian curvature,
(3) Gaussian curvature is the same as sectional curvature for two dimensional manifold,

and applying the Rauch theorem (see, for example, [3,9]), we see that there is a uniform radius, rg, and a positive
constant ag < 1 such that for every point p € 92 the exponential map Exp), : T,(32) — 02 is one-to-one and the
Jacobian satisfies
oE
aof‘det i ’<1 (3.6)
0X

within the rp-neighborhood of T),(9€2). With the above understanding, we now start to prove Proposition 3.4.

Proof. We are going to estimate the distance between x € €2 and a point in the geodesic ball centered at pg. We
choose the coordinate such that pg = (0, 0,0), x = (0, 0, —d). Without loss of generality, we only need to consider
the points on the normal geodesic ¢ (s) = (¢1(s), P2(s), p3(s)) with ¢(0) = (0,0,0) and ¢’(0) = (1,0, 0). Since
normal curvature is bounded, there exist constants 0 < a < b independent of po and ¢ such that

2

O0<a< %qﬁ(s) <b, (3.7
for all s € (—rg, ro). By ¢’(0) = (1, 0, 0), we derive from (3.7) that
1 —bs < ¢j(s) <1+ bs, (3.8)
—bs < ¢é(s) < bs, 3.9)
—bs < ¢5(s) <bs. (3.10)
Therefore,
1 1 2
S—Ebs §¢1(s)§s+§bs , (3.1D)
—lbsz <¢(s) < lbsz, (3.12)
2 2
—lbsz <p(s) < lbsz. (3.13)
2 2
For further discussion, we define
r1 :=min {ro, i} (3.14)
4b

In the following analysis, we assume that
0<s<r,andO<d<ry.

Case 1: d > %bsz. In this case, we have

1
$3(s) +d>d— Ebsz,
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and
1 2
p(s) —xI* = ¢7(s) + p3(s) + <d - Ebs2>

1 2 1 2

> (s — Ebs2> +0% + (d — Ebsz)
1

=d*+ (1 —bd — bs)s> + 5bzs“

1
> d2 + ESZ.

Case 2: d < %bsz. In this case, we see that

lp(s) — x|* > ¢p3(s)

1 2
> (s — —bs2>
2
1 2
= <§bs2) + (1 — bs)s?

1
>d2 4 g2
= +2s

Now, for v € T),,(9€2) with 0 < |v| <y, by choosing the coordinate properly, we have ¢ (s) = Expp,(v) with s = [v].
Summing up Case I and Case 2, we conclude Proposition 3.4. O

Remark 3.5. Taking (3.14) into account, by (3.11), we see that
8
SS5|¢(S)—¢(0)|. (3.15)

Proof of Lemma 3.3. Let GB(p, r) be the geodesic ball on <2 centered at p with geodesic radius . We first take
care of the case where d, < r;. We define

Do :={p € dQ|(p —x)/n(p), dx <|p —x| =}, (3.16)
1
D = U GB (p, Erl) . (3.17)
PEDy

By the Vitali’s covering lemma, we see that there exists a countable subcollection Dy of Dgy such that

Upef)o GB(p, %rl) is a disjoint union of geodesic discs G B(p, 11—01’1) and

5
D GB| p, — . 3.18
e U (p 10”) (3.18)
peDy
On the other hand, due to (3.6), there is a uniform lower bound A of the area of GB(p, %rl) for any p € 9L2. Since

Upef)o GB(p, %rl) is a disjoint union of GB(p, %rl) and the area of 92 (denoted by A») is finite, the cardinality

of Dy satisfies
- A
#(Dy) < A—2 < 0. (3.19)
1

We remark that, by the above argument, the upper bound of the cardinality #(Dy) is independent of the position of x.
For the sake of convenience, we list all the elements of Dy as follows

Doz[pl,pz,-~-,pm}, (3.20)
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where m = #(Dy), and define the sets

m

D; = UGB(pi,rl) and
i=1

D3 =939\ D.

Note that since D, is an open subset of 92, D3 is a compact set. Hence, there is a point p’ € Dj3 that realizes the
distance of x and Dj3.
We claim that

’ r
—x|=dx, D3) > —. 3.21
Ip | =d(x, D3) NG (3.21)

Suppose, on the contrary, |p’ — x| =d(x, D3) < } We first observe that if p’ is an interior point of D3, due to
|p’ — x| =d(x, D3), we see that (p —x)//n(p’) and hence p’ € Dy. This violates to p’ € D3. On the other hand, if
p’ € 3D3, then there exists pj € Dg such that p e 0GB(pj,r1). Therefore, there exists v € ij (02) with |v| =r
such that Expp; (v) = p’. Applying Proposition 3.4, we derive that

1 1
Ix—pilP+ i <Ip —x* < 5’"‘2' (3.22)

2
This implies x = p; which is a contradiction. We then conclude the claim.
Itis easy to see that

2 2A2
| dA(y) dA(y) < ) (3.23)
1 s 1
On the other hand,
ry 2w
f dA(y) < f/ sdsd9
| |x — pi |2
GB(pi,r1)
2’1 !
<2 f du (3.24)
dz+u

<4 |Ind,|+ 27

In (df—l— %rlz)‘
<C(1+|Ind]).

Taking (3.23) and (3.24) into account, we prove Lemma 3.3 for the case where d, < ry. For the case where dy > ry,
we may bound the left hand side of (3.3) by the right hand side of (3.23). This completes the proof of Lemma 3.3. O

Next, we investigate the estimates given in the following lemma.

Lemma 3.6. Adopting the same geometric assumptions on 2 as stated in Definition 1.1, let r1 be as defined by (3.14)
in Lemma 3.3. Then, there exists a constant C such that for any x,y € 0Q2 with y € GB(x, r1), we have

In(x) - (x — y)| < Clx — y/?, (3.25)
In(y)- (x —y)| < Clx — y|?, (3.26)
In(y) - vl = [n(y) - (v — V)| < Clx — yl, (3.27)

where v € Ty (02) is a unit vector and v’ € Ty (0%2) is the parallel transport of v from T, (0R2) to Ty (92).

The above lemma is crucial in the proofs of the Lemma 4.2 and Lemma 9.1. These geometric observations can
resolve the difficulty from seemingly critical singularity (barely non-integrable) on a surface encountered in the proofs.
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Proof. By choosing an appropriate coordinate system, we may assume x = (0, 0, 0), n(x) = (0,0, 1) and ¢ (s) is the
normal geodesic on d€2 connecting x and y within the geodesic disc G B(x, r1) such that

¢0)=x,
¢'(0)=(1,0,0),
Expx((,0,0)) =¢ () = y.
Replacing s by 7 in the estimates (3.11)—(3.13), we obtain

1 1 1
Ix —y| > g1 ()] > 7 — Ebrz > (1= Jbr)T> o, and

1
In(x) - (x — y)| = p3(0)] < Ebrz <2blx — y|*.

This proves (3.25). By symmetry, (3.26) is derived from (3.25). To see (3.27), by replacing s by t in (3.8)—(3.10), we
obtain

In(y)-vl=n(y) - (v =0 <[v—1|
=1¢'(0) = ¢'(¥)| < V/3bt
<2v/3blx — y|.
Finally, we may choose C = 4b so that (3.25)—(3.27) hold true. O

The next lemma is an important ingredient of the proof of the Holder type estimate up to the boundary, Lemma 8.1.

Lemma 3.7. Suppose 2 satisfies the positive curvature condition defined in Definition 1.1. Then, there exists Ry > 0
depending only on Q2 such that if x € 92, y € @, and

dy < Ry, (3.28)

then a point Y € 92 such that d(Y,y) = dy is unique. Furthermore, there exist c, Cé > 0 such that, for y € Q
satisfying (3.28) and x € 9%, if

n(¥)-(x—y) >0, (3.29)
then

lx —yl < deé, (3.30)
orif

n)-(x—y) <0, (3.31)
then

lx =yl > Cédy%. (3.32)

Proof. Itis well known that there exists Ry > 0 such that d, < R; implies the existence of unique projection ¥ on 9€2.
The important task is to prove the second part of the lemma. Because of the assumption on €2, there exist R3 > Ry > 0
such that for every point p on d€2 there exist a sphere S,(p) with radius R3 and a sphere S;(p) with radius R;
both tangent to 9<2 at p and S,(p) contains the whole 2 and while S;(p) is contained completely within €2. We let
Ro = min{Ry, Ry} and consider y with d, < Ry. We name the centers of S,(Y) and S;(Y) as Y, and Y; respectively.
Also, we name the plane perpendicular to n(Y) passing through y as L. L divides 92 into two components. If
n(Y)- (x —y) > 0then x and Y fall in the same component. )7))c intersects S,(Y) at one point X’. Let L’ be the plane
passing x, y, and Y,,. There are two intersection points among L, L', and S,(Y). We name the one closer to X’ as A.
We can observe

x—yl <X —yl<|A—yl (3.33)
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Letd = LAY,y. Then,

