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Abstract

For about 25 years, global methods from the calculus of variations have been used to establish the existence of chaotic behavior 
for some classes of dynamical systems. Like the analytical approaches that were used earlier, these methods require nondegeneracy 
conditions, but of a weaker nature than their predecessors. Our goal here is study such a nondegeneracy condition that has proved 
useful in several contexts including some involving partial differential equations, and to show this condition has an equivalent 
formulation involving stable and unstable manifolds.
© 2018 L’Association Publications de l’Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved.

MSC: primary 35J50, 35J47; secondary 35J57, 34C37

Keywords: Chaotic behavior; Non-degeneracy conditions; Calculus of variations; Hamiltonian systems; Heteroclinic; Homoclinic

1. Introduction

The study of chaotic behavior in dynamical systems goes back to Poincaré [12]. Such behavior was studied orig-
inally using qualitative arguments. On the more analytical level, the first results were for small time dependent 
perturbations of autonomous systems where tools like the Melnikov function showed there was a transversal in-
tersection of stable and unstable manifolds at a hyperbolic equilibrium point. See e.g. Kirchgraber and Stoffer [10]. 
More recently, starting from work of Séré, [16], [17], global methods based on tools from the calculus of variations 
have been used to obtain chaotic behavior.

In general, global variational methods such as minimization or mountain pass arguments, allow one to find an 
initial set of solutions that are homoclinic or heteroclinic to the equilibria. E.g. for the model case that will be studied 
in this paper, there are two such solutions together with their integer phase shifts. Then under some nondegeneracy 
conditions on this initial set of solutions that are of a milder nature than those that are employed in perturbation 
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settings, the existence of infinitely many heteroclinic and/or homoclinic solutions, as well as chaotic dynamics can 
then be established for the system. See e.g. Coti Zelati and Rabinowitz [5], Rabinowitz [14], [15], Montecchiari, 
Nolasco and Terracini [8], [9], Bessi [1], Buffoni and Séré [3], and Cieliebak and Séré [4]. In particular for one 
dimensional Lagrangian equations these conditions allow one to obtain the existence of chaotic dynamics whenever 
the stable and unstable manifolds do not coincide. See [1] where this has been done for a perturbation of a nonlinear 
pendulum equation or [9] for the Duffing equation. A generalization of this property for a class of C∞ Hamiltonian 
systems was carried out by Cieliebak and Séré in [4] where the chaotic behavior was obtained provided that the set 
of homoclinic solutions has compact connected components with respect to the uniform metric on R. A different but 
related connectedness condition on the set of minimal homoclinic solutions was used in Rabinowitz [14] (see also 
[13]) for singular Lagrangian systems on R2.

Some recent papers generalize the nondegeneracy condition introduced in [13], [14]. They employ assumptions 
that have also proved useful in several contexts including some involving partial differential equations such as in 
Montecchiari and Rabinowitz [6], [7] and Byeon, Montecchiari and Rabinowitz [2]. Our goal in this paper is to fur-
ther study such nondegeneracy conditions and establish their equivalence to other such conditions. For definiteness, 
the condition of [13], [6], as generalized in [7], will be treated in the context of a Hamiltonian system for a double 
well potential having equilibrium points at a−, a+ ∈ R

m. We will show that this condition has an equivalent formu-
lation involving the stable and unstable manifolds associated with these two points. We then show that, when the 
potential is smooth, that condition is equivalent to an analogue of the assumption made in Cieliebak and Séré [4], see 
Proposition 5.32.

The paper is organized as follows. In §2, we recall some earlier results from e.g. [6], [2] and [7] on the existence of a 
large family of local minimizers of our Hamiltonian system, (HS), as well as an infinitude of mountain pass solutions. 
These results require nondegeneracy conditions. Let Wu(aσ ) denote the unstable manifold of (HS), at σ ∈ {−, +}, i.e. 
the global continuation of the local unstable manifold as given by the implicit function theorem. Likewise let Ws(aσ )

denote the corresponding stable manifold. In §4, the equivalence of the above mentioned nondegeneracy conditions 
to ones involving Wu(aσ ) and Ws(aσ ) will be shown. Some technical results required for this purpose will be given 
in §3. Lastly some more degenerate situations will be studied in §5.

2. Some preliminaries

We consider the Hamiltonian system:

−q̈ + Vq(t, q) = 0, t ∈R, q ∈ R
m (HS)

where

(V1) V ∈ C1(R ×R
m, R) and is 1-periodic in t ∈R.

(V2) There are points a− �= a+ ∈R
m such that V (t, q) > V (t, a±) = 0 for any q ∈R

m \ {a±}.
(V3) There is a constant, V0 > 0, such that lim inf|q|→+∞ V (t, q) ≥ V0.

By (V2), (HS) is a double well potential system. It is not difficult to prove that there are heteroclinic solutions of (HS)
from a− to a+ as well as from a+ to a−, the former being obtained as minima of

I (q) =
∫
R

L(q)dt ≡
∫
R

( 1
2 |q̇|2 + V (t, q)) dt

defined on

�(a−, a+) = {q ∈ W
1,2
loc (R,Rm) | I (q) < ∞ and ‖q − a±‖L2([j,j+1]) → ∞, j → ±∞}

and the latter is obtained in a similar fashion. See e.g. [13]. Define

c(a−, a+) = inf
q∈�(a−,a+)

I (q),

and set
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M(a−, a+) ≡ {Q ∈ �(a−, a+) | I (q) = c(a−, a+)}.
Then if q ∈ M(a−, a+), so is q(· − k) for any k ∈ Z. Interchanging the roles of − and + gives us �(a+, a−), c(a+,

a−), and M(a+, a−).
In addition to the minimizers of I in �(a−, a+) and �(a+, a−), I possesses a large family of local minimizers 

provided that M(a−, a+) and M(a+, a−) satisfy mild nondegeneracy conditions. To formulate them, set

S(a−, a+) = {u|[0,1] | u ∈M(a−, a+)}.
Thus the members of S(a−, a+) are unit time snapshots of heteroclinic solutions of (HS) that minimize I

on �(a−, a+). Define Ca−(a−, a+) to be the component of S̄(a−, a+) in W 1,2([0, 1], Rm) containing a− and 
Ca+(a−, a+) to be the component of S̄(a−, a+) containing a+. Then from e.g. [15] or [2], we have a sharp alter-
native for these sets: Either

1o Ca−(a−, a+) = {a−} and Ca+(a−, a+) = {a+}, or
2o Ca−(a−, a+) = Ca+(a−, a+).

Using the natural notation, a similar alternative holds for Ca+(a+, a−) and Ca−(a+, a−). Together the pair of condi-
tions in 1o represent the nondegeneracy conditions required for chaotic behavior here. They allow us to “variationally 
glue” the members of M(a−, a+) and M(a+, a−) to obtain, for any k ∈ N, infinitely many solutions of (HS) that 
undergo k transitions between a− and a+ and that are local minima of I . See [2] for details.

To continue, assume

(V4) V ∈ C2(R ×R
m, R) and for each t ∈ [0, 1], the matrix

Vqq(t, a±) = (
∂2V

∂qi∂qj

(t, a±))

is positive definite.

Condition (V4) together with some further nondegeneracy conditions on the set of solutions of (HS) leads to the 
existence of solutions of mountain pass type. To be more precise, let d > 0 and let Dd denote the set of heteroclinic 
and homoclinic solutions, q of (HS) with I (q) ≤ d and define

Sd = {u|[0,1] | u ∈Dd}.
Note that Sd differs from S(a−, a+) in that the former set includes snapshots of all heteroclinics or homoclinics, q , 
of (HS) with I (q) ≤ d . By Proposition 3.29 of [7], S̄d = Sd ∪ {a−} ∪ {a+} is a compact subset of W 1,2([0, 1], Rm). 
As above, let Cd(a±) denote the component of Sd

to which a± belongs and for ξ1, ξ2 ∈ {a−, a+}, set

Sd(ξ1, ξ2) = {u|[0,1] | u ∈ Dd ∩ �(ξ1, ξ2)}.
Then we have a stronger variant of our earlier alternatives: One of the following mutually exclusive possibilities holds:

3o Cd(a±) = {a±},
4o Cd(a±) = Cd(a∓),
5o Cd(a±) �= {a±} and Cd(a±) ⊂ Sd(a±, a±) ∪ {a±}.

Assuming the new nondegeneracy conditions 3o for all large d leads to the existence of an infinitude of mountain 
pass solutions of (HS) that are distinct from the local minima obtained above.

For both the local minimum and the mountain pass settings, an important consequence of assuming that alternatives 
1o or 3o hold is that they imply the corresponding sets of solution snapshots can be split into two pieces. More precisely 

for Sd
, there exist closed nonempty disjoint subsets, K−

1 , K−
2 of Sd

such that K−
1 ∪ K−

2 = Sd
. Moreover a− ∈ K−

1
and for any z ∈ K−

1 \ {a−}, there exists a p ∈ Z such that gp(z) ∈ K−
2 where for j ∈ Z,

gj : Sd → Sd, gj (q|[0,1]) = q(· + j)|[0,1].
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Similarly there exist closed nonempty disjoint subsets, K+
1 , K+

2 of Sd
such that K+

1 ∪ K+
2 = Sd

, a+ ∈ K+
1 and for 

any z ∈ K+
1 \ {a+}, there exists a p ∈ Z such that gp(z) ∈ K+

2 .

With the aid of these decompositions of S̄d , classes of functions that shadow the 4 sets, K±
i , i = 1, 2, in an 

appropriate fashion are introduced and minimization or minimax arguments then lead to critical points of I and 
corresponding solutions of (HS). For the (local) minimization setting, the classes are distinguished by the number of 
transitions between being near S(a−, a+) and near S(a+, a−) and by the amount of time it takes for each transition. 
Minimizing I over these classes then produces the local minima of I that were mentioned earlier, see e.g. [2]. The 
presence of these local minima causes the geometric structure of the Mountain Pass Theorem to occur at higher and 
higher level sets of the functional and alternative 3o above is used to gain the compactness needed to obtain related 
mountain pass type solutions. See [7].

Our goal in this paper is to show that this splitting or separation property, which is a consequence of 3o is in fact 
equivalent to 3o. In §3, a more precise formulation of the separation property and its consequences will be made. Then 
in §4, the equivalence theorem will be stated and proved.

3. The separation property

We will show that 3o is equivalent to a separation property that in turn is related to the stable and unstable 
manifolds of (HS) at the equilibrium points, a− and a+. For σ ∈ {−, +}, we are interested in certain subsets of 
Wu(aσ ), Ws(aσ ), that lie in Dd , possess an invariance property under integer phase shifts, and also possess a uni-
formity property. To be more explicit, for σ, τ ∈ {−, +}, let Dd(aσ , aτ ) denote the class of solutions of (HS) that are 
heteroclinic from aσ to aτ (or homoclinic if σ = τ ) and have I (q) ≤ d . Assume for each such σ ,

(�u(aσ )) There exists a compact set Ku(aσ ) ⊂ Sd and an r− > 0 such that
i) Ku(aσ ) ∩ {a−, a+} = {aσ } and

ii) For each U ∈ Dd(aσ , a−) ∪Dd(aσ , a+), there is a unique ju(U) ∈ Z such that U(· + ju(U) + i)|[0,1] ∈
Ku(aσ ) for any i ≤ 0 and

‖U(· + ju(U) + 1) − Ku(aσ )‖W 1,2([0,1],Rm) ≥ 3r−

A word about notation. For a set, A, the notation ‖u(·) − A‖W 1,2([0,1],Rm) as appears in the above definition of 
(�u(aσ )) will be used repeatedly, but also sometimes we write distW 1,2([0,1],Rm)(u(·), A) which has the same meaning.