—Y Ry —d d
cosg= P Yol _Rs—dy | dy (3.34)
|A —Y,l R3 R3

Therefore,

d 0

R—y =1 —COSQ:ZSinZE. (3.35)

3

We obtain

0 d
sin— = | 2. (3.36)
2 2R3

On the other hand, we have

0 0
|A—y|=R3sin9:2R3sin§cos§ <+V2R3./d,. (3.37)

We finished the proof of (3.30). If n(Y) - (x — y) <0, then x and Y are on different components. Let B be the
intersection point between Xy and S; (Y). We have
lx —yl>ly— Bl (3.38)

We name the plane passing through y, Y;, and x as L and the plane perpendicular to n(Y') passing through Y; as L.
There are two intersection points among L, L1, and S; (Y). We denote the intersection point which is closer to B as U.
If B lays between L and L,, then

T
LBUy> > (3.39)
Therefore,
[B—y|>|U -yl (3.40)

Let ' = LUY;y. Similarly, we have

A dy
sin — = [ —— (3.41)
2 2R,

Therefore,

/ /

0 0 0’
|y —U| = Rysin6’ = 2R, sin ) cos ) > «/§R2 sin D) >/ Rady. (3.42)
For the case Y and B are on different side of L,

|y — B| > Ry >/ Rody. (3.43)

Hence, we finish the proof. O
4. Differentiability of By and Br

By (1.10), the definition of ¥, we see that ¥ is bounded whenever f € L)‘?f’ . In this section, we shall further prove
that the first derivatives of Br and By are bounded provided T and v are bounded. By the differentiability on the
boundary of €2, we refer to the directional derivatives:

Definition 4.1. Let x,n € R? and D be a C' surface in R? and f : D c R? — R. Suppose ¢ : (—¢,€) — D is a
smooth space curve such that

d
¢(0) =x, Ed’(t) t:0=n. (4.1)
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We define
d
v, f(x) = d—f(¢(t)) (4.2)
4 t=0
when the limit at right-hand-side exists.

Our first result in this section is the following lemma.

Lemma 4.2. Suppose Q2 satisfies the positive curvature condition defined in Definition 1.1 and x € 0S2. Suppose T (x)
and Y (x) are bounded. Then, the first derivatives of Br(x) and By, (x) are bounded.

Recall that, for x € 982, we have

BTQ»:=2~G?‘[ T(p(x, )¢ = 2)M(£)e VD=0 e pjde, (4.3)
£-n>0

By (x):=2Jm / Y (pQx, OYM)e " IED=ED e yide. (4.4)
¢-n>0

We shall only present the proof for By, because the proof for By is similar. The following proposition gives a useful
alternative formulation of By .

Proposition 4.3.

2 r P x—y —2llx=y) 3
By (x) = ;//Ilf(y)e e T [ =y)-n)]lx = y)-n(MII"dA(y)dl. (4.5)
0 9Q

Proof. The idea of showing the equivalence between (4.4) and (4.5) is to do a change of coordinates. We first observe
that, by the strictly convexity of €2, for each ¢ in the half space

H= {;‘ ERS’C -n(x) >0},
there exists exactly a unique pair (y, /) € 92 x R such that

{=Ilx—y). (4.6)
Secondly, since the bounded set €2 is C? strictly convex, we can cover 92 by finitely many local charts, i.e., for
1 <i <k, there are

simply-connected open set D; C R?, and
C? local diffeomorphism ¢; : D; — 9%
such that
U ¢ion =02

1<i<k
Summing up from the above observations, we can parametrize the half space H by a union of a finite number of cone
domains. That is to plug y = ¢; (o, ) into (4.6). This gives a coordinate change ¢; : D; x (0, 00) — H:

Gila, B, ) =1(x — ¢i(a, B)). 4.7

Denote H; := ¢;(D; x (0,00)). We see that H = Ule H;. On the other hand, direct calculation shows that the
Jacobian of this coordinate change is given by

9gi(a, B, 1)
d(a, B, 1)

=2|(x = 16 B)) - (A x )] (48)
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We readily see that

e / ¥ (p e, OIYM(©)e™IDTED e pjag

H;

o
_2 . 13— @.B) ,—bvUlx—; @B
Y (gi(a, B))e e
4
0 D,

4.9)
x [(x = gi(a. B)) - n()]|(x — @i (e, B)) - [upi x dppi1|I*decd Bl
o
2 20 y2 _ vllx=yD
== f / Yye e T (= ) - @)l = y) - nIPd AL,
0 ¢i(Di)
where y = ¢ («, B), n(y) is the outward unit normal of €2 at y and A(y) is the surface element of 92 at y.
Combining all the pieces and excluding the repetitions, we obtain the desired formula. 0O
Definition 4.4. For x,y e Q and ¢ € R3, we define
T—(x,¢) :=inf{t > O|x — ¢ ¢ Q}, 4.10)
p(x,8)=x—1-(x,8)¢, 4.11)
dy :=inf{|x — y||y € 02}, (4.12)
dy,y :=min{d,, d}, 4.13)
N o) PG 08| @1
<1
Now, we are ready to prove the Lemma 4.2
Proof of Lemma 4.2. Let «(¢) be a normal geodesic and v € T, (3€2), |v| = 1 such that
a(0) =x,
d 4.15
—a@)| =v. (4.15)
dt t=0
Then
N d
V3 By (x) == d_Bw(“(t))
t t=0
o
0 30
v-(x —y) (4.16)
x| <—212v (=) =Vl — y|)ﬁ> (x =) - n(Olx = y) - n(y)|
d

[(x —y)-n(y)|
t=0

ton@Ix =) -nI+ & —y)- nla@)

+ (x —y)-n()sgn((x — y) - n(y)(v- n(y))]dA(y)dl-

We note that due to the convexity of €2, sgn((x —y) -n(y)) = —1. Let r; > 0 be as defined by (3.14) in Proposition 3.4.
Since 2 is a C2, bounded and strictly convex domain, there exists a positive number  such that for each x € 32, we
have

B, (x)N3d2C GB(x,r1).
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We now break the domain of integration into two parts: B,(x) N 92 and 92\ B, (x), and denote the corresponding
integrals as V; Bi}; and V} Bf// (x) respectively. First, we estimate V; Bf// (x). We notice that

(i) v-nx)=0,
@) |y—x|=>r,forye a2\ B,(x),
(iii) j—tn(oz(t)) is bounded due to smoothness and compactness of 9€2,
@v) v'(I|x — y|) < C( +1|x — y|)¥~!, which is uniformly bounded,
(v) as mentioned in the beginning of this section, v is bounded since f € Li?s in our context.

Taking (i)—(v) into consideration, we obtain that

o0
IViBl|<C / / @ +P)dAp)dL < ClaQ. 4.17)
0 9Q\B, ()
Secondly, since B, (x) N 92 C GB(x, r1), we may apply Lemma 3.6 to obtain

o0
|V, By, ()| < C / /e*’zleylz[mx =P +Px —y* +Plx — yPPldld Ay)
GB(x,r}) 0
PR 45 3
<C / /e_z [ = +23+ Jdzd A(y)

|x lx — ¥l
GB(x,r;) O (418)

<c / 1+ YAA()

GB(x,r1)

lx — ¥l

ry 2w

1
§C//(1+—)rd9dr§C.
r
0 0

Notice that here z = [x — y|l and (r, 6) are polar coordinates for the T, (9€2). Combining the estimates (4.17) and
(4.18), the proof of Lemma 4.2 is complete. O

5. Holder continuity of D ¢

Recall that in (1.25) we define

—(x,8)
Dy(x) =247 / / DS K (F)(x — 25, OMB©)C - nldsde. 5.1)
¢n>0 0

for x € 9. In this section, we shall prove the Holder continuity of D . Let {n(x), ez, e3} be an orthonormal basis of
T, (02). We introduce spherical coordinates so that

£ = pcosn(x) + psinb cos ey 4+ p sinb sin ges. 5.2)
With the further coordinate change: r = sp, g: = %, y=x— rf, we can rewrite D 7 as

27 |p(x,0)x|

%
f/ / e_%rK(f)(x—rf,g')e_#M-n(x)lpsin@drdqﬁd@dp (5.3)
0 0 0

v(p — — : o’ 2
/e_%lx_y‘l((f)(y,p(x y))(x yon) 2 p
Q

dydp.
lx — vl Ix =yl lx — y|?
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Lemma 5.1. Suppose xo and x| are any two points on 0S2. We have

1D (x0) = Dy ()l < CIlf L2, Ixo — 1] (1 + | Infxo —xa1]) e
Proof.
1D (x0) = Dy )] < 2 Z//[KU‘)( S
< e l)(’))I)Co yI= 2wdydp’
|xo — ¥l
| -~ ~ (5.5)
—zf/ Ky, p =)
—yl
0 Q

2 2
% [e—"(,f’)lxo—y—% 2"(X0)'(x0;y) _ P ay= 2”(x1)'(x1§y)}d dp
lxo — ¥l lx1 =yl

=: ADfK —i—ADfo.

We first estimate AD yg. We break the domain of integration into two parts, 1 = Q N B(xo, 2|xo — x1]) and Q7 :=
Q\ B(xop, 2|xp — x1]), and denote the corresponding integrals as AD} x and AD% x respectively. Because of smallness
of the domain of integration, by (2.2) and (2.5), one may readily derive that

|AD} gl < Cllfllzge, Ixo = x1l. o

To estimate D% x» by employing the Lipschitz continuity of K (f):

IK(f)(y, 1) =Ky, )| < C”f”L;‘_’(Ml — &, (5.7
we get
'K(f)(y,p(xo_y)) KA, M)‘
|xo — ¥l lx1 — ¥
<ClIf Il pxo—y)  plx1—y)
o=yl =y
< Cpll fll lx1 — yl(xo — y) — |x0 — yl(x1 —y)‘ 5.8)
x4 lxo — yllx1 — yl

lx1 — yl(xo —x1) + (Ix1 =yl = |xo — yD(x1 — ¥)
=Colfll,
: lxo — yllx1 — I
plxo — |
< c2 = IIfIIL
|xo —
Therefore,

vyt pd
D} = Clxo—millfluz, [ [ 0= L cayap

lxo —y
0 2
r »02 3 # 1 (59)
sCho-nllfly, [ 5oa [ Lar
0 2|xp—x1]

< Clxo —x1|(1+ M fxo —x1[DIfllLge, -

Now, we proceed to estimate ADyo. Suppose O < r < ry as chosen in the proof of Lemma 4.2 so that for every
x € 082, we have
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B, (x)No2C GB(x,ry).
CASE 1. If 2|xp — x1| > r, we see that

ADy¢o - C”f”Lio{

lxo —x1| — r

(5.10)

CASE 2. In case of 2|xg — x1| < r, we split the domain of integration into two parts: 21 = Q N B(xg, 2|xo — x1])
and Q; := Q\ B(xp, 2|xp — x1]), and denote the corresponding integrals as AD} o and AD? o respectively. Due to
smallness of domain of integration, we have

|AD}0|§C”JC”L;°§|X0_X1|~ (5.11)
To estimate AD% o> Welet x(t) C GB(xo, 1) C 92 be the normal geodesic connecting xo and x; with

x(0) =xo, x(s) =x, (5.12)

where s is the geodesic distance between xo and x; on d2. We observe that

d (e_@m,)_“ n(x()) - (x(@) — y))

dt () — yP?
_ v X)) (x@) —y) o~ 21—y MX (@) - (1) — y)
p lx(1) — yl lx(®) — yI3
((%H(X(I))) (x@®) —y) _3(n(x(t)) < (x(2) —y))(x/(l) < (x(?) —y)))
lx(1) — y? lx(1) — yP
o~ 0=yl
Hence,
d (10 —y nx (@) - (1) — y) — U0 1)y 1 v(p) 1
e (@) — P )| =ce (o F 0w e

By the fundamental theorem of calculus, we derive that

o0 s
_1 - d [ _v0 iyt onx (@) (x(@) —y)
AD? =zni//1<( )y, yp)/—(e o O=yl=f 2 )dtddp
7o DO —3” ) a () — v Y
0 2 0
s o0 ) 1 1
_P-
<ciituz| [ [oa+0e® [qm+ e (5.13)
00 (97} .
s 00 5 2 1w R ]
<Clflx, //p(wp)e-%// / (1+ ) sinfdrdodadpdr
00 0 0 |xg—xq]

SCIIfIILfCIXO—X1|(1+|1HIXO—X1|

)

where we have used the inequality
N X X
=7 0 1

addressed in Remark 3.5. Combining the above estimates of AD}'K, Asz x> Aleo and AD%O, the proof of
Lemma 5.1 is complete. O ' ‘ ' ‘
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6. Holder type estimates revisited

From the previous sections, we in fact can already claim interior Holder continuity by an argument similar to [6].
In order to further bootstrap the regularity to differentiability, those estimates need to be significantly refined. In this
section, we are going to prepare some estimates for / and /7 defined in (1.18). In the next section, Section 7, we will
further improve the Mixture Lemma for stationary solution introduced in [6]. This series of discussions of Holder
continuity for Boltzmann equation was started from the observation for one spacial demensional problem in [4].

Our goal in this section is to prove the following lemma.

Lemma 6.1. Assume that Q2 satisfies the geometric assumptions defined in Definition 1.1. Suppose that for fixed
O<e< %, there exist a, My > 0 such that

1F(X.0) = f(Y.0)] < Mo|X — Y|'~€emaltP, ©6.1)
£ (X, 0)| < Moe 1P, 6.2)
forall (X,¢), (Y,¢) € T_. Then, there exists a constant C such that for any x, y € €,
|1<x,;>—1<y,;)|scdiu—yﬂ*e*%'“z, (6.3)
X,y
N e 4 N - e d B E el ) —aleP
I(x,¢)—1(y, <C 6.4
00 =100 (N(x,o N oKl T NG T NGl ©h
fuc(;,c’)nl(x)—1(y>|d;/SC<1+d;;>%(|1ndx,y|+1)|x—y|1—€, (6.5)
]R3

where I is defined in (1.18).
We need some observations in geometry to prove the above lemma.

Proposition 6.2. Let x and y be interior points of Q2. We denote p(x,¢) and p(y,¢) by X and Y respectively. Then

d
x—X|> ———. (6.6)
N(x,¢)
Further more, if |x — X| <|y — Y|, then
X —Y[=< lx —yl, (6.7)
N oo
lx=X|—ly—Y|| < lx = yl. (6.8)

TN, Q)

Proof. Let us first prove (6.6). Let F be the projection of x on the tangent plane Tx (32). Because of convexity, x F
intersects 92 at one point F’. Then,

Ix = XIN(x,0)=|x—F| > |x — F'| > d,, (6.9)

which implies (6.6).
When (x — y) /¢, (6.7) and (6.8) are trivial. If not, we let

¢
= 6.10
RTY (6-10)
e x (y—x) 61n

3=
ler x (y — x)|
e =e3 X e]. (6.12)
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Also, we denote

ni=n(X) e, (6.13)
ny =n(X)- e, (6.14)
3 =n(X) - e3 (6.15)
n' =nie; +noes. (6.16)

Notice that n% —i—n% —i—n% =1and N(x, ¢) = |n1|. Let E be the plane containing x, y, X and Y and T™* =9dQ N E. We
are going to discuss plane geometry on the plane E. Since |X — x| < |Y — y|, the point y* := y + X — x lies on the
line segment yY. If y* =Y, it is obvious that (6.7) and (6.8) hold true. In what follows, we assume y* # Y. Due to

—_
the convexity of €2, the tangent line of I'* passing X would intersect the half line yY at a single point Y*. For the sake
of convenience, we define

0,=LXYy*, 6, =LXY'Y, 63=LYy*X.

By the law of sines, we see that

Xy* Y Xy* XY*
- =— and - =
sin 6 sin 63 sinf,  sinfs

In case 1 > 7 it is obvious that
XY < Xy* =Xy. (6.17)
In case 61 < %, by monotonicity of sine function on the interval [0, %] and the fact 61 > 65, we see

— sinfh——o —— _
Y=—XY*< XYV* < — Xy* = —
sin 6 sin 6y sin 6y

Xy. (6.18)
On the other hand, one may readily see that

/

n
el —
|

ni

/.2 2|
n1+n2

Summing up of (6.17) and (6.18), in any case, we obtain that

sin6, =

1
x =y < —lx—yl=

X —Y|<— <
sin 6, |n1] N(x,?)