Each function, U ∈ Ku(aσ ) is uniquely determined by its initial conditions, U(0), U ′(0). With this identification, 
the compact set, Ku(aσ ), can be viewed as a subset of the unstable manifold of (HS) at aσ and as such consists of 
unit time snapshots of heteroclinic and homoclinic solutions emanating from aσ having I ≤ d and normalized via ii). 
Of course we could work directly in R2m with sets of such initial conditions and avoid dealing with our sets involving 
snapshots of solutions, but such an approach would not be applicable to the existence of heteroclinic and homoclinic 
solutions of nonlinear elliptic partial differential equations such as were treated in [6]. We believe the approach taken 
here will readily generalize to such settings. The set Ku(aσ ) is not uniquely determined by the above assumption. 
For example, for any k ∈ Z, the set gk(Ku(aσ )) also satisfies the assumption for a different value of r−. Later in this 
section a choice will be made from this class of admissible sets, Ku(aσ ). First some consequences of (�u(aσ )) will 
be studied.

Consider the set

Ku
0 (a−) = {U(· + ju(U))|[0,1] | U ∈Dd(a−, a−) ∪Dd(a−, a+)}.

Equivalent definitions of Ku
0 (a−) are:

Ku
0 (a−) = {U |[0,1] | U ∈ Dd(a−, a−) ∪Dd(a−, a+), ju(U) = 0}

Ku
0 (a−) = {U ∈ Ku(a−) \ {a−} | ju(U) = 0}

Thus Ku
0 (a−) ⊂ Ku(a−) and

Lemma 3.1. Ku(a−) is compact.
0



P. Montecchiari, P.H. Rabinowitz / Ann. I. H. Poincaré – AN 36 (2019) 627–653 631
Proof. If (un) ⊂ Ku
0 (a−), it has a subsequence (still denoted (un)) that converges to a point u0 ∈ Ku(a−). 

Then gj (un) → gj (u0) for any j ≤ 0. Since Ku(a−) is compact and gj (un) ∈ Ku(a−), by (�u(a−)), gj (u0) ∈
Ku(a−) for any j ≤ 0. Moreover, by the definition of Ku

0 (a−) and (ii) of (�u(a−)), it follows that ‖g(un) −
Ku(a−)‖W 1,2([0,1],Rm) ≥ 3r− so ‖g(u0) − Ku(a−)‖W 1,2([0,1],Rm) ≥ 3r−. Thus ju(u0) = 0 and u0 ∈ Ku

0 (a−).

Now define

Ku(a−) = {U ∈Dd(a−, a−) ∪Dd(a−, a+) | U |[0,1] ∈ Ku
0 (a−)}.

Thus identifying U ∈ Ku(a−) with its initial conditions, Ku(a−) can be considered as the subset of the unstable 
manifold of (HS) at a− consisting of heteroclinic and homoclinic solutions emanating from a− having I ≤ d and 
normalized by their behavior on [0, 1]. It has a compactness property:

Proposition 3.2. Ku(a−) is compact with respect to the W 1,2((−∞, 2], Rm) metric.

The proof of Proposition 3.2 requires some preparation. It was shown in [7] that under conditions (V1)–(V4), 
{q ∈ W

1,2
loc (R, Rm) | I (q) < ∞} is a (C2) Hilbert manifold, E , modeled on E = W 1,2(R, Rm). Choosing any ψ1 ∈

M(a−, a+) and ψ2 ∈ M(a+, a−), E consists of four components: a± +E, ψ1 +E, ψ2 +E. For q ∈ �(a−, a+) and 
u = q − ψ1 ∈ E, set

J (u) = I (ψ1 + u) = I (q). (3.3)

Then J ∈ C2(E, R). The functional, J , is defined similarly on the other components of E . From [7], we have for 
ξ− �= ξ+ ∈ {a−, a+} and ψ the associated choice of ψ1, ψ2,

c(ξ−, ξ+) = inf
u∈E

I (ψ + u) = inf
u∈E

J (u) > 0. (3.4)

Again from [7], for ξ− = ξ+ ∈ {a−, a+},
c(ξ−, ξ+) = inf

u∈E
I (ξ− + u) = inf

u∈E
J (u) > 0. (3.5)

Therefore by (3.4)–(3.5),

c0 = min
ξ1,ξ2∈{a−,a+}

c(ξ1, ξ2) > 0. (3.6)

To continue, a result about Palais–Smale (PS) sequences for J is needed. By Proposition 3.10 of [13] or Proposi-
tion 3.27 in [7] – see also [5] for similar arguments – (PS) sequences of J on E = �(a−, a+) −ψ1 are characterized by

Proposition 3.7. Suppose that (qn) ⊂ �(a−, a+) where qn = ψ1 + un with un ∈ E. If further J (un) → b ≥ c0 and 
J ′(un) → 0 as n → ∞, then there exists

• a κ0 = κ0(b) ∈ N,
• an l0 ∈ N ∩ [1, κ0],
• ζ1, ζ2, ...., ζl0+1 ∈ {a−, a+} with ζ1 = a−, ζl0+1 = a+,
• Uj ∈ Dd(ζj , ζj+1) for j ∈ {1, . . . , l0},
• (t

j
n ) ⊂ Z, j ∈ {1, . . . , l0}, such that tj+1

n − t
j
n → +∞ as n → +∞

having the property that along a subsequence of n → ∞,

‖qn − U1(· − t1
n)‖

W 1,2((−∞, t1
n+ t2

n−t1
n

2 ),Rm)
→ 0

‖qn − Uj (· − t
j
n )‖

W 1,2((t
j
n − t

j
n −t

j−1
n

2 , t
j
n + t

j+1
n −t

j
n

2 ),Rm)

→ 0 j = 2, . . . , l0 − 1

‖qn − Ul0(· − t l0n )‖
W 1,2((t

l0
n − t

l0
n −t

l0−1
n

2 , +∞),Rm)

and
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J (un) = I (qn) →
l0∑

j=1

I (Uj ).

Remark 3.8. Let ξ1, ξ2 be any pair in {a−, a+} and let �(ξ1, ξ2) An analogous result holds for (PS) sequences of J on 
�(ξ1, ξ2). The statement changes by replacing a− by ξ1, a+ by ξ2, and ψ1 by the appropriate member of {a±, ψ1, ψ2}.

Now the proof of Proposition 3.2 can be given.

Proof of Proposition 3.2. Let (qj ) ⊂ Ku(a−). By (�u(a−)) and the definition of Ku(a−), ‖qj −
Ku(a−)‖W 1,2([1,2],Rm) ≥ 3r− for any j ∈N. Since a− ∈Ku(a−),

‖qj − a−‖W 1,2([1,2],Rm) ≥ 3r− for any j ∈ N. (3.9)

Now by Proposition 3.7, with ζ2 ∈ {a−, a+}, U1 ∈ Dd(a−, ζ2) and sequences (t1
j ), (t2

j ) ⊂ Z as given by that result, 
along a subsequence,

‖qj − U1(· − t1
j )‖

W 1,2((−∞, t1
j + t2

j −t1
j

2 ),Rm)

→ 0, as j → ∞. (3.10)

Three cases must be considered: either along a further subsequence, as j → ∞, (i) t1
j → ∞; (ii) t1

j → −∞; or (iii) t1
j

is bounded. If (i) occurs, ‖U1(· − t1
j ) − a−‖W 1,2([1,2],Rm) → 0 and so ‖qj − a−‖W 1,2([1,2],Rm) → 0, contrary to (3.9). 

Thus (i) is not possible. Next suppose that (ii) occurs. By (3.10), for any T > 0, as j → ∞ along the subsequence,

‖qj (· + t1
j + ju(U1)) − U1(· + ju(U1))‖W 1,2((−∞, T ],Rm) → 0. (3.11)

Since t1
j → −∞, qj (· + t1

j + ju(U1))|[1,2] ∈ Ku(a−) for large j , while by definition ‖U1(· + ju(U1)) −
Ku(a−)‖W 1,2([1,2],Rm) ≥ 3r−. This contradicts (3.11) showing that (ii) is also impossible. Hence (iii) occurs and 
(t1

j ) is a bounded sequence. Hence along a subsequence it is a constant, κ . Then defining q0 = U1(· − κ), by (3.10)
we obtain in particular that along this subsequence

‖qj − q0‖W 1,2((−∞,2],Rm) → 0, as j → ∞. (3.12)

Since qj (· + i) ∈ Ku(a−) for any i ≤ 0 and ‖qj (· + 1) − Ku(a−)‖W 1,2([0,1],Rm) ≥ 3r−, the compactness of Ku(a−)

and (3.12) show q0(· + i) ∈ Ku(a−) for any i ≤ 0 and ‖q0(· + 1) − Ku(a−)‖W 1,2([0,1],Rm) ≥ 3r−. Thus ju(q0) = 0, 
q0 ∈Ku(a−) and Proposition 3.2 follows from (3.12).

Proposition 3.2 implies

sup
q∈Ku(a−)

‖q‖W 1,2((−∞,T ),Rm) → 0, T → −∞

which immediately yields:

Corollary 3.13. For any ε > 0, there exists a jε > 0 such that

‖g−j (u) − a−‖W 1,2([0,1],Rm) ≤ ε ∀j ≥ jε and u ∈ Ku
0 (a−).

A further consequence of Proposition 3.2 is

Proposition 3.14. For any � ∈ Z with � ≥ 0, the set {a−} ∪ ( ∪j≥�g
−j (Ku

0 (a−)) ) is compact.

Proof. If � ≥ 0 and (un) ⊂ ∪j≥�g
−j (Ku

0 (a−)), there is a vn ∈ Ku
0 (a−) and jn ∈ N ∩[�, +∞) such that un = g−jn(vn). 

If along a subsequence, jn → ∞ as n → ∞, by Corollary 3.13, un → a− as n → ∞. On the other hand, if (jn)

is bounded, along a subsequence it is constant with say jn ≡ j0 ≥ �. Since Ku
0 (a−) is compact, along a further 

subsequence we have vn → v0 ∈ Ku
0 (a−). The map g is a homeomorphism so un = g−j0(vn) → g−j0(v0). This 

shows that (un) always has an accumulation point in {a−} ∪ ( ∪j≥�g
−j (Ku(a−)) ) and the Proposition follows.
0
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Another property of the phase shifts of Ku
0 (a−) is:

Proposition 3.15. For any i, j ∈ Z, i �= j ≥ 0, g−j (Ku
0 (a−)) is compact and g−i(Ku

0 (a−)) ∩ g−j (Ku
0 (a−)) = ∅.

Proof. The map g is a homeomorphism on Sd and Ku
0 (a−) is compact so g−j (Ku

0 (a−)) is compact for any j ∈ Z. 
The second statement reduces to showing that

g−p(Ku
0 (a−)) ∩ Ku

0 (a−) = ∅ for any p ∈ N.

Otherwise there exists a p ∈ N and u, v ∈ Ku
0 (a−) such that g−p(u) = v. By definition g(v) /∈ Ku(a−) while 

g(g−p(u)) ∈ Ku(a−) since −p + 1 ≤ 0, a contradiction.