Ix — yl. (6.19)

Finally,

2
x=X[=[y=Y[|<|X=Y|+|x =yl =
| | N(x, %)

This completes the proof of Proposition 6.2. O

lx — yl. (6.20)

Next, we shall prove the following proposition which has been mentioned in [6].
Proposition 6.3. Let Q be a C' bounded convex domain in R>. Suppose x € @, X = p(x,¢) € 3K, and z € xX. Then,
d
dzz;xlz—Xl, (6.21)
where R is the diameter of Q.
Proof. We denote a point on 9€2 that realizes d; by Z. Let L, be the plane passing x perpendicular to ¢. Let Lz be

the plane passing Z, z, and x. We denote the intersection point of Ly, Lz, and 9€2 on the same side with Z on Lz to
XxbyA.Let6)=LZXz,00=/,XZz, and 01’ = /£ AXz. Due to the convexity of 2, we have
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A— d
1 >sinf; > sinf] = | x| > = (6.22)
[A—X|~ R
where R is the diameter of 2. By the law of sines,
. . dy
d; >d;sinf) = |X — z|sinO; ZlX—zlf. (6.23)
This concludes the proposition. O
Now, we are ready to prove Lemma 6.1.
Proof. Without loss of generality, we may assume |X — x| <|Y — y|. Hence,
X —x| Y —y|
10,0 = 10, Ol = (X, e VT — p(v oy |
|X—x]| [X—x]| Y=y
< 1FX0 = fE 0l VTR 4 pr ol VTR — oD
_ v(IEDIx =¥\ e ot
<Ce alz? (( =yl ) €4 ( ) e 0 ewar
NG, ) NG, O] (6.2
<C —alz|? 1Z11x =yl - lx —yl
=Ce (——— a4 )+ (—dx )

a 2
< Cdx_1|x — y|lmeem 21,

Notice that we have used the mean value theorem and Proposition 6.2 in the above estimate. We observe that the third
line of (6.24) gives

_ |x_y|l_6 lx — ¥ —al¢?
[(x,0) H%CN§C< N&i)-+N&£”“)e . 625)

Due to the symmetry of x and y, by (6.24) and (6.25), we obtain (6.3) and (6.4). To prove (6.5), we first divide the
domain of integration into two:

1
By:={¢' eRl|ic —¢'| <diy), (6.26)
B§:=R*\ By. (6.27)

We denote the corresponding integrals by K Ay and K A, respectively. Using (6.3), we have

_ y|l—€ i,
IKAIL| <C we*ﬂ{ ‘2d§/

|§ _é‘/ldx,y

By
M_lle iy x 2 (6.28)
///rs1n9d¢d9dr
< Cdiflr -y,

where we used the spherical coordinates centered at ¢ in the above inequality.
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Using (6.4) and changing variable similar to Section 4, we have

e e —y e =y =y =y )
+ + + d¢’
( Ne.o) TNmol T NG TNeLoer )

|KAD| §C/
b dly

< fulzlez\Q . il—e _
e lx —z]|x — y] Ix — vl ,
¢ I|(x — 2) - n(2)|dA(z)dl
- / 3 <|(x—z)~n(z)| +|(x—z)-n(z)|l> |(xr = 2) - n(2)|dA(2)

/e—alz)‘—ZIZ (|y—Z||X—y|1—e N |x_)’| )12|( —2)-n(2)|dA(z)dl
' -2 1@ o -2-n@l) "

Q
C o0
—al?|x—z|? (2 1-
<— [e al?lx—z| (1 Ix — z|lx — y| f+1|x—y|))d1dA(z)
0

d3 y 50 (6.29)
C o0
+ fe*‘”z“’ F(Ply = 2llx = 1"+ 1lx = yD)) dldAG)
d;yasz 0
o0
C —as? 2 1—€ 1 1
<— e (s lx — y| —I—slx—y|)> ds 5+ 5 |dA(2)
2 lx—z]*  |y—zl
X,y 0
c 1 1
< |x—y|l—€/ +—)dAw)
3 lx —z] ly —zl
dx’y Q2
c
< —Ix —y/'""¢(|Ind;| + | Ind, |+1)<—|x— I"¢(|Indy | + D).
3y dy,

Notice that, in the above estimates, we changed the variable s = |x — z|l, s = |y — z|/ and applied Lemma 3.3. The
proof of Lemma 6.1 is complete. 0O

7. Regularity due to mixing
We shall elaborate the smoothing effect due to the combination of collision and transport in this section. In the
following proposition, we improve the estimate in [6] from Holder continuity with order %- to almost Lipschitz

continuous.

Proposition 7.1. Suppose f € L?{ is a solution to the stationary linearized Boltzmann equation. Then, for all xg, x1 €
Qand ¢ € R?,

|G (x0, &) = G(x1, ) = Cll fllzge, Ixo — x1l (1 + | Infxo — x11]). (7.1)

Proof. Asin [6], we observe that

\o}\

¢ _ —v(p) 2
G0, 8) — Glxn, )] < //k( o ”) :
IXO—yI |xo — |
0 Q
x [K(f) (y, ) (f)( 1 =y) l_y))]dydp‘
le—yl
//K(f)< - _ﬁ) (7.2)
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lxg—yI X1 =yl

_ —v(p)—; _ —v(p) =5
N k(; p(xo y)) pe _k<§ p(xl y)) pe dydp

o=yl lxo—yl? i —=yl) k= yl?

=:Gx +Go.

The estimate for G ¢ has already been done in [6]. We only need to estimate G g. We break the domain of integration
into two, 21 = QN B(xo, 2|xp — x1]) and 27 := 2\ B(xo, 2|x¢p — x1]), and name the corresponding integrals G}( and
G%( respectively. Because of smallness of the domain of integration, we have

Gl < Cllflzge, 1xo —x1l. (7.3)

To deal with G %( we need to use the Lipschitz continuity of K (f) (5.8),

K(f) (y,p(’“’ _y)> ~K(f) (y,p(’“ _y))‘ <

1
lxo — ¥l lx1 =yl lxo — ¥l
Therefore, by taking the change of coordinates

y —x0=(rcosf,rsinfcos¢, rsiné sin¢),

we see that
° —v(p) et
(xo—y)\| p?e " 0
Gx I = Clo—xilif ez, [ [ [k (cr " dydp
oL |xo — vl |xo — ¥l
0 2
R
/ | / (7.4)
§C|x0_xl|||f||Lf§ |k(g, ¢ ;drd{

R3 2|xo—x1|

< Clxo —x1| (1+ [Inlxo —xil) 1 f e, O
With the above proposition, we can prove the following estimate.
Proposition 7.2. Suppose 2 satisfies the geometric assumptions defined in Definition 1.1 and € > 0. Then, the follow-
ing inequality holds
11 Ge,©) = T (3, 0 < Cll fllze (1 +d e — y[' <. (7.5)

Proof. Let X = p(x,¢) and Y = p(y, ¢). We will demonstrate the proof for the case when |X — x| < |Y — y|. The
other case can be proved in the same fashion. Noting that
|X — x| Y —yl

dz_ s =
g 0 0="

-(x,0)=

’

we have

[X—x]|

[¢]
IT(x,8)—TTI(y,¢)| < f e DS |G (x —5¢,8) — G(y — s, 0)|ds
0

Y=yl
1<l

+ | VUG (y —s¢,¢)lds

| X—x
3

=: A1+ Aj.

(7.6)

By applying Proposition 7.1, we have
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A1 = C| fllsolx — yI'<. (1.7)
On the other hand

Y=yl

[
A2 <Cllflloe / eVUEDs g

=v(ED | x _y| _ 2Dy _y (7.8)
<Clfllec|e 1 —e Kl

—wied x| vCIE])
<C|| flloce T X7 ==X =D

where we have applied the mean value theorem and used the assumption |X — x| < |Y — y|. We the apply Proposi-
tion 6.2 and get

_vgh _dx _p X —
<0 av(gD) x|

Ar < C|l flloce
ey Il N(x,0) (7.9)
<C .
=Cllflloo o
We can treat the case when |Y — y| < |X — x| similarly and conclude
Ix =yl
Ay =Cll flloo . (7.10)
dy,y

By (7.7) and (7.10), we obtain (7.5) and the proof of Proposition 7.2 is complete. O
8. Behavior near the boundary

In this section, we investigate the behavior of f near the boundary. This is a preparation for proving the differen-
tiability of D .

Lemma 8.1. Assume 2 satisfied the positive curvature condition defined in Definition 1.1. Assume f € L;"§ isa

solution to the stationary linearized Boltzmann equation such that for fixed 0 < € < é, there exist 0 < a, My > 0 such
that

1F(X,0) = F(Y, )] < Mol X — Y| ~¢emalP, 8.1)
|F(X.0)] < Moe™ kP (8.2)
forall (X,¢), (Y,¢)eT'_. Then, forx € 9Q and y € €2,
1 1
|f<x,c>—f<y,¢>|sc<1+m) lx — y|2079, (8.3)

The above estimate not only gives a description on how singular f can be when ¢ is small near the boundary but
also plays an important role in proving the differentiability of boundary flux and therefore the solution itself, which
will be elaborated in next section.