Next let �0 ∈N and set

K̃u
�0

(a−) = {a−} ∪ (∪j≥�0 g−j (Ku
0 (a−)) ).

As an immediate consequence of Proposition 3.14 and Proposition 3.15, we have:

Corollary 3.16. K̃u
�0

(a−) is compact and satisfies (i) and (ii) of (�u(a−)) (with a different choice of r−) for any 
�0 > 0.

By (V4) – see e.g. [7] – there exists an r0 ∈ (0, |a+ − a−|/10) such that if ξ1, ξ2 ∈ {a−, a+} and q ∈ Dd(ξ1, ξ2), 
then

sup
j∈Z

‖q − ζ‖W 1,2([j,j+1],Rm) ≥ 2r0 for ζ ∈ {a−, a+}. (3.17)

Due to Corollary 3.13, �0 can be chosen so that

sup
j≥�0

sup
u∈Ku

0 (a−)

‖g−j (u) − a−‖W 1,2([0,1],Rm) ≤ r0

or, equivalently,

sup
u∈K̃u

�0
(a−)

‖u − a−‖W 1,2([0,1],Rm) ≤ r0.

We make this choice of �0. Since (�u(aσ )) is still meaningful if the constant r− made smaller, it can be assumed that

3r− < r0. (3.18)

These observations allow us to eliminate the non-uniqueness associated with Ku(a−) by replacing it by K̃u
�0

(a−)

or equivalently replacing Ku
0 (a−) by g−l0(Ku

0 (a−)). Thus abusing notation slightly, we can write:

Ku(a−) = {a−} ∪ (∪j≥0 g−j (Ku
0 (a−)) ) (3.19)

and satisfies:

sup
u∈Ku(a−)

‖u − a−‖W 1,2([0,1],Rm) ≤ r0. (3.20)

Replacing u by s in (�u(aσ )), we also assume:

(�s(aσ )) There exists a compact set Ks(aσ ) ⊂ Sd and r− > 0 such that
i) Ks(aσ ) ∩ {a−, a+} = {aσ } and

ii) For each U ∈ Dd(aσ , a−) ∪Dd(aσ , a+), U(· + i)|[0,1] ∈ Ks(a+) for any i ≥ 0 and

‖U(· − 1) − Ks(a+)‖W 1,2([0,1],Rm) ≥ 3r−.
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Replacing unstable by stable, the sets, Ks(a±), have a geometric interpretation as subsets of solution segments in 
Ws(a±). Applying similar reasoning to the sets Ku(a+), Ks(a±) to that just employed above, we find compact sets 

Ku
0 (a−), Ks

0(a±) in Sd
for which

Ku(a+) = {a+} ∪ (∪j≥0 g−j (Ku
0 (a+)) ), Ks(a±) = {a±} ∪ (∪j≥0 gj (Ks

0(a±)) ), (3.21)

and

sup
u∈Ku(a+)

‖u − a+‖W 1,2([0,1],Rm) ≤ r0, (3.22)

sup
u∈Ks(a−)

‖u − a−‖W 1,2([0,1],Rm) ≤ r0, (3.23)

sup
u∈Ks(a+)

‖u − a+‖W 1,2([0,1],Rm) ≤ r0. (3.24)

Since 10r0 < ‖a− − a+‖W 1,2([0,1],Rm), by (3.20), (3.22)–(3.24) and the triangle inequality:

distW 1,2([0,1],Rm)(K
u(a±) ∪ Ks(a±), Ku(a∓) ∪ Ks(a∓)) ≥ 8r0. (3.25)

Define

Ku(a±) = {U ∈Dd(a±, a∓) ∪Dd(a±, a±) | U |[0,1] ∈ Ku
0 (a±)},

Ks(a±) = {U ∈Dd(a∓, a±) ∪Dd(a±, a±) | U |[0,1] ∈ Ks
0(a±)},

so as earlier, Ks(a±) can be interpreted as the subset of the stable manifold of (HS) at a± consisting of heteroclinic 
and homoclinic solutions emanating from a± having I ≤ d and normalized by their behavior on [0, 1]. Proposition 3.2
leads to:

Proposition 3.26. Ku(a±) is compact with respect to the W 1,2((−∞, 2], Rm) metric and Ks(a±) is compact with 
respect to the W 1,2([−1, +∞), Rm) metric.

Next observe that the argument described in the proof of Proposition 3.15 can be adapted to show that there exists 
r̄ ∈ (0, r−) such that

distW 1,2([0,1],Rm)(K
u
0 (a±), Ku(a−) \ Ku

0 (a±)) ≥ 3r̄ (3.27)

Similarly it can be assumed that r̄ is so small that

distW 1,2([0,1],Rm)(K
s
0(a±), Ks(a−) \ Ks

0(a±)) ≥ 3r̄ . (3.28)

The inequalities (3.18), (3.25) imply

distW 1,2([0,1],Rm)(K
s
0(a±) ∪ Ku

0 (a±), Ks(a∓) ∪ Ku(a∓)) ≥ 3r̄ . (3.29)

Assume for the moment that

Ku
0 (a−) ∩ Ks(a−) = Ku

0 (a+) ∩ Ks(a+) = (3.30)

= Ks
0(a−) ∩ Ku(a−) = Ks

0(a+) ∩ Ku(a+) = ∅.

All the sets involved in (3.30) are compact. Therefore by taking r̄ smaller if necessary, by (3.30) it can be assumed 
that

distW 1,2([0,1],Rm)(K
u
0 (a−),Ks(a−)), distW 1,2([0,1],Rm)(K

s
0(a−),Ku(a−)) ≥ 3r̄ (3.31)

distW 1,2([0,1],Rm)(K
u
0 (a+),Ks(a+)), distW 1,2([0,1],Rm)(K

s
0(a+),Ku(a+)) ≥ 3r̄ (3.32)

To verify (3.30), consider the representative case of Ku
0 (a−) ∩ Ks(a−) = ∅. Arguing indirectly, assume that there 

exists ξ ∈ Ku
0 (a−) ∩ Ks(a−). By definition gj (ξ) ∈ Ku(a−) for all j ≤ 0 and gj (ξ) ∈ Ks(a−) for all j ≥ 0. Then 

(3.20) and (3.23) show ‖gj (ξ) − a−‖W 1,2([0,1],Rm) ≤ r0 for any j ∈ Z. But this is contrary to (3.17). Hence Ku
0 (a−) ∩

Ks(a−) = ∅. The other equalities in (3.30) can be obtained in an analogous way and (3.30) is proved.
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Due to the assumptions (�u(aσ )) and (�s(aσ )) for σ ∈ {−, +} and the choice of r̄ , it follows that

sup
i∈Z

distW 1,2([i,i+1],Rm)(q, {a−, a+}) ≥ 3r̄ for any q ∈ Dd . (3.33)

4. The equivalence result

Our main result can now be stated:

Theorem 4.1. Cd(a±) = {a±} if and only if for σ ∈ {+, −}, conditions (�u(aσ )) and (�s(aσ )) hold.

Before proving Theorem 4.1, Proposition 3.7 will be used to obtain some further technical properties of the sets 
Ku(a±) and Ks(a±).

Proposition 4.2. Assume that (�u(aσ )) holds for a σ ∈ {−, +} and let (qi) ⊂Dd , (ti) ⊂ N, be such that

ti → +∞ and distW 1,2([−ti ,1],Rm)(qi,Ku(aσ )) ≤ r̄ as i → ∞.

Then there exists a U ∈ Ku(aσ ) such that, along a subsequence,

‖qi − U‖W 1,2([−T ,1],Rm) → 0 as i → +∞ for any T > 0.

Proof. Since the proofs are the same for either choice of σ , suppose that σ = −. It can be assumed that

distW 1,2([−ti ,1],Rm)(qi,Ku(a−)) ≤ r̄ for any i ∈N. (4.3)

Since the functions, qi , are solutions of (HS) with I (qi) ≤ d , the sequence (qi) is bounded in W 1,2
loc [2]. Therefore 

(qi) converges in W 1,2
loc along a subsequence to a function U ∈Dd and by (4.3),

distW 1,2((−∞,1],Rm)(U,Ku(a−)) ≤ r̄ . (4.4)

Recall that r̄ < r− <
r0
3 <

|a−−a+|
30 . Therefore (4.4) and arguments from [2] or [7] imply U ∈ Dd(a−, a+) ∪

Dd(a−, a−). Thus the Proposition follows once we show that U ∈ Ku(a−) or equivalently that ju(U) = 0. Argu-
ing indirectly, suppose first that ju(U) < 0. Then ju(U) + 1 ≤ 0. By (�u(a−)),

distW 1,2([0,1],Rm)(U(· + ju(U) + 1),Ku(a−)) ≥ 3r−
and so, since {q(· − i)|[0,1] | q ∈Ku(a−)} = g−i (Ku

0 (a−)) for any i ≥ 0, by (3.19),

distW 1,2((−∞,1],Rm)(U,Ku(a−)) ≥ distW 1,2([ju(U)+1,ju(U)+2],Rm)(U,Ku(a−))

= distW 1,2([0,1],Rm)(U(· + ju(U) + 1), g(ju(U)+1)(Ku
0 (a−)))

≥ distW 1,2([0,1],Rm)(U(· + ju(U) + 1),Ku(a−)) ≥ 3r−
which is in contradiction with (4.4). Next if ju(U) > 0, then U |[0,1] ∈ g−ju(U)(Ku

0 (a−)) so by (3.27),

3r̄ ≤ distW 1,2([0,1],Rm)(U,Ku
0 (a−)) = distW 1,2([0,1],Rm)(U,Ku(a−))

again in contradiction with (4.4).

Then ju(U) = 0 and the proof is complete.

There is a similar result for Ks(aσ ):

Proposition 4.5. Assume that (�u(aσ )) holds for a σ ∈ {−, +} and let (qi) ⊂Dd , (ti) ⊂ N be such that

ti → +∞ and distW 1,2([0,ti ],Rm)(qi,Ks(aσ )) ≤ r̄ as i → ∞.

Then there exists a U ∈ Ks(aσ ) such that, along a subsequence,

‖qi − U‖W 1,2([0,T ],Rm) → 0 as i → +∞ for any T > 0.
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The proof is similar to that of Proposition 4.2 and will be omitted.

The last two results and Proposition 3.7 are crucial for the proof of the next rather technical result which is of 
interest for small r and will play a role in the proof of Theorem 4.1. Geometrically it roughly says if a heteroclinic or 
homoclinic solution of (HS) is near the corresponding part of Dd in a certain sense depending on r̄ , in fact it is close 
in a stronger sense depending on r .

Proposition 4.6. Suppose that (�u(aσ ))–(�s(aσ )) hold for σ ∈ {+, −}. Given any r > 0, there exists an n̄(r) ∈ N

such that whenever L ∈ [n̄(r), +∞) ∩N, q ∈Dd , σ ∈ {+, −} and n1, n2 ∈ Z satisfy the conditions

(h1) n2 − n1 ≥ 3L,
(h2) distW 1,2([−L,1],Rm)(q(· + n2), Ku(aσ )) ≤ r̄ ,
(h3) distW 1,2([0,L],Rm)(q(· + n1), Ks(aσ )) ≤ r̄ ,
(h4) supi∈[n1+L,n2−L−1],Rm) ‖q − aσ ‖W 1,2([i,i+1],Rm) ≤ r̄ ,

then in fact

(1) distW 1,2([−L,1],Rm)(q(· + n2), Ku(aσ )) ≤ r ,
(2) distW 1,2([0,L],Rm)(q(· + n1), Ks(aσ )) ≤ r ,
(3) ‖q − aσ ‖W 1,2([n1+L,n2−L],Rm) ≤ r .