Proof. Without loss of generality, we may only consider the case |x — y| < min(%Ro, 1), where Ry is introduced in
Lemma 3.7. This case gives the unique projection of y on d€2 denoted by Y, ,i.e., |y — Y| =d,.
STEP 1. We start with the case ¢ - n(Y ) < 0 and denote Yy = p(y, ¢). We observe that
1
Ix = Yol < |x =yl + 1y — Yol = Clx — y|?, (8.4)
where we have applied Lemma 3.7 by taking x = Y € 92 in (3.30) and used the fact |x — y| < 1.
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Noting that x, Yy € 0€2, by (8.1) and the mean value theorem, we see that

Iy=Ypl

ly=Yol

1¢]
1fx,0) = fL Ol =|f(x, ) — fF(Yo, O)e "D T=T — / eV EVR (f)(y — ¢1, $)dr
0

ly=Yol

<160 = f (Yo, O+ 1 f (Yo, O '1 — e 1D

ly=Ypl

121
+ f DK (F)(y — g1, ¢)di
0

(8.5)

ly = Yol
Iq

< Molx — Yo"+ Cll fllx,

<C (1 + %) x — y[20-9),

Notice that we only used the fact |e_“|“2| < 1 in the above estimate. The assumptions in Lemma 8.1 are the same
with those in Lemma 6.1, which will be used in the proof.
STEP 2. In case ¢ - n(Y ) > 0, we define

Do =1{beQ|d(b,0R2) = 4|x — y[}, (8.6)

Dy =1{beQ|db,02) > 5|x — yl|}. (8.7)
Notice that Dy is also a smooth convex domain. We denote Yo = p(y, ¢) and Xo = p(x, ¢). If either xXq or yYp
intersects 0 Dy less than twice, we can conclude that

1 1

lx — Xol = Clx —y[2, |y — Yol = Clx — y|2. (8.8)
Therefore, we can show (8.3) holds as we proved in Step 1. Namely, if one of xX¢ or yY, intersects 3Dy less than
twice, then both of x X¢ and yYj intersect d D less than twice. Hence, by the proof of Lemma 3.7, we have

¥ = Xo| < Cj(5lx — y)? and (8.9)

1
ly = Yol < €1 (Slx — y)2. (8.10)

This implies (8.4), and hence (8.3) holds.

Next, we shall discuss the case that both line segments xXo and m intersect 0 Dy twice. Let X; and X, be
intersection points of XX and 8 Dy in the order x, X, X», and Xo on x X. Also let Y| and Y5 be intersection points
of m and d Dy respectively. Let X, be the unique projection of X on d€2. Since |X| — X | realizes the distance
between 02 and d D, we have

(X1 — X1)
nXi)=nXy))=—————. (8.11)
X111 — X1
Taking the tangent plane of d Dg at X into consideration and applying Lemma 3.7, we have
X1 — x| <4Cflx — y2. (8.12)
By the same fashion, we have
|Xo — Xa| <4C{1x — |2, (8.13)
Yo — Ya| <4C|x — y|2, (8.14)

1
ly — Yi| <4Cilx — y|2. (8.15)
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In what follows, we shall discuss estimates for the differences of I, I1, and 111 defined on (1.18).
Regarding the estimate for 7, we start with the following claim.

1Xo— Yol <Clx —y|2, (8.16)
1
|1Xo — x| — Yo — yI| < Clx — y|2. (8.17)

Without loss of generality, we may assume |Yy — y| < |Xo — x|. Let X’ = Yy + (x — y). Notice that since |x — y| <
4|x — y| and |Yp — y| < |Xo — x|, we see that X" € X,X(. The unique projection of X’ on 9<2 is denoted by X .
Notice that by the convexity of the set {b|d (b, 92) > dx/}, we have n(Xl) - (X9 — X’) > 0. Therefore, we can apply
Lemma 3.7 and prove the claim. Now, we have

| Xp—x
12l

(. 0) —1(r,0)] = ‘f(xo, e VT p(yy, pye D

|Xg—x] |Xg—x|
] I

_ _ Yo—yI-1Xg—x]|
f(XO» {)e v(l¢h l—e v(l¢h 13

=<

(8.18)

1Yo—yl

F1f (X0, 0) — f(Yo, )|e "IN T

<cC <1+ %) Ix — y[201-9)

Similarly, for 171, without loss of generality we may assume |Yy — y| < |X¢ — x|. By applying Proposition 7.1,
we see that

Yo—yl

[Z]
T1(x,0)—111(y,0)| < / e DS |G (x — 5, 8)ds — G(y — s¢, ¢)ds
0

+ e "D G(x — 52, 0)ds
=yl (8.19)

Yo—yl
1]

<Clflle, / e D —y|1=eds +
0

|1X0 — x| — Yo — yl|
Iq

1 1
<C 1+—>|x—y|7.
(1

To estimate the difference of 1, thanks to X' = Yy + (x — y) € X, X0, we may express

- (x,8)

|11(x,;>—11(y,c)|=‘ / ¢ / k(. E) (x — 12, £)de dr
0 R3
—(y,%)
— / eVt / k(¢ eIy — g, ¢)de'dt
0 R3

|x

T
< / o~V / k(. I (x — 12, ¢ dg di
0

R3
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[x—Xq|
[¢]
/ eV / k(¢, I (y — g, ¢h\d¢ dt
0 R3
(8.20)
el / k(L ENIT (= 12.') — Iy — 12,2 |de s
e V(b / k(¢, I (x —tg, £)dg dt
ly=Ypl
1¢]
/ *”<'f'>’/|k<; G — 12, de
[x=Xo|
1¢]
=:DII,+ DI+ DIz + DIls+ DI Is.
Notice that
X — |2
DIL +DIL+ DIl +DIls<CZ |§Iy (8.21)
because of smallness of the domain of integration, (8.13)—(8.15). We are now focus on DII3. Let E . We can
rewrite
[x—X>|
I _vagp, / 2o 2o /
DI = me Il k&, N (x =18, ¢) —1(y —r&,5)|de dr (8.22)
=X R

Let z(r) =x — rgC and 7/ (r) =y — rg: Notice that since X' = Yy + (x — y) lies on X, X, we see that 7'(r) =
—r{ € yYy for |x — X{| <r < |x — X;| and

1 1 1
dy > Sd:+ (5d: = 12 = 2)) 2 2d: = 20x = . (8.23)

Inferring from (6.5), we have

1

(5+¢€)
[ e enree.o - 1o ol < ¢ (1+dgh) T -t (824
R3
for 0 < €’ < 1. Let Z be the midpoint of X; and X,. Notice that dz > 4|x — y|.
Therefore, with the help of Proposition 6.3,

lx—Z| [Xo—Z|

_ 1—€ 1 , _ 1—€ 1 ,
DIl <C / =y gy V3t dr +C / =y )3+ dr
e lx — ylr [Z] lx — ylr
|X1—x| | X2—Xo| (8.25)

2 ’

X — y|37€¢€

ol
lq

Choosing small enough €’, we can conclude the lemma. O
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9. Differentiability of boundary flux
Let g(#) be a normal geodesic on 92 such that

8(0) =x, 9.1)
g0 =v, 9.2)

where v € T, (0€2).
Recall that by definition

ViDy(x) = , 9.3)
t=0
where
[ 0) (8() ) -n(g1))
_1 V(p) t) — t) — n t
Prlg@)=2r4 //fe T (p FOES §/> RO P
5 2 8 y 8 y 9.4)
2
e
x e 2 p*f(y,£)d¢ dydp.
We will devote this section to prove the following lemma.
Lemma 9.1. There exists a constant C such that for any v € T, 02 with |v| = 1, we have
Vo Dy(x)] <C. 9.5)

If we differentiate the formula (9.4) directly, we will obtain a singularity of |x — y| =3, which is barely not integrable
in Q. However, by subtracting and adding f(x, ¢), we can use the local Holder continuity in Lemma 8.1 to make
it integrable. To deal with additional term we introduced, we observe that, in the integrand of formula (5.1), every x
is paired up with y in the form of x — y, except for n(x). Therefore, we can convert derivatives with respect to x to
those with respect to y with a change of sign and rewrite all the terms except the term with derivative of n(x) as a
divergence form with respect to y and apply the divergence theorem. More precisely, we can write

2—1n%viij(x)=///v;; <e—%x—yk (p xX-y ,;/) (x_”'”;x)>
lx — vl |x — vyl
0 Q R3
2
f(y = fx,¢ )] 5 p*d¢'dydp

T fonl i ) S o

_ v Vx
f// Pyl (p —y c>( "D VoD ot 2 e dydedp
= =yl

0 R3 Q

1 3
= Vfo—i-Vfo—i-Vfo.

Notice that since €2 is smooth, we can see that V* ch is bounded. Regarding V* D f’ by direct calculation, we have
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- wp _ 2
viph=| [ [ [ (02200 ) e S 0 = re)
0 R3 Q
X[ v(p) (x—y)-v(x—y)-nx)  v-nlx) &=y Vinlx)
_ —_ v|3 —_vl3 —_v|3
polx—yl |x — vl lx =yl |x — vl
(x—y) n(x) (x —y)- U]
x =yt lx—yl

)y (= Y) - n(x)

+1f(.¢) = f(x,gNHle” 3
|x — ¥l

2 — — .
x ¢~'T p? ( grad k p——2 1)) (— Ly S =) dyd{/dp‘
Ix — yl x—yl  lx—yP?

o]

9.7)
C/// e F ] 2
_ §+§ § € P
|p ' |x —y|272 |x—y|2 2

0 R3 Q [x— )|

m

Tl
=y /2 1
)W glop=—¢|

o= -2 |x—y|%+

R
cof [ [ bt (n L) Fut b
& — ¢’ 1¢']

R3R3 O
(A+12h> | 1+ ) T R
+ + 3 2drdc'd
<|¢—z/|2 o) ¢ ¢ ragat

(SR

2
p3} A+1¢'["He™ Tdyd¢'dp

<C.
Notice that grad; appears due to the chain rule. In the above derivation, in addition to (2.5) and (2.6), we have used

the fact

v(p)
PO o (9.8)
0

and the triangle inequality |¢| < |¢'| + |¢" — ¢|. Next, we shall prove that V* D?c is bounded in the senses of improper

integral. We define 2 = 2 \ B(x, €) and name the corresponding integral v~ D%€. Applying the divergence theor ,
g p g g f pplying 4 y.
we have

V' D 26_ // / —(/f’)lx—y|k<px_y é_/) (x —y)-n(x)
lx —yl’ lx —y[3

0 R3 92\B(x,€)

X =% 02 £ x, v - n() AL dp
Pl <P|x_y| 5/) mon (9.9)

x—yl Ix—yI3

0 R3 9B(x,)NQ

_2 5 , xX—=y ,
xe Zp f(x,&)|v- dA(y)d¢dp
lx — ¥l

=: S + B€.

For §¢, we further break the domain of integration by G B(x, r1), where ry is as defined in Proposition 3.4. It is not
hard to see that the integral outside G B(x, r1) is bounded. Inside the G B(x, r1), by applying Lemma 3.6, we have
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’ f / v(m‘x "k( x—y ,;’) (x—y) .n3(x)
lx — ¥l |x =yl

0 R3 GB(x,r1)\B(x,€)

x e_épzf(x, §’)[v~n(y)]dA(y)d§’dp( (9.10)

')
2
_p-
scnfanJ / e~'T pdydp < CI|f 12 -
0 GB(x,r1)

We are going to deal with B€ and will see that it in fact forms a “residue”. We introduce spherical coordinates on
B(x, €) so that —n(x) is the north pole so that

Z‘ = Ii : ; =sinf cos¢pv + sinf sing (n(x) x v) + cosOn(x). .11
We use D to denote the domain in the chart that maps to d B(x, €) N 2. Let
D. :={p[sin® cos pv + sinf sin g (n(x) x v) + cosHn(x))]|(0, ¢) € De, p > 0}. 9.12)
We have
w 2m
/ / f / X0, 0. 8)e~ Fk(pE . ¢)e™ 5 p? £ (x. £') cos O sin® 0 cos pdpd0de dp
ORI O O (9.13)
—//xDé(c)e Wk he S reeh’ lZTx)i{—f cdg’
R3 R3

We can conclude from the dominated convergence theorem that

lim B¢ = / fk(z; e F pe, ey E Y gy (9.14)
a A
¢-n(x)<OR3

We notice that

o
L
VDRI Cl ey, [ [ e dvdds
o=yl (9.15)

<Clflles,-

We conclude the lemma.
10. Differentiability of f
The main result of this article is summarized in the following lemma.

Lemma 10.1. Under the assumption of Theorem 1.2, regarding the solution of (1.1), for € > 0, we have the following
estimates

9 —1\34e
—_f(x,s“) <C+d, )3, (10.1)

oo <ca+dhyste (10.2)

5

This section is devoted to the proof of (10.1). We leave the proof of (10.2) to the next section. In view of (1.18), to
prove (10.1), we shall proceed the estimates of °- I (x, ), ai I1(x,¢) and 5 I 11 (x,¢) respectively. We first show
that 7 and /1 defined in (1.18) preserve the regulanty from boundary
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Lemma 10.2. Let Q2 be the domain introduced before. Suppose there exist constants 0 < a < %, M > 0 such that

Vi (X, Ol < Mnle P,
F(X, 0)] < Me?<F,
forall (X,¢)eTl'_ and n € Tx(02). Then, for x € 2, the following estimates hold

d 1 a2

a_x,-’(’"“ <Cd;te 2181,

3 —1 i_,’_é/

—II(x,0)| <C(1+d; )3T,

8)6,‘

AT <C[(1+d—1)%+€’<1+i>+min(d—1 1 sery
x; T * I4 T UN@, DI

To prove Lemma 10.2, we have the following observation.

Proposition 10.3. Ler 7_(x, ¢) and p(x, ¢) be as defined in (1.11) and (1.12). Then

0
|8_x,-p(x’§)| < NGO’

| i (x,0l= 2
. 7x’ _7’
0x; N(x,8)Ig]

d,
O e oRl

‘We notice that
(a) (10.8) is a direct result of (6.7) of Proposition 6.2.
(b) (10.9) is derived from (1.12), (10.8) and the fact that N(x,¢) < 1.
(c) (10.10) is a direct result of (1.12) and (6.6) of Proposition 6.2.

We are now in a position to prove (10.5).

Proof of (10.5). Let ¢; be the i-th unit vector in R3. Formal calculation gives

3%1.1(’6’ ¢) = % (f(P(x +tei, 0), ;)e—v(|§|)r_(x+ze,-,;)> »
= % (f(p(x+tei, 0),0)) . (DT (.0)
_aixif—(x, O v(ZDf(p(x, 0), 0)e VD=0
Note that by (10.3) and (10.8), we have
%(f(p(x +1e;,2),7)) » < ¥or g‘)e_amz'

Therefore, summing up the above two equations and applying Proposition 10.3, we obtain

N(.X,{) N(x7§)|§|
<Cd7Ng|+ De P <cd e 5P o

L, o' < (g e IOy ) I T ) e
Xi

(10.3)
(10.4)

(10.5)

(10.6)

(10.7)

(10.8)

(10.9)

(10.10)

(10.11)

(10.12)

(10.13)

(10.14)
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Taking the derivative on I with respect to x;, we have

—(x,8)
9 —v(i¢D)s 9 Nt
—II(.X,é'): e k(é’v{)_l(x_sgaé‘)dg dS
0Xx; 0x;
0 R3
—v(|gDT-(x.8) / N
+e ’ k(é‘vé‘)f(p(xa é‘)aé‘)dg gr—(xvé‘)
R3 l
=11+ 115,
By Proposition 10.3, we see that
dy a»2
1181 <cC e ONEOE 5l < ¢ o d !,
(1P < Cll fllp, e vooas T sC

By an analysis similar to Lemma 2 in [8], we have

I/k(aé“’)f(p(x,(),;“’)dm <Ce 5P,
R3

Therefore, we also have

—41z?

|18 gC;e
N(x, )I¢|

We let

H(x,z):/k(c,g/)l(x,z/)d;“.

R3

Then, we have

—(x,0) 3
114 = / e VDS g (x — s, ¢)ds
3)6,'
0

Concerning a% H, we have the following estimate.

Proposition 10.4. Let H be as defined in (10.19). We have

§Cdx_%(|lndx|+1).

‘iH( )
8x,~ x’é‘

775

(10.15)

(10.16)

(10.17)

(10.18)

(10.19)

(10.20)

(10.21)

1
Proof. In order to get a good estimate near the boundary, we shall break the domain of integration into two, B(¢, dy )
1

0
\DH,| < / K@ &) = 5.t
Xi
1
(€.d?)
1 / /
L f k(. ¢ lde

1
B(¢,d?)

and R3 \ B(¢, df ), and name the corresponding integrals D H; and D H; respectively. For the estimate of D Hy, by
applying the estimate (10.5), we obtain
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1 1
<C— dc’ 10.22
=4 / T (1022)

Regarding the estimate of D H;, we first notice that (10.13) and (2.4) imply

C( L . ! )f“'“z, (10.23)
- N(x,¢) N, )]

since 0 < y < 1. Next, We consider the coordinate change ¢’ =1(y — x) as we employed in Section | together with
the fact |k(¢, ¢')| < Cd, 3 in the domain R3\ B(¢, d;}) to obtain

o0
1 P
|DHz|§Cdx3ff’—1(x,;’>
3)6,'

= Cdv f / ( : : >e_“'2"‘"'212|n(y>.(x—y>|dA<y>dl
N& o) T NGOl ]

Pln(y) - (x — y)|dA(y)dl

0 Q2
- X =yl 1
scd{f ( it >e_”’2x‘y212|n<y>.(x—y>|dA<y>dz (10.24)
! In(y)-(x =y ln@)-x—y)
0 Q2
) o0
<cd.t f P (21— 3|+ DA
0 Q2
o0
_1 1
<cd.? / 70 (4 )z s d A
Q0
_1 1
cd [ A
|x — y]
02

1
< Cd; °(|Indy| + D).