Proof. Arguing indirectly, suppose there exists an r > 0 such that for any i ∈ N, there is an Li ∈ N such that Li ≥ i, 
a qi ∈Dd and numbers n2,i , n1,i ∈ Z that satisfy (h1)–(h4) but violate at least one of the conditions

(1i ) distW 1,2([−Li,1],Rm)(qi(· + n2,i ), Ku(aσ )) ≤ r ,
(2i ) distW 1,2([0,Li ],Rm)(qi(· + n1,i ), Ks(aσ )) ≤ r ,
(3i ) ‖q − aσ ‖W 1,2([n1,i+Li,n2,i−Li ],Rm) ≤ r .

Since Ku(aσ ) is compact with respect to the W 1,2((−∞, 1], Rm) metric, there exists T0 ∈N such that

sup
l≥T0

‖q − aσ ‖W 1,2([−l,−l+1],Rm) ≤ r̄ for any q ∈Ku(aσ ). (4.7)

Due to the analogous property of Ks(aσ ), it can also be assumed that

sup
l≥T0

‖q − aσ ‖W 1,2([l,l+1],Rm) ≤ r̄ for any q ∈Ks(aσ ). (4.8)

We claim that

sup
n1,i+T0 ≤ l ≤ n2,i−T0

‖qi − aσ ‖W 1,2([l,l+1],Rm) ≤ 2r̄ for any i ≥ T0. (4.9)

Indeed first suppose that n2,i − Li ≤ l ≤ n2,i − T0. By (h2) and the compactness of Ku(aσ ) with respect to the 
W 1,2((−∞, 1], Rm) metric, there is a ϕi ∈Ku(aσ ) such that

distW 1,2([−Li,1],Rm)(qi(· + n2,i ),Ku(aσ )) = ‖qi(· + n2,i ) − ϕi‖W 1,2([−Li,1],Rm) (4.10)

= ‖qi − ϕi(· − n2,i )‖W 1,2([n2,i−Li,n2,i+1],Rm) ≤ r̄ .

Next note that by (4.7), for l ≥ T0,

‖ϕi(· − n2,i ) − aσ ‖W 1,2([n2,i−l,n2,i−l+1],Rm) = ‖ϕi − aσ ‖W 1,2([−l,−l+1],Rm) ≤ r̄ . (4.11)

Thus (4.10)–(4.11) and the triangle inequality show (4.9) for the restricted range of n2,i − Li ≤ l ≤ n2,i − T0. 
A similar argument using (h3) and (4.8) then gives (4.9) for n1,i + T0 ≤ l ≤ n1,i + Li . Lastly (h4) then yields (4.9)
for the remaining region, n1,i + Li ≤ l ≤ n2,i − Li .
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By (h2), (h3) and Propositions 4.2, 4.5, there exist functions U− ∈ Ku(aσ ) and U+ ∈ Ks(aσ ) such that, along a 
subsequence, still denoted by (qi), we have

‖qi − U−(· − n2,i )‖W 1,2([n2,i−T ,n2,i+1],Rm) → 0 as i → +∞. (4.12)

‖qi − U+(· − n1,i )‖W 1,2([n1,i ,n1,i+T ],Rm) → 0 as i → +∞ (4.13)

for any T > 0. Proposition 3.7 implies qi is asymptotic to a chain of functions consisting of translates of members 
of Dd . By (4.12) and (4.13), the chain contains at least the two functions U− and U+. We will show that U+ is the 
left neighbor of U− in the chain. To be more precise, by Proposition 3.7, there is a further subsequence of (qi) that 
we continue to denote by (qi), an l0 ∈ N, ζ1, ζ2, ...., ζl0+1 ∈ {a−, a+} with ζ1 = ξ1, ζl0+1 = ξ2, Uj ∈ D(ζj , ζj+1) for 
j ∈ {1, . . . , l0}, and sequences (tji ) ⊂ Z, such that t j+1

i − t
j
i → +∞ as i → ∞, the above having the property that 

(setting t0
i = −∞ and t l0+1

i = +∞),

‖qi − Uj (· − t
j
i )‖

W 1,2((
t
j−1
i +t

j
i

2 ,
t
j
i +t

j+1
i

2 ),Rm)

→ 0 for j = 1, . . . , l0. (4.14)

By (h1), n2,i − n1,i → ∞ as i → ∞, so comparing (4.12) to (4.14) shows there is p ∈ [2, l0] ∩ N such that, along 
the subsequence, tpi − n2,i must be bounded. Thus taking a further subsequence if necessary, it can be assumed that 
t
p
i − n2,i is a constant and Up ≡ U−(· − n2,i + t

p
i ). Now (4.14) shows as i → ∞,

‖qi − U−(· − n2,i )‖
W 1,2((

t
p−1
i +t

p
i

2 , n2,i+1),Rm)

→ 0. (4.15)

Since U− ∈ Ku(aσ ), it follows that ζp = aσ . Setting U ≡ Up−1, then U ∈ Dd(ξ, aσ ) with ξ ∈ {a−, a+}. By (4.14)
again, for any T > 0

‖qi − U(· − t
p−1
i )‖

W 1,2((t
p−1
i −T ,

t
p−1
i +t

p
i

2 ),Rm)

→ 0 (4.16)

as i → ∞. Since for large i,

‖qi − aσ − (U(· − t
p−1
i ) − aσ ) − (U−(· − n2,i ) − aσ )‖

W 1,2((t
p−1
i −T , n2,i+1),Rm)

≤
≤ ‖qi − aσ − (U(· − t

p−1
i ) − aσ ) − (U−(· − n2,i ) − aσ )‖

W 1,2((t
p−1
i −T ,

t
p−1
i +t

p
i

2 ),Rm)

+

+ ‖qi − aσ − (U(· − t
p−1
i ) − aσ ) − (U−(· − n2,i ) − aσ )‖

W 1,2((
t
p−1
i +t

p
i

2 , n2,i+1),Rm)

≤

≤ ‖qi − (U(· − t
p−1
i )‖

W 1,2((t
p−1
i −T ,

t
p−1
i +t

p
i

2 ),Rm)

+

+ ‖(U−(· − n2,i ) − aσ )‖
W 1,2((t

p−1
i −T ,

t
p−1
i +t

p
i

2 ),Rm)

+

+ ‖qi − U−(· − n2,i )‖
W 1,2((

t
p−1
i +t

p
i

2 , n2,i+1),Rm)

+

+ ‖U(· − t
p−1
i ) − aσ )‖

W 1,2((
t
p−1
i +t

p
i

2 , n2,i+1),Rm)

,

by (4.16) and (4.15), the first and third terms on the right above go to 0 as i → ∞. The remaining two terms are 
essentially tails of convergent integrals and therefore also go to 0 as i → ∞. Thus we have shown for any T > 0, as 
i → ∞,

‖qi − aσ − (U(· − t
p−1
i ) − aσ ) − (U−(· − n2,i ) − aσ )‖

W 1,2((t
p−1
i −T , n2,i+1),Rm)

→ 0. (4.17)

Next it will be shown that (tp−1
i − n1,i ) is a bounded sequence. First observe if tp−1

i − n1,i → +∞ as i → ∞, 
then for any j0 ∈ Z,

(t
p−1 + j0, t

p−1 + j0 + 1) ⊂ (n1,i + T0, n2,i − T0 + 1)
i i
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when i = i(j0) is large enough. Hence by (4.9),

‖qi − aσ ‖
W 1,2((t

p−1
i +j0,t

p−1
i +j0+1),Rm)

≤ 2r̄ . (4.18)

By (4.14) we know

‖qi − U(· − t
p−1
i )‖

W 1,2((t
p−1
i +j0,t

p−1
i +j0+1),Rm)

→ 0 (4.19)

as i → ∞. Combining (4.18)–(4.19) gives

‖U(· − t
p−1
i ) − aσ ‖

W 1,2((t
p−1
i +j0,t

p−1
i +j0+1),Rm)

≤ 2r̄ + o(1), i → ∞. (4.20)

But by (3.33), there is a j0 ∈ Z such that

‖U(· + j0) − aσ ‖W 1,2([0,1],Rm) > 2r̄ ,

contrary to (4.20). Thus tp−1
i − n1,i → +∞ as i → ∞ (along a subsequence) is not possible.

To further exclude that tp−1
i − n1,i → −∞ (along a subsequence), first note that by (4.13), as i → ∞,

‖qi − U+(· − n1,i )‖W 1,2([n1,i ,n1,i+1],Rm) → 0. (4.21)

Therefore for large i,

‖qi − aσ ‖W 1,2([n1,i ,n1,i+1],Rm) ≥ ‖U+(· − n1,i ) − aσ ‖W 1,2([n1,i ,n1,i+1],Rm) (4.22)

−‖qi − U+(· − n1,i )‖W 1,2([n1,i ,n1,i+1],Rm) ≥ r̄

via U+ ∈Ks(aσ ) and (3.28). On the other hand,

‖qi − aσ ‖W 1,2([n1,i ,n1,i+1],Rm) ≤ N1 + N2 + N3 ≡ (4.23)

≡ ‖qi − aσ − (U(· − t
p−1
i ) − aσ ) − (U−(· − n2,i ) − aσ )‖W 1,2([n1,i ,n1,i+1],Rm)+

+‖U(· − t
p−1
i ) − aσ ‖W 1,2([n1,i ,n1,i+1],Rm) + ‖U−(· − n2,i ) − aσ ‖W 1,2([n1,i ,n1,i+1],Rm).

Since tp−1
i − n1,i → −∞ as i → ∞, tp−1

i < n2,i for large i and (4.17) implies N1 → 0 as i → ∞. Writing

N2 = ‖U − aσ ‖
W 1,2([n1,i−t

p−1
i ,n1,i+1−t

p−1
i ],Rm)

and noting that ‖U − aσ ‖W 1,2([j,j+1],Rm) → 0 as j → ∞ shows N2 → 0 as i → ∞. Similarly

N3 = ‖U− − aσ ‖W 1,2([n1,i−n2,i,n1,i+1−n2,i ],Rm)

and ‖U− − aσ ‖W 1,2([j,j+1],Rm) → 0 as j → −∞ gives N3 → 0 as i → ∞. Combining these observations, we have

‖qi − aσ ‖W 1,2([n1,i ,n1,i+1],Rm) → 0, i → ∞. (4.24)

Thus (4.24) is contrary to (4.22) and tp−1
i − n1,i → −∞ (along a subsequence) is not possible.

Now that we know (tp−1
i −n1,i ) is a bounded sequence, along a subsequence it is a constant, κ . Hence again (4.13), 

(4.17) imply that U = U+(· + κ) so by (4.17),

‖qi − aσ − (U+(· − n1,i ) − aσ ) − (U−(· − n2,i ) − aσ )‖W 1,2((ni,1, n2,i+1),Rm) → 0. (4.25)

Note that

‖U+(· − n1,i ) − aσ ‖W 1,2((n1,i+Li, +∞),Rm) = ‖U+ − aσ ‖W 1,2((Li , +∞),Rm) → 0 (4.26)

since Li → +∞ as i → ∞. Hence (h1) and (4.25)–(4.26) show
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distW 1,2([−Li,1],Rm)(qi(· + n2,i ),Ku(aσ )) ≤ ‖qi − U−(· − n2,i )‖W 1,2([n2,i−Li,n2,i+1],Rm)

≤ ‖qi − aσ − (U+(· − n1,i ) − aσ ) − (U−(· − n2,i ) − aσ )‖W 1,2([n2,i−Li,n2,i+1],Rm)+
+ ‖U+(· − n1,i ) − aσ ‖W 1,2([n2,i−Li,n2,i+1],Rm) → 0.

Thus qi satisfies the property (1i) whenever i is large.
Analogously to the above,

‖U−(· − n2,i ) − aσ ‖W 1,2((−∞,n2,i−Li),R
m) → 0 (4.27)

as i → ∞ so (h1), (4.25) and (4.27) imply

distW 1,2([0,Li ],Rm)(qi(· + n1,i ),Ks(aσ )) ≤ ‖qi − U+(· − n1,i )‖W 1,2([n1,i ,n1,i+Li ],Rm)

≤ ‖qi − aσ − (U+(· − n1,i ) − aσ ) − (U−(· − n2,i ) − aσ )‖W 1,2([n1,i ,n1,i+Li ],Rm)+
+ ‖U−(· − n1,i ) − aσ ‖W 1,2([n1,i ,n1,i+Li ],Rm) → 0.

Thus qi also satisfies property (2i ) whenever i is large.
Finally by (h1) and (4.25)–(4.27),

‖q − aσ ‖W 1,2([n1,i+Li,n2,i−Li ],Rm) ≤
≤ ‖qi − aσ − (U+(· − n1,i ) − aσ ) − (U−(· − n2,i ) − aσ )‖W 1,2([n1,i+Li,n2,i−Li ],Rm)+
+ ‖U+(· − n1,i ) − aσ ‖W 1,2([n1,i+Li,n2,i−Li ],Rm)+
+ ‖U−(· − n1,i ) − aσ ‖W 1,2([n1,i+Li,n2,i−Li ],Rm) → 0

as i → ∞ and qi satisfies (3i ) when i is large. Therefore qi satisfies properties (1i ), (2i ) and (3i ) for i large, contrary 
to the choice of the functions qi . Thus Proposition 4.6 is proved.

There are three further preliminaries needed before giving the proof of Theorem 4.1. The first provides a useful 
estimate.

Proposition 4.28. Suppose that K ∈ {Ku
0 (a−), Ku

0 (a+), Ks
0(a−), Ks

0(a+)} ≡ K, q ∈Dd and

‖gj (q) − K‖W 1,2([0,1],Rm) ≤ r̄ (4.29)

for some j ∈ Z. Then there exists a constant, λ > 0, such that

j+1∫
j

( 1
2 |q̇|2 + W(t, q)) dt ≥ λ. (4.30)

Proof. By (3.27)–(3.28),

distW 1,2([0,1],Rm)(K, {a−, a+}) ≥ 3r̄

so by (4.29),

distW 1,2([0,1],Rm)(g
j (q), {a−, a+}) ≥ 2r̄ . (4.31)

If there is no λ = λ(r̄) as above, there are sequences, (qn) ⊂ Dd and (jn) ⊂ Z such that un ≡ gjn(qn) satisfies (4.29)
and (4.31), but as n → ∞,

1∫
0

( 1
2 |u̇n|2 + W(t,un)) dt → 0. (4.32)

Then as n → ∞,
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‖u̇n‖2
L2([0,1],Rm)

→ 0 and

1∫
0

W(t,un)) dt → 0. (4.33)

By (4.29) and the compactness of K , ‖un‖L∞([0,1],Rm) is bounded. Since ‖u̇n‖2
L2([0,1],Rm)

→ 0 as n → ∞, there exists 

a ξ0 ∈ R
m such that un → ξ0 ∈ R

m in L∞([0, 1], Rm). By (4.33), 
∫ 1

0 W(t, ξ0) dt = 0. But then ξ0 ∈ {a−, a+} and 
(4.31) must hold with gj (q) replaced by ξ0. Since this is impossible, there is a λ as claimed.

Define

� = [d
λ

] + 1 and r� = r̄

30�
. (4.34)

The next technical result is important for an inductive argument in the proof of Theorem 4.1.

Proposition 4.35. Let ξ ∈ {a−, a+}, 0 < r1 < r2 ≤ r̄ , li ∈ N with li → +∞ as i → ∞, and (vi) ⊂ Dd be such that

r1 ≤ distW 1,2([−li ,1],Rm)(vi,Ku(ξ)) ≤ r2 ∀i ∈N. (4.36)

Then there are integers i0, L0 ∈ N and n0 ∈ Z, with L0 > n̄(r�) (where n̄(r�) is given by Proposition 4.6) and n0 ≤
−3L0 such that

(i) distW 1,2([−L0,1],Rm)(vi0, Ku(ξ)) ≤ r�,
(ii) distW 1,2([0,L0],Rm)(vi0(· + n0), Ks(ξ)) ≤ r�,

(iii) ‖vi0 − ξ‖W 1,2([n0+L0,−L0],Rm) ≤ r�.
(iv) ju(vi0) < n0.

Proof. By Proposition 4.2, there exists a function, U∗ ∈ Ku(ξ) such that the sequence vi → U∗ weakly in 
W 1,2(R, Rm) as i → ∞ (along a subsequence that still will be denoted by vi). The sequence vi does not converge 
strongly to U∗ in W 1,2((−∞, 1], Rm); otherwise the constraint in (4.36) would be violated. This observation and 
Proposition 3.7 imply the sequence converges to a chain of homoclinic and/or heteroclinic solutions of (HS) and U∗
is not the left end of the chain. Indeed the weak convergence of vi → U∗ in W 1,2(R, Rm) implies one of the sequences 
(t

j
i ) given by Proposition 3.7 must be bounded. Hence there is a p ∈ Z such that, passing to a further subsequence, 

t
j
i = p for all i ∈N. Thus

‖vi − Uj(· − p)‖
W 1,2((

t
j−1
i +p

2 ,
t
j+1
i +p

2 ),Rm)

→ 0

as i → ∞ showing that U∗ = Uj (· − p). Therefore by (4.14), as i → ∞,

‖vi − U∗‖
W 1,2((

t
j−1
i +p

2 , 1],Rm)

→ 0. (4.37)

Knowing that vi does not converge strongly to U1 in W 1,2((−∞, 1], Rm) and recalling that t0
i = −∞, (4.37) implies 

that j > 1. Set si = t
j−1
i + p and U = Uj−1(· + p). By Proposition 3.7, si → −∞ as i → ∞ so without loss 

of generality, (si) ⊂ (−∞, 0) ∩ Z. Moreover U ∈ Dd(ζ, ξ) with ζ ∈ {a−, a+}. By (4.14) again, for any T > 0, as 
i → ∞,

‖vi − U(· − si)‖W 1,2((si−T , si/2),Rm) → 0 (4.38)

and

‖vi − U∗‖W 1,2((si/2, 1),Rm) → 0 (4.39)

By definition, U(· + j s(U))|[0,1] ∈ Ks
0(ξ) or equivalently U(· + j s(U))|[0,+∞) ∈ Ks(ξ). Since U∗ ∈ Ku(ξ) and U ∈

Ks(ξ), an L0 ∈ N with L0 ≥ n̄(r�) can be chosen so large that

‖U(· + j s(U)) − ξ‖W 1,2([L ,+∞),Rm) ≤ r� , ‖U∗ − ξ‖W 1,2((−∞,−L ],Rm) ≤ r� . (4.40)

0 4 0 4
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Choose i0 ∈N so large that − si0
4 > max{L0, L0 + j s(U)}. By (4.38)–(4.39), it can be further assumed that

‖vi0 − U(· − si0)‖W 1,2((si0+js (U), si0/2),Rm) ≤ r�/4 (4.41)

and

‖vi0 − U∗‖W 1,2((si0/2, 1),Rm) ≤ r�/4. (4.42)

Now we will show that (i)–(iv) follow on setting n0 = si0 + j s(U). Indeed property (i) follows from (4.42):

distW 1,2([−L0,1],Rm)(vi0,Ku(ξ))) ≤ ‖vi0 − U∗‖W 1,2([−L0,1],Rm) ≤ r�/4.

Property (ii), is immediate from (4.41):

distW 1,2([0,L0],Rm)(vi0(· + n0),Ks(ξ))

≤ ‖vi0(· + si0 + j s(U)) − U(· + j s(U))‖W 1,2([0,L0],Rm)

= ‖vi0 − U(· − si0)‖W 1,2([si0+js (U),si0+js (U)+L0],Rm) ≤ r�/4.

Next by (4.41), (4.40), (4.42), and (4.40) again,

‖vi0 − ξ‖W 1,2([n0+L0,−L0],Rm) ≤ ‖vi0 − ξ‖W 1,2([n0+L0,si0/2],Rm)+ (4.43)

+ ‖q1 − ξ‖W 1,2([si0/2,−L0],Rm)

≤ ‖vi0 − U(· − si0)‖W 1,2([si0+js (U)+L0,si0 /2],Rm) +
+ ‖U(· − si0) − ξ‖W 1,2([si0 +js (U)+L0,si0/2],Rm)+
+ ‖vi0 − U∗‖W 1,2([si0/2,−L0],Rm) + ‖U∗ − ξ‖W 1,2([si0 /2,−L1],Rm) ≤ r�,

yielding (iii). Lastly, to verify (iv), observe that by (4.41),

‖vi0(· + n0) − Ks
0(ξ)‖W 1,2([0,1],Rm) ≤ rl/4. (4.44)

By (3.32),

‖Ks
0(ξ) − Ku(a−)‖W 1,2([0,1],Rm),‖Ks

0(ξ) − Ku(a+)‖W 1,2([0,1],Rm) ≥ 3r̄ . (4.45)

Combining (4.44)–(4.45) gives

distW 1,2([0,1],Rm)(vi0(· + n0),K
u(a−) ∪ Ku(a+)) ≥ 2r̄ . (4.46)

By the definition of ju(vi0),

distW 1,2([0,1],Rm)(vi0(· + j),Ku(a−) ∪ Ku(a+)) = 0 f or any j ≤ ju(vi0) (4.47)

and (4.46)–(4.47) yield ju(vi0) < n0, completing the proof of Proposition 4.35.

Our final preliminary result is:

Proposition 4.48. Suppose that (�u(aσ ))–(�s(aσ )) hold for each σ ∈ {−, +} and Cd(aτ ) �= {aτ } for some τ ∈
{−, +}. Then there exist

1o � + 1 integers p0, p1, . . . , p� ∈ Z such that p0 > p1 > p2 > . . . > pl ,
2o � + 1 sets K0, K1, . . . , K� ∈ K,
3o a point q ∈ Dd

such that

‖q − g−pj (Kj )‖W 1,2([pj ,pj +1],Rm) ≤ r̄ for any j ∈ {0,1, . . . , �}. (4.49)
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Assuming this proposition for the moment, the proof of Theorem 4.1 can be given.