Notice that we let z = [x — y|/ in the third last line in the above derivation and applied Lemma 3.3 to draw our
conclusion in the last line. Combining (10.22) and (10.24), the proof of Proposition 10.4 is complete. O

Proof of (10.6) and (10.7). Now, we set/ = |x — p(x, ¢)|. Applying Proposition 6.3 and Proposition 10.4, we obtain

T (x,0)
_ ( +€')
114 <c / Vs 3T ds
0

dx
1 2_ l
v roo_ (1 / ’
<c ( ) /“’““”ds—i—/ Tyt L | (10.25)
0

lq

2
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We observe that
I

vlehr  —(laef ,
/e_%dx (3+€ )|l — r|_(%+€ )%dr

dx

2
1

/ SGH _mdrer Ly,
.

= I
/ 2+5) r|*(%+€’)idr.
14
Hence,
C+d7hite
A
1114 < (1 +d- l)ﬁé,';' (10.26)

Finally, combining (10.16) and (10.26), we obtain (10.6) and (10.7). This completes the proof of Lemma 10.2. O

Combining Lemma 10.2 and Proposition 7.2, we have a refined estimate

£08) = FG OIS Cll fllss, (1 +d7 )3+ x =y~ (10.27)

incase |x — y| < d"

We are now in a position to perform bootstrapping the regularity.

Lemma 10.5. Let f € L°° be a stationary solution to the linearized Boltzmann equation and x be an interior point
of Q. Suppose that there exist0 <o <1,0 <8 <d(x,dR), and M > 0 such that,

sup}lf(x,é)—f(y@)llex—yl", (10.28)
ceR

whenever y € B(x, §).
Then, G is differentiable at x. Furthermore,

‘—G(X O = CUI SNz, A+ [Iné]) + Ms%). (10.29)

Proof. Recall that

G, c)—/f/ ( “‘”) e )k(p(x_y),n)f(y,n) _dndydp. (10.30)
T =l =l

We first formally differentiate the above formula with respect to x; and divide the domain of integration into two parts:
B(x,8) and 2\ B(x, §). We denote the corresponding integrals as g; and g;. Regarding the estimate of g;, the typical

term is
(X =Y)\ (o= (x—y) Xi — i
f / f ( e k(o ) fG.m) s ———dndydp
Ix—yl lx — yl |x | lx — yl
0 Q\B(x,5) R3
oo

_<HUM@3[ ./ k(ap‘”_”>|xfypdwm

lx — ¥l
0 Q\B(x,5)

lginl:

A
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A

00 R
< C||f||L;°(///k({,pa))r%rzdrda)dp (10.31)

IA

Cllflizee, (1 + [1nd]),
where R is the diameter of 2. By using (2.8), in the same fashion, we readily see that
g1l < Cllflizee, (1 + [Ind]). (10.32)

Regarding the estimate of gy, in order to utilize the Holder continuity, we subtract and add f(x, 1) in the integrand
as follows:

o
gs(xv é‘) = /
0 B(x,8) R3
a X=Y ) v xX—=y 0
(fm = flxm) — [k (C,p—)e k{p %] dndydp
dx; x =yl =yl =yl (10.33)
r d
X=Y ) vk x—y o
+/ / /f(xﬂl)— [k(é,p—) Vo) k(ﬂ ,77> 2i|d77dydp
0x; lx =yl lx =yl Ix — yl
0 B(x,8)R3
=:8s1 + &s2.
For g1, the Holder continuity of f in space variables, see (10.28), makes the integrand integrable. We have
lgs1] < CMS°. (10.34)

For g;2, we first remove an e-ball and integrate:

85212/09 / /f(x,n)

0 B(x,8)\B(x,e) R3

a x—y (o)l x—y 0
[ (4“ p—= )e O k(p ,n> z}dndydp
Bx; lx — ¥l lx =yl lx — ¥l

[ e

0 B(x,8)\B(x,e) R3

(_( 9 [ (; p XY )ev(p))r;yk(p x—y ,n> p Zandydp (10.35)

ayi =yl =y Ix =yl

=// / / VAC)))
0 R

S2(x,8)  S2(x,€)

—p(p) =l xX—=y P
( |x—y|>e " k<p|x—y|’n) lx —y Iz}ni(y)dA(y)dndp

/ —Ma _\'(\I D C/
://f(x,ﬂ)k(f,é‘)(—e T e I ) (§ n)|§_||§_| 'dn.
R3 R3

Notice that the integrand in the last integral above is bounded by

201 fllzee k(6. £  mIgI (10.36)

which is integrable in (¢’, ). Therefore, we can pass the limit € — 0 and, furthermore
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lgs2l < Cllf e, - (10.37)

Inferring from (10.32), (10.34) and (10.37), we obtain (10.29). O
Finally, to complete the proof of (10.1), we now estimate a%III()C, ¢). PROOF OF (10.1).

Proof. Differentiating /11 directly and applying (10.9), (10.10), (10.27) and (10.29), we obtain

T (x,8) 5
eI —_G(x — s¢,¢)ds
ax,-

0

+L—rack”W”“OQMxoz> (10.38)

T (x,8)
<Clliy, | [ eI d s+ CU I dc

0

Letting [ = |x — p(x, ¢)| and applying Proposition 6.3, we readily obtain

7—(x,8)
V(\Cl)s(l +dx 1{ )d

(=}

d

2[¢

¢ 1
-1 _1_ 1
<C (1 4yl ) eIt gy 4 / < xjyf) 7
0 i ¢ (10.39)

1
_1_
§C(1+dx3 2€>+Cd /<1+d Eay) r|—%—2€> dr

1\ 32
sc(t+at)

Therefore, we see that

-1 %+2€
§C||f||L§f’c(1+dx ) . (10.40)

a
‘—Ill(x, Z)
8x,~

Taking (10.5), (10.6) and (10.40) into account, by (1.18), the proof of (10.1) is complete.

Notice that
I

Hence, if we allow the singularity at ¢ = 0, we can estimate

1ioe
3+2 <1+|§i|>. (10.41)

l)%+2€ 1
<1
1

71726 1
3 /
< x—rg > r= _ —1_2¢ _1_
Iq (IdXI/ 1+d,° [l —r|"3 2 ) dr.

dx
2

C(1+d;

3 -1
la—mlll(x,g“) < C(l +d; )
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11. Derivative with respect to velocity

In this section, we shall discuss the derivative of f(x, ¢) with respect to microscopic velocity ¢, i.e., (10.2). Dif-
ferentiating the integral equation (1.15) directly, we have

a
2 — oV (EDT (0 |y 0
7 e =e [v e/ PE O+ _f(p(x,i),g“)}

0
+f<p<x,;>,;)e—“<'“f““[ v<|;|>|§—|r @. &) —v(th = (;C C)]
+ TR O K () (i, 0, 0)
7 (x,8)
+ / —V’(Ig“I)%e‘””“”K(f)(x—sg“,;“)sds (11.1)
0
—(x,8) 3
- [ k(s csds
8x,~
0
—(x,0)
-~ 0
+ / e ”(‘Cl)sa—g_l((f)(x—sg,{)ds
0 13

=: D)+ D2+ D} 4+ D} + D3+ DS.

From the fact v'(|¢|) is bounded, we can conclude that Df, is bounded. Using the estimate

we can prove that DS is bounded. Using (10.21), (10.7), and (10.41), we have

a;, o =Wl (11.2)

<c(1+a w)%“. (113)

0
‘a—K(f)(x —58,%)
X;
Then, applying Proposition 6.3, we have

—(x,8)
DS <C / e IDS (1 4 [dy 2| (e(x. ©) — )13 )sds

l
11.4
SC/e "(1+ [dx |(l—r))]”*€)Wdr (114
0
—+6 1
_C(1+d;‘>3 <1+—).
Iq
If we do not want the singularity in the expression, we can have
5 —1y%+e
Dyl <C(+d; )37, (11.5)

To deal with the rest of terms, we need to discuss the derivative of t_ and p with respect to ¢.
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Proposition 11.1. Suppose that Q is a C' bounded convex domain in R, x € Q, and ¢, ¢’ € R3. Then,

d _
‘—u(x, 4)‘ SR (11.6)
¢ N(x, )|
0 1
—px, 0| <t-(x, )<1+7). (11.7)
‘89” D=t 56
The above proposition is a direct consequence from the explicit formula in Lemma 2 in [11].
Let
3
_.p(xs ;)
n = 33;; ) (11.8)
[P 0)|
Then,
A F(p(x,6),8) =V, f(p(x,0) é)lip(x §)|<C|ip(x 9] (11.9)
;}Tip(x’;_) ’ 9 n 9 k) agl ’ = agl ) . .
Notice that
e—V(I(I)t—(x,C)M < Cdx_l. (11.10)

N(x,0) —

We conclude the lemma.