Proof of Theorem 4.1. First it will be shown that if conditions (�u(aσ ))–(�s(aσ )) hold for σ ∈ {a−, a+}, then 
Cd(a±) = {a±}. The proofs being the same, only the σ = − case will be treated. Let q ∈ Dd as given by 3o of 
Proposition 4.48. Applying (4.30) to each of the sets, Ki, 1 ≤ i ≤ � + 1, yields

d ≥ I (q) > ��+1
1

pi+1∫
pi

( 1
2 |q̇|2 + W(t, q)) dt ≥ (l + 1)λ. (4.50)

But (4.50) is impossible via (4.34) and the first half of the equivalence has been proved.
For the converse statement, suppose that Cd(a−) = {a−}. Recalling (3.17), set

α = 1

3
min(2r0, |a− − a+|).

Let Br(x) denote the open ball in W 1,2([0, 1], Rm) of radius r about x. Consider Bα(a−) ∩ Sd
. By Proposition 3.29 

of [7], it is a compact subset of W 1,2([0, 1], Rm). If ∂(Bα(a−)) ∩ Sd = ∅, take K−
1 = Bα(a−) ∩ Sd

and K−
2 =

Sd \ K−
1 . Then K1 ∪ K2 = Sd

, K1 ∩ K2 = ∅, and K1 and K2 are each closed and nonempty. Next suppose that 

∂(Bα(a−)) ∩Sd �= ∅. Since Cd(a−) = {a−}, there does not exist a subcontinuum of Sd
joining a− to ∂(Bα(a−)) ∩Sd

. 

By a separation result of Whyburn [18], there are closed nonempty disjoint subsets, G1, G2 of Bα(a−) ∩Sd
such that 

a− ∈ G1, ∂(Bσ (a−)) ∩ Sd ⊂ G2, and G1 ∪ G2 = Bσ (a−) ∩ Sd
. For this case, we obtain a splitting of Sd

by taking 
K−

1 = G1 and K−
2 = Sd \ K−

1 . Now choose any z ∈ K−
1 \ {a−}. If z = q|T0 with q ∈ Dd(a−, a−), by the choice of α

– see (3.17) – there is a p ∈ Z such that ‖gp(z) − a−‖W 1,2([p,p+1],Rm) > α, i.e. gp(z) ∈ K−
2 . Now we have to find a 

compact set, Ku(a−) ⊂ Sd
and an r− > 0 such that (i)–(ii) of (�u(a−)) hold. The set, Ku(a−) will be obtained from 

(3.19) by making an appropriate choice of Ku
0 (a−). Set

Ku
0 (a−) = {q ∈ K−

1 | g−j (u) ∈ K−
1 f or j ∈ Z, j ≥ 0 and g(u) ∈ K−

2 }.
Due to (3.17), for each U ∈ Dd(aσ , a−) ∪Dd(aσ , a+), there is a unique p(U) ∈ Z such that U(· + p(U) + i)|[0,1] ∈
K−

1 for any i ≤ 0 and

‖U(· + p(U) + 1) − K−
1 ‖W 1,2([0,1],Rm) ≥ ‖K−

1 − K−
2 ‖W 1,2([0,1],Rm).

Thus an alternate characterization of Ku
0 (a−) is

Ku
0 (a−) = {U |[0,1] | U ∈ Dd(aσ , a−) ∪Dd(aσ , a+) and p(U) = 0}.

Clearly Ku
0 (a−) �= ∅. It is also compact since if (qn) ⊂ Ku

0 (a−), (qn) lies in the compact set K−
1 . Therefore there 

is a q∗ ∈ K−
1 such that along a subsequence, qn → q∗ as n → ∞. Since these functions are all solutions of (HS), 

qn → q∗ in C2
loc(R, Rm). Thus g(q∗) ∈ K−

2 so p(q∗) ≤ 0. Similarly, g−j (q∗) ∈ K−
1 for all j ∈ N. It follows that 

p(q∗) = 0, q∗ ∈ Ku
0 (a−) and Ku

0 (a−) is compact. Now (3.19) shows Ku(a−) and (i)–(ii) of (�u(a−)) hold with 
r− = 1

3‖K−
1 − K−

2 ‖W 1,2([0,1],Rm).
Replacing Cd(a−) = {a−} by Cd(a+) = {a+}, with minor changes, the above argument implies (�u(a+)) holds. 

The remaining two cases are treated similarly and the proof of Theorem 4.1 is complete.

It remains to give the

Proof of Proposition 4.48. The proofs being the same for either choice of τ , we take τ = −. Since Cd(a−) �= {a−},
∃a q0 ∈Dd such that ζ 0 = q0|[0,1] ∈ Cd(a−). (4.51)

For each k ∈N, we say property (Pk) is satisfied if the following 6 conditions are satisfied:
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(Pk) (i) There exists a function qk ∈Dd such that qk|[0,1] ∈ Cd(a−).
For each j ∈ {1, . . . , k},

(ii) there are integers Lj ∈ N and n1,j , n2,j ∈ Z, such that Lj ≥ n̄(r�) (with n̄(r�) given by Proposition 4.6), 
n2,j − n1,j > 3Lj and

ju(qk) < n1,k < n2,k < n1,k−1 < . . . < n2,2 < n1,1 < n2,1 = 0;
(iii) there are points ξj ∈ {a−, a+} and pairs of sets Hj

+, Hj
− where

Hj
+ =

{
Ks(a−) if ξj = a−

Ks(a+) if ξj = a+ and Hj
− =

{
Ku(a−) if ξj = a−

Ku(a+) if ξj = a+

such that
(iv) distW 1,2([−Lj ,1],Rm)(q

k(· + n2,j ), Hj
−) ≤ r�,

(v) distW 1,2([0,Lj ],Rm)(q
k(· + n1,j ), Hj

+) ≤ r�,

(vi) ‖qk − ξj‖W 1,2([n1,j +Lj ,n2,j −Lj ],Rm) ≤ r�.

We will show that (4.51) implies property (Pk) is valid for each k ∈ {1, . . . , �}.
However, before doing so, assuming property (P�), the proof of Proposition 4.48 can be completed. Using (ii)

of (P�), by taking p0 = n2,1, . . . , p�−1 = n2,�, and p� = ju(q�), 1o of Proposition 4.48 is satisfied. To verify 2o, 
take Kj = {q|[0,1] | q ∈ Hj+1

− } for j = 0, . . . , �, where the sets Hj+1
− are given by (iii) of (Pl). Then Kj ∈ K by the 

definition of the sets, Hj+1
− . Lastly to prove 3o, choose q� ∈ Dd as given by (i) of (P�). Then by (iv) of (P�), for 

j = 0, . . . , � − 1,

‖q� − g−pj (Kj )‖W 1,2([pj ,pj +1],Rm) = ‖q�(· + pj ) − Kj‖W 1,2([0,1],Rm) =
= distW 1,2([0,1],Rm)(q

�(· + n2,j+1),Hj+1
− ) ≤ r� < r̄

while for j = � again by (iv) and the definition of ju(q�),

‖q� − g−p�(K�)‖W 1,2([p�,p�+1],Rm) = ‖q�(· + p�) − K�‖W 1,2([0,1],Rm) =
= distW 1,2([0,1],Rm)(q

�(· + ju(q�)),H�+1− ) = 0 < r̄.

Thus Proposition 4.48 is proved.

To verify that (4.51) implies property (Pk) for each k ∈ {1, . . . , �}, a few further remarks are required. For any 
i ∈N ∪ {0}, define the sets

Sd,i = {q|[−i,1] | q ∈ Dd}, S̄d,i = Sd,i ∪ {a−, a+},
Ku

0,i (a
σ ) = {q|[−i,1] | q ∈ Dd, q|[0,1] ∈ Ku

0 (aσ )}.
In analogy with earlier results, the set S̄d,i is a compact metric space under the metric of W 1,2([−i, 1], Rm). Moreover 
for q ∈ S̄d , the map ιi(q)|[0,1] = q , ιi : S̄d → S̄d,i is a homeomorphism.

Note that Ku
0,i (a

σ ) = ιi(K
u
0 (aσ )). The shift map g induces the map gi : S̄d,i → S̄d,i defined as gi = ιi ◦ g ◦ ι−1

i . 
Even though they are formally different, for notational brevity, the maps gi will still be denoted by g.

For σ ∈ {−, +}, let Cd,i(aσ ) be the component of S̄d,i containing aσ . For any i ∈ N ∪ {0}, Ku
0,i (a

σ ) can also be 
characterized as

Ku
0,i (a

σ ) = {q|[−i,1] | q ∈Ku(aσ )} (4.52)

and since ιi is a homeomorphism,

Cd,i(aσ ) = ιi (Cd(aσ )). (4.53)

Finally observe that
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{
Ku

0,i (a
σ )is compact and

distW 1,2([−i+1,1],Rm)(K
u
0,i (a

σ ), g(Ku
0,i (a

σ ))) ≥ 3r−.
(4.54)

Now we are ready to show that (4.51) implies property (Pk) for each k ∈ {1, . . . , �}. This will be done via an inductive 
argument. First (P1) will be established. Then assuming (Pk) holds for 1 ≤ k < �, (Pk+1) will be proved.

Proof of (P1):

Let q0 be given by (4.51) and let σ ∈ {+, −} be such that

q0 ∈Dd(aσ , a−) ∪Dd(aσ , a+). (4.55)

Equations (4.51) and (4.53) show ζ 0
i = ιi (ζ

0) ∈ Cd,i (aσ ) for any i ∈N ∪ {0}. Note that

gj (ζ 0
i ) ⊂ Cd,i(aσ ) for any j ∈ Z. (4.56)

Using (4.55) and (�u(aσ )) shows that for any i ∈N ∪ {0},
gju(q0)(ζ 0

i ) ∈ Ku
0,i (a

σ ) and distW 1,2([−i,1],Rm)(g
ju(q0)+1(ζ 0

i ),Ku(aσ )) ≥ 3r−. (4.57)

By the connectedness of Cd,i(aσ ), the continuity of the function

distW 1,2([−i,1],Rm)(·,Ku(aσ )),

and (4.56)–(4.57), for any i ∈N ∪ {0},
there exists q0

i ∈ Cd,i(aσ ) such that distW 1,2([−i,1],Rm)(q
0
i ,Ku(aσ )) = r�. (4.58)

By (4.58), the hypotheses of Proposition 4.35 with vi = q0
i , ξ = aσ and li = i are satisfied. Taking i0, L0, and n0 as 

given by Proposition 4.35, set q1 = vi0 = q0
i0

, L1 = L0, H1+ = Ks(aσ ), H1− = Ku(aσ ), n1,1 = n0 and n2,1 = 0. Then 
properties (i)–(vi) of (P1) follow from (4.58) and Proposition 4.35.

Finally it will be shown that:

If (Pk) holds for some k with 1 ≤ k < �, then (Pk+1) is also satisfied:

Suppose qk satisfies (Pk) for a k ∈ [1, � − 1] ∩N so for some σ ∈ {−, +},
qk ∈ Dd(aσ , a−) ∪Dd(aσ , a+). (4.59)

Then for each j ∈ {1, . . . , k}, there exist integers n1,j , n2,j , Lj , points ξ1, . . . , ξj ∈ {a−, a+} and sets Hj
+, Hj

−, for 
which the properties (ii)–(vi) of (Pk) are satisfied. In particular, by (iv)–(vi), the interval [ju(qk), 1] contains the 
k intervals [n1,j , n2,j ] in each of which qk enters and leaves a small neighborhood of a− or a+. Moreover by the 
definition of ju(qk), the function qk(t) remains in a small neighborhood of a− or a+ for values of t < ju(qk). 
The idea of the proof of (Pk+1) is to find a new function qk+1 near qk with three properties. First, it possesses the 
same qualitative behavior as qk on the interval [ju(qk), 1]. More explicitly, it continues to enter and leave a small 
neighborhood of a− or a+ on precisely the same intervals, [n1,j , n2,j ] for j = 1, . . . , k, as for qk , and otherwise 
satisfies the properties (Pk). Secondly to the left of ju(qk), there is a new interval [n1,k+1, n2,k+1] where qk+1 again 
enters and leaves a small neighborhood of a− or a+ and further satisfies the remaining requirements of (Pk+1). 
Thirdly, as in (4.56)–(4.58), using in particular the connectedness of Cd,i(aσ ), and the continuity of the function, 
fi,k(q) (that will be introduced shortly and plays the role of

distW 1,2([−i,1],Rm)(·,Ku(aσ )),

in the proof of (P1)) shows qk+1 lies in Cd,i(aσ ).
To implement these ideas, intervals [−i, 1] larger than [ju(qk), 1] must be considered. Hence assume i ∈ N and 

i ≥ −ju(qk) for what follows. For such values of i, set

ζ k
i = qk|[−i,1] and note that gj (ζ k

i ) ∈ Cd,i (aσ ) for any j ∈ Z.
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By definition qk(· + ju(qk))|[0,1] ∈ Ku
0 (aσ ) and by (�u(aσ )),

gju(qk)(ζ k
i ) ∈ Ku

0,i (a
σ ) and distW 1,2([−i−ju(qk),1],Rm)(g

ju(qk)+1(ζ k
i ),Ku(aσ )) ≥ 3r̄.

For q ∈ Sd,i , define

fi,k(q) = distW 1,2([−i,ju(qk)+1],Rm)(q, g−ju(qk)(Ku(aσ ))+

+
k∑

j=1

distW 1,2([−Lj ,1],Rm)(q(· + n2,j ),Hj
−)+

+
k∑

j=1

distW 1,2([0,Lj ],Rm)(q(· + n1,j ),Hj
+)+

+
k∑

j=1

‖q − ξj‖W 1,2([n1,j +Lj ,n2,j −Lj ],Rm)

where g−ju(qk)(Ku(aσ )) = {q(· − ju(qk)) | q ∈ Ku(aσ )}. Properties (iv)–(vi) of (Pk) show

fi,k(ζ
k
i ) ≤ 3kr�, fi,k(g(ζ k

i )) ≥ 3r− and ζ k
i , g(ζ k

i ) ∈ Cd,i(aσ ). (4.60)

From the choice of r� in (4.34), for any k ∈ {1, . . . , �}, 3kr� < r̄/4. Therefore as in the argument establishing (P1),

there exists qk
i ∈ Cd,i(aσ ) such that fi,k(q

k
i ) = r̄/2. (4.61)

Consequently for any j ∈ {1, . . . , k}⎧⎪⎪⎨
⎪⎪⎩

distW 1,2([−Lj ,1],Rm)(q
k
i (· + n2,j ),Hj

−) ≤ r̄/2 < r̄,

distW 1,2([0,Lj ],Rm)(q
k
i (· + n1,j ),Hj

+) ≤ r̄/2 < r̄,

‖qk − ξj‖W 1,2([n1,j +Lj ,n2,j −Lj ],Rm) ≤ r̄/2 < r̄.

(4.62)

But Lj ≥ n̄(rl) and n2,j − n1,j ≥ 3Lj for any j ∈ {1, . . . , k} so by Proposition 4.6, (4.62) can be improved to⎧⎪⎪⎨
⎪⎪⎩

distW 1,2([−Lj ,1],Rm)(q
k
i (· + n2,j ),Hj

−) ≤ r�,

distW 1,2([0,Lj ],Rm)(q
k
i (· + n1,j ),Hj

+) ≤ r�,

‖qk
i − ξj‖W 1,2([n1,j +Lj ,n2,j −Lj ],Rm) ≤ r�.

(4.63)

Moreover, by (4.61), (4.63) and since 3kr� < r̄/4, we find that for any i ≥ −ju(qk)

r̄/2 ≥ distW 1,2([−i,ju(qk)+1],Rm)(q
k
i , g−ju(qk)(Ku(aσ ))) ≥ r̄/4

or equivalently that

r̄/2 ≥ distW 1,2([−i−ju(qk),1],Rm)(q
k
i (· + ju(qk)),Ku(aσ )) ≥ r̄/4. (4.64)

By (4.64), for i ≥ −ju(qk), the hypotheses of Proposition 4.35 are satisfied by taking vi = qk
i (· + ju(qk)), ξ = aσ

and li = −i − ju(qk). Then with i0 > −ju(qk), L0 > n̄(r�) and n0 ≤ −3L0 obtained from Proposition 4.35, set

qk+1 = vi0(· − ju(qk)) = qk
i0
, ξ k+1 = aσ , Lk+1 = L0 (4.65)

Hk+1+ =Ks(aσ ), Hk+1− =Ku(aσ ),

n1,k+1 = n0 + ju(qk) and n2,k+1 = ju(qk).

By (4.61), qk+1|[0,1] ∈ Cd(aσ ). By definition, n2,k+1 < n1,k+1 < ju(qk) so from (Pk),

n1,k+1 < n2,k+1 < n1,k < . . . < n2,2 < n1,1 < n2,1 = 0.
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By Proposition 4.35, ju(vi0) < n0 and by (Pk), ju(qk) < n1,k . Hence

ju(qk+1) = ju(vi0(· − ju(qk))) < n0 + ju(qk) = n0 + n1,k

and qk+1 verifies (i)–(iii) of (Pk+1). Moreover (4.63) shows qk+1 = qk
i0

satisfies (iv)–(vi) of (Pk+1) on the intervals 

(n1,j , n2,j + 1) for the same set of values: ξj , Lj , Hj
− and Hj

− for j = 1, . . . , k, as for qk . To complete the proof it, 
remains to verify that properties (iv)–(vi) for qk+1 also hold on the new interval (n1,k+1, n2,k+1 + 1).

By (4.65) and (i) of Proposition 4.35,

distW 1,2([−Lk+1,1],Rm)(q
k+1(· + n2,k+1),Hk+1− ) = distW 1,2([−Lk+1,1],Rm)(vi0,Hk+1− ) ≤ r̄�,

i.e. (iv). Similarly by (4.65) and (ii) of Proposition 4.35,

distW 1,2([0,Lk+1],Rm)(q
k+1(· + n2,k+1),Hk+1+ ) = distW 1,2([0,Lk+1],Rm)(vi0(· + n0),Hk+1+ ) ≤ r̄�,

i.e. (v). Lastly property (vi) is a consequence of

‖qk − ξk+1‖W 1,2([n1,k+1+Lk+1,n2,k+1−Lk+1],Rm) = ‖vi0 − ξk+1‖W 1,2([n0+Lk+1,−Lk+1],Rm) ≤ r̄�.

Thus (Pk+1) follows and Theorem 4.1 is proved.

5. Some degenerate cases

In this section, it will be shown how the methods introduced earlier in §3–4 can be applied to study the behavior 
of Dd when Cd(a−) �= {a−} or Cd(a+) �= {a+}, i.e. when we are in a degenerate situation. It will also be shown that 
condition 3o of §2 is equivalent to a non degeneracy condition used by Cieliebak and Séré in [4].

To be more precise, by 4o–5o or from [7] we know if Cd(a±) �= {a±}, Sd
contains a connected set, F , to which 

a± belongs and F consists of snapshots of heteroclinic or homoclinic solutions of (HS). Given ξ1, ξ2 ∈ {a−, a+}, the 
space Dd(ξ1, ξ2) under the W 1,2(R, Rm) metric will be considered. Define the projection map, i by

i :Dd → Sd, i(q) = q|[0,1] for q ∈Dd

and note that it is continuous and invertible. The map i−1 associates to any element ζ ∈ Sd , the unique element 
i−1(ζ ) = q ∈ Dd such that q|[0,1] = ζ . In general, i−1 is not continuous on Sd although Proposition 3.7 gives us 

some information about it. Therefore when Cd(a±) �= {a±}, the connectedness properties of Sd
given by 4o–5o do not 

provide similar information for Dd . If it were continuous, i−1(F) would be a connected subset of Dd . (Note that i−1

is continuous if e.g. Dd and Sd are replaced by Dd(a−, a+), Sd(a−, a+) and d = c(a−, a+).) Our first result shows 
that in fact Dd does possess some connectivity properties,

Proposition 5.1. If Cd(a−) �= {a−} or Cd(a+) �= {a+}, then there exists a q ∈ Dd whose component is different 
from {q}.

When the potential V is sufficiently smooth, a stronger result obtains:

Proposition 5.2. If V ∈ C2m(R × R
m) and Cd(a−) �= {a−} or Cd(a+) �= {a+}, then there exists points ξ−, ξ+ ∈

{a−, a+} such that Dd(ξ−, ξ+) contains a point U whose component with respect to the W 1,2(R, Rm) metric is not 
compact.

Proof of Proposition 5.1. An indirect argument will be used. For a given q ∈ Dd(ξ1, ξ2), and ξ1, ξ2 ∈ {a−, a+}, let 
Cd

q denote the component of q in Dd(ξ1, ξ2). Suppose that

Cd
q = {q} for each q ∈Dd . (5.3)

This has an important consequence:
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(P1) Suppose that Cd(a−) �= {a−} and (5.3) holds. Let ζ0 ∈ Cd(a−) \ {a−} and ρ > 0. Set

Bρ(ζ0,S
d
) ≡ {ζ ∈ Sd | ‖ζ − ζ0‖W 1,2([0,1],Rm) < ρ}

and

U ≡ (Cd(a−) \ {a−}) ∩ B̄ρ(ζ0,S
d
).

Then the map i−1|Cd (a−) is not continuous on U .

To prove (P1), assume to the contrary that there exists a ζ0 ∈ Cd(a−) \ {a−} and a ρ > 0 for which the map 
i−1|Cd (a−) is continuous on U . Suppose i(z0) = ζ0 for z0 ∈ Dd . Let g ≡ g1 be as in the Introduction. Since ζ0 ∈
Cd(a−) \ {a−},

g(ζ0) ∈ Cd(a−) \ {a−} with ‖ζ0 − g(ζ0)‖W 1,2([0,1],Rm) ≡ rζ0 > 0. (5.4)

Choose r < min{rζ0 , ρ}. By (5.4) and a result from [18], since Cd(a−) is compact and connected, there exists a 
connected set C0 ⊂ U containing ζ0 and a point ζr ∈ Cd(a−) \ {a−} such that ‖ζ0 − ζr‖W 1,2([0,1],Rm) = r . Since 
i−1|Cd (a−) is continuous on U , the set i−1(C0) is connected and so by (5.3), i−1(C0) ⊂ Cd

q0
= {q0}. But this is contrary 

to (5.3) since q0 = i−1(ζ0) ∈ i−1(C0), qr = i−1(ζr ) ∈ i−1(C0) and q �= qr . Thus (P1) follows.
Set

λ0 = inf
q∈Dd

I (q)

and note that, as observed in [7], λ0 > 0. As a consequence of (P1), we have:

(P2) Under the hypotheses of (P1), for any q0 ∈ Dd such that ξ0 = q0|[0,1] ∈ Cd(a−) \ {a−}, there exists a q1 ∈ Dd

such that ξ1 = q1|[0,1] ∈ Cd(a−) \ {a−} and I (q1) ≥ I (q0) + 1
2λ0.