Conflict of interest statement
There is no conflict of interest.

Acknowledgements

The first author is supported in part by Department of Advanced Mathematical Sciences at Kyoto Univer-
sity, JSPS KAKENHI grant number 15K17572, and MOST grant 106-2115-M-002-011-MY?2. He also wants to
thank Ping-Han Chuang for proofreading. The second author is supported in part by NCTS and MOST grant
104-2628-M-002-007-MY3. The third author is supported in part by JSPS KAKENHI grant number 15K17572.

References

[1] L. Arkeryd, A. Nouri, L1 solutions to the stationary Boltzmann equation in a slab, Ann. Fac. Sci. Toulouse Math. (6) 9 (3) (2000) 375-413.
[2] R. Caflisch, The Boltzmann equation with a soft potential. I. Linear, spatially-homogeneous, Commun. Math. Phys. 74 (1) (1980) 71-95.
[3] J. Cheeger, D. Ebin, Comparison Theorems in Riemannian Geometry, vol. 365, AMS Chelsea Publishing, 1975, 161 pp.
[4] I-K. Chen, Boundary singularity of moments for the linearized Boltzmann equation, J. Stat. Phys. 153 (1) (2013) 93-118.
[5] I-K. Chen, H. Funagane, S. Takata, T-P. Liu, Singularity of the velocity distribution function in molecular velocity space, Commun. Math.
Phys. 341 (1) (2016) 105-134.
[6] I-K. Chen, Regularity of stationary solutions to the linearized Boltzmann equations, SIAM J. Math. Anal. 50 (1) (2018) 138-161.
[7] I-K. Chen, Chun-Hsiung Hsia, Singularity of macroscopic variables near boundary for gases with cutoff hard potential, STAM J. Math. Anal.
47 (6) (2015) 4332-4349.
[8] I-K. Chen, T-P. Liu, S. Takata, Boundary singularity for thermal transpiration problem of the linearized Boltzmann equation, Arch. Ration.
Mech. Anal. 212 (2) (2014) 575-595.
[9] Manfredo Perdigdo do Carmo, Riemannian Geometry. Mathematics: Theory & Applications, Birkhduser Boston, Inc., Boston, MA, 1992.
Translated from the second Portuguese edition by Francis Flaherty, xiv+300 pp.
[10] L. Falk, Existence of solutions to the stationary linear Boltzmann equation, Transp. Theory Stat. Phys. 32 (1) (2003) 37-62.
[11] Y. Guo, Decay and continuity of the Boltzmann equation in bounded domains, Arch. Ration. Mech. Anal. 197 (2010) 713-809.
[12] R. Esposito, Y. Guo, C. Kim, R. Marra, Non-isothermal boundary in the Boltzmann theory and Fourier law, Commun. Math. Phys. 323 (1)
(2013) 177-239.
[13] F. Golse, B. Perthame, R. Sentis, Un résultat de compacité pour les équations de transport et application au calcul de la limite de la valeur
propre principale d’un opérateur de transport, C. R. Acad. Sci., Paris Sér. I Math. 301 (7) (1985) 341-344 (French). A compactness result for
transport equations and application to the calculation of the limit of the principal eigenvalue of a transport operator.


http://refhub.elsevier.com/S0294-1449(18)30094-5/bib41726B4Es1
http://refhub.elsevier.com/S0294-1449(18)30094-5/bib4361666C69736368s1
http://refhub.elsevier.com/S0294-1449(18)30094-5/bib63686565676572s1
http://refhub.elsevier.com/S0294-1449(18)30094-5/bib494B43s1
http://refhub.elsevier.com/S0294-1449(18)30094-5/bib43464C54s1
http://refhub.elsevier.com/S0294-1449(18)30094-5/bib43464C54s1
http://refhub.elsevier.com/S0294-1449(18)30094-5/bib526567756C61724368656Es1
http://refhub.elsevier.com/S0294-1449(18)30094-5/bib4368656E48736961s1
http://refhub.elsevier.com/S0294-1449(18)30094-5/bib4368656E48736961s1
http://refhub.elsevier.com/S0294-1449(18)30094-5/bib434C54s1
http://refhub.elsevier.com/S0294-1449(18)30094-5/bib434C54s1
http://refhub.elsevier.com/S0294-1449(18)30094-5/bib646F4361726D6Fs1
http://refhub.elsevier.com/S0294-1449(18)30094-5/bib646F4361726D6Fs1
http://refhub.elsevier.com/S0294-1449(18)30094-5/bib46616C6Bs1
http://refhub.elsevier.com/S0294-1449(18)30094-5/bib47756F436F6E74696E75697479s1
http://refhub.elsevier.com/S0294-1449(18)30094-5/bib47756F4B696Ds1
http://refhub.elsevier.com/S0294-1449(18)30094-5/bib47756F4B696Ds1
http://refhub.elsevier.com/S0294-1449(18)30094-5/bib476F6C7365417665s1
http://refhub.elsevier.com/S0294-1449(18)30094-5/bib476F6C7365417665s1
http://refhub.elsevier.com/S0294-1449(18)30094-5/bib476F6C7365417665s1

782 I-K. Chen et al. / Ann. I. H. Poincaré — AN 36 (2019) 745-782

[14] H. Grad, Asymptotic Theory of the Boltzmann Equation, II, in: Rarefied Gas Dynamics, vol. I, Proc. 3rd Internat. Sympos., Palais de
I’UNESCO, Paris, 1962, Academic Press, New York, 1963, pp. 26-59, 82.45.

[15] J.-P. Guiraud, Probléme aux limites intérieur pour I’équation de Boltzmann linéaire, J. Méc. 9 (1970) 443-490 (French).

[16] J.-P. Guiraud, Probléeme aux limites intérieur pour I’équation de Boltzmann en régime stationnaire, faiblement non ling¢aire, J. Méc. 11 (1972)
183-231.

[17] Yan Guo, Chanwoo Kim, Daniela Tonon, Ariane Trescases, Regularity of the Boltzmann equation in convex domains, Invent. Math. 207 (1)
(2017) 115-290.

[18] Y. Guo, C. Kim, D. Tonon, A. Trescases, BV-regularity of the Boltzmann equation in non-convex domains, Arch. Ration. Mech. Anal. 220 (3)
(2016) 1045-1093.

[19] C. Kim, Formation and propagation of discontinuity for Boltzmann equation in non-convex domains, Commun. Math. Phys. 308 (3) (2011)
641-701.

[20] T.-P. Liu, S.-H. Yu, The Green’s function and large-time behavior of solutions for the one-dimensional Boltzmann equation, Commun. Pure
Appl. Math. 57 (12) (2004) 1543-1608.

[21] S. Takata, H. Funagane, Poiseuille and thermal transpiration flows of a highly rarefied gas: over-concentration in the velocity distribution
function, J. Fluid Mech. 669 (2011) 242-259.


http://refhub.elsevier.com/S0294-1449(18)30094-5/bib47726164s1
http://refhub.elsevier.com/S0294-1449(18)30094-5/bib47726164s1
http://refhub.elsevier.com/S0294-1449(18)30094-5/bib477569726175646C696E656172s1
http://refhub.elsevier.com/S0294-1449(18)30094-5/bib477569726175646E6F6E6C696E656172s1
http://refhub.elsevier.com/S0294-1449(18)30094-5/bib477569726175646E6F6E6C696E656172s1
http://refhub.elsevier.com/S0294-1449(18)30094-5/bib474B5454s1
http://refhub.elsevier.com/S0294-1449(18)30094-5/bib474B5454s1
http://refhub.elsevier.com/S0294-1449(18)30094-5/bib474B545432s1
http://refhub.elsevier.com/S0294-1449(18)30094-5/bib474B545432s1
http://refhub.elsevier.com/S0294-1449(18)30094-5/bib4B696D646973s1
http://refhub.elsevier.com/S0294-1449(18)30094-5/bib4B696D646973s1
http://refhub.elsevier.com/S0294-1449(18)30094-5/bib4C6975597531s1
http://refhub.elsevier.com/S0294-1449(18)30094-5/bib4C6975597531s1
http://refhub.elsevier.com/S0294-1449(18)30094-5/bib54616B61746146756E6167616E65s1
http://refhub.elsevier.com/S0294-1449(18)30094-5/bib54616B61746146756E6167616E65s1

	Regularity for diffuse reﬂection boundary problem to the stationary linearized Boltzmann equation in a convex domain
	1 Introduction
	2 Properties of linearized collision operator
	3 Geometric properties
	4 Differentiability of Bψ and BT
	5 Hölder continuity of Df
	6 Hölder type estimates revisited
	7 Regularity due to mixing
	8 Behavior near the boundary
	9 Differentiability of boundary ﬂux
	10 Differentiability of f
	11 Derivative with respect to velocity
	Conﬂict of interest statement
	Acknowledgements
	References