Assuming (P2) for the moment, it will be shown that it leads to a contradiction so Proposition 5.1 holds. Indeed using 
(P2), chose any point q0 ∈ Dd such that ξ0 = q0|[0,1] ∈ Cd(a−) \ {a−}. Iterating this application of (P2) k times, with 
k > 2d/λ0, yields k points q1, . . . , qk ∈ Dd such that ξj = qj |[0,1] ∈ Cd(a−) \ {a−} and I (qj ) ≥ I (qj−1) + 1

2λ0 for 
j = 1, . . . , k. But then

I (qk) ≥
k∑

j=1

1

2
λ0 = kλ0/2 > d

contrary to the fact that qk ∈ Dd .
Now to conclude the proof of Proposition 5.1, (P2) will be derived from (P1). Let q0 ∈ Dd be such that ζ0 =

q0|[0,1] ∈ Cd(a−) \ {a−}. Since q0 ∈ Dd ,

min
ξ∈{a−,a+}

‖q0 − ξ‖W 1,2([0,1],Rm) ≡ r(q0) > 0. (5.5)

Chose R0 > 0 so large that

I[−R0,R0](q0) ≡
R0∫

−R0

1
2 |q0|2 + V (t, q0) dt ≥ I (q0) − 1

8λ0. (5.6)

Due to the continuous dependence on the initial data of the Cauchy problem for (HS), r0 ∈ (0, r(q0)) can be taken so 
small that if q ∈Dd is such that ‖q − q0‖W 1,2([0,1],Rm) < r0, then

I[−R0,R0](q0) − 1
8λ0 ≤ I[−R0,R0](q) ≤ I[−R0,R0](q0) + 1

8λ0. (5.7)

By (5.6) and (5.7),

I (q) ≥ I (q0) − 1λ0 for any q ∈ Dd such that ζ = i(q) ∈ Br0(ζ0,S
d
). (5.8)
4
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Since by (P1), the map i−1|Cd (a−) is not continuous on (Cd(a−) \ {a−}) ∩ Br0/2(ζ0, S
d
), there exists a ζ1 ∈ Cd(a−) \

{a−} with ‖ζ1 − ζ0‖W 1,2([0,1],Rm) ≤ r0/2 and a sequence (ηn) ∈ (Cd(a−) \ {a−}) ∩ Br0/2(ζ0, S
d
) such that

ηn → ζ1 in W 1,2([0,1],Rm) but (5.9)

vn = i−1(ξn) �→ q̄1 = i−1(ζ1) in the W 1,2(R,Rm) metric. (5.10)

Note that vn may belong to a component of �(ξ1, ξ2) different from the one containing q1. Taking a subsequence if 
needed, it can be assumed that for some pair ξ1, ξ2 ∈ {a−, a+},

vn ∈Dd(ξ1, ξ2) for any n ∈N. (5.11)

The sequence (vn) is a (PS) sequence for I since, by (5.11), it consists of elements of Dd(ξ1, ξ2). By Proposition 3.7, 
there exists an l0 ∈ N, ξ̄1 = ξ1, ξ̄2, ...., ξ̄l0+1 = ξ2 ∈ {a−, a+}, Uj ∈ Dd(ξ̄j , ξ̄j+1) for j ∈ {1, . . . , l0}, and sequences 
(t

j
n ) ⊂ Z, j ∈ {1, . . . , l0}, such that t j+1

n − t
j
n → +∞ as n → +∞ having the property that along a subsequence, 

setting t0
n ≡ −∞ and t l0+1

n ≡ +∞, as n → ∞,

‖vn − Uj (· − t
j
n )‖

W 1,2(
1
2 (t

j
n +t

j−1
n ),

1
2 (t

j+1
n +t

j
n )),Rm)

→ 0 for j = 1, . . . , l0 (5.12)

and

I (vn) →
l0∑

j=1

I (Uj ). (5.13)

Since vn = i−1(ηn) and q̄1 ≡ i−1(ζ1), by the definition of i, ηn(x) = vn(x) and ζ1(x) = q̄1(x) for any x ∈ [0, 1]. Thus 
by (5.9), as n → ∞,

‖ηn − ζ1‖W 1,2([0,1],Rm) = ‖vn − q̄1‖W 1,2([0,1],Rm) → 0. (5.14)

We claim that (5.12) and (5.14) imply

(W) for some j0 ∈ {1, . . . , l0}, along a subsequence, t j0
n is constant, t0, so t j0

n = t0 ∈ Z independently of n ∈ N, and 
Uj0 = q̄1(· + t0).

To prove (W), arguing indirectly suppose first that as n → ∞, |t jn | → +∞ for any j ∈ {1, . . . , l0}. Since t j+1
n − t

j
n →

+∞ for any j ∈ {1, . . . , l0 − 1}, there exists a p0 ∈ {0, 1, . . . , l0} for which

t
j
n → −∞ for j ≤ p0 and t

j
n → +∞ for j > p0 (5.15)

as n → ∞. Set U0 ≡ ξ1. Since Uj ∈Dd(ξ̄j , ξ̄j+1) for any j ∈ {1, . . . , l0}, taking j = p0 or j = p0 + 1 shows

‖ξ̄p0+1 − Uj (· − t
j
n )‖W 1,2([0,1],Rm) → 0 (5.16)

as n → ∞. Since r0 ∈ (0, r(q0)) and ‖ζ1 − q0‖W 1,2([0,1],Rm) = ‖ζ1 − ζ0‖W 1,2([0,1],Rm) ≤ r0/2 by (5.5), it follows that

‖ζ1 − ξ̄p0+1‖W 1,2([0,1],Rm) > 0. (5.17)

Writing the interval [0, 1] as the union of the intervals [0, 12(t
p0+1
n + t

p0
n )] and [ 1

2 (t
p0+1
n + t

p0
n ), 1] with the under-

standing that the first or the second of these intervals is the empty set whenever respectively 1
2 (t

p0+1
n + t

p0
n ) ≤ 0 or 

1
2 (t

p0+1
n + t

p0
n ) ≥ 1 leads to the estimates:

‖ζ1 − ξ̄p0+1‖W 1,2([0,1],Rm) ≤ ‖ζ1 − vn‖W 1,2([0,1],Rm) + ‖vn − ξ̄p0+1‖W 1,2([0,1],Rm)

≤ ‖ζ1 − vn‖W 1,2([0,1],Rm)+
+ ‖vn − Up0(· − t

p0
n )‖

W 1,2([0,
1
2 (t

p0+1
n +t

p0
n )],Rm)

+
+ ‖ξ̄p0+1 − Up0(· − t

p0
n )‖

W 1,2([0,
1
(t

p0+1+t
p0 )],Rm)

+

2 n n



P. Montecchiari, P.H. Rabinowitz / Ann. I. H. Poincaré – AN 36 (2019) 627–653 649
+ ‖vn − Up0+1(· − t
p0+1
n )‖

W 1,2([ 1
2 (t

p0+1
n +t

p0
n ),1],Rm)

+ ‖ξ̄p0+1 − Up0+1(· − t
p0+1
n )‖

W 1,2([ 1
2 (t

p0+1
n +t

p0
n ),1],Rm)

.

Applying (5.14), (5.12) and (5.16) yields ‖ζ1 − ξ̄p0‖W 1,2([0,1],Rm) = 0, in contradiction with (5.17).

This argument shows there is a j0 ∈ {1, . . . , l0} such that along a subsequence, t j0
n is bounded and therefore can be 

assumed to be constant on a further subsubsequence. Reindexing this latter subsequence with n ∈N, let tj0
n = t0 ∈ Z

for any n ∈N, and set Uj0 = q̄1(· + t0). Since by (5.12), as n → ∞,

‖vn − Uj0(· − t0)‖W 1,2([0,1],Rm) ≤ ‖vn − Uj0(· − t0)‖
W 1,2(

1
2 (t

j0−1
n +t0),

1
2 (t0+t

j0+1
n )),Rm)

→ 0

and by (5.14),

‖vn − q̄1‖W 1,2([0,1],Rm) → 0

as n → ∞, we conclude that Uj0(x − t0) = q̄1(x) for x ∈ [0, 1]. Since both Uj0(x − t0) and q̄1(x) satisfy (HS), they 
then coincide on R and (W) follows.

Combining (W) and (5.12) shows that as n → ∞, vn → Uj0(· − t0) and vn → q̄1 in W 1,2
loc (R, Rm). By (5.10), 

vn �→ q̄1 with respect to the W 1,2(R, Rm) metric. Hence (5.12) implies that l0 > 1 and so, by the definition of λ0, as 
n → ∞,

I (vn) →
l0∑

j=1

I (Uj ) ≥ I (Uj0) +
∑
j �=j0

I (Uj ) ≥ I (Uj0) + λ0.

Since I (Uj0) = I (q̄1) and q̄1 ∈ Br0/2(ζ0, S
d
), by (5.8), we conclude that

lim
n→+∞ I (vn) ≥ I (q̄1) + λ0 > I (q0) + 3

4λ0

and (P2) follows by choosing q1 = vn for n sufficiently large.

The proof of the above proposition contains the following result which will also be useful in the arguments that 
follow:

Lemma 5.18. Let ξ1, ξ2 ∈ {a−, a+}, vn = i−1(ηn) ∈ Dd(ξ1, ξ2) with ηn ∈ Sd for n ∈ N and q̄1 = i−1(ζ1) ∈ Dd for a 
ζ1 ∈ Sd , such that as n → ∞,

ηn → ζ1 in W 1,2([0,1],Rm) but

vn = i−1(ξn) �→ q̄1 = i−1(ζ1) with respect to the W 1,2(R,Rm) metric.

Then along a subsequence

lim
n→+∞ I (vn) ≥ I (q1) + λ0.

Now we are ready for the

Proof of Proposition 5.2. The role of the smoothness condition V ∈ C2m(R ×R
m) is to show that

(P3) For any pair, ξ1, ξ2 ∈ {a−, a+}, the set of critical values of I on �(ξ1, ξ2) is of measure 0.

Property (P3) is obtained from a version of the Sard–Smale Theorem. Indeed let ξ1, ξ2 ∈ {a−, a+} with ψξ1,ξ2 the 
appropriate normalizing function and J (u) = I (u +ψξ1,ξ2) for u ∈ E = W 1,2(R, Rm). Then J ′(u) is a nonlinear Fred-

holm operator for every u ∈ E. To see this, consider the matrix function α : R → R
m2

such that α(x) = Vq,q(x, a+)

for x > 1 and α(x) = Vq,q(x, a−) for x < −1 and
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α(x) = 1
2 (1 − x)Vq,q(−1, a−) + 1

2 (1 + x)Vq,q(1, a+) for x ∈ [−1,1].
Then α is continuous, bounded, and by (V4) it is positive definite uniformly for x ∈ R. Note that

J ′′(u)h · k =
∫
R

(ḣ k̇ + αhk)dx +
∫
R

(Vq,q(x,u + ψξ1,ξ2) − α)hkdx

≡ L(h)(k) +
∫
R

(Vq,q(x,u + ψξ1,ξ2) − α)hkdx for u,h, k ∈ E.

Since α is bounded and uniformly positive definite, the operator L is a linear homeomorphism between E and 
W−1,2(R, Rm). Moreover the multiplication operator h → (Vq,q(x, u + ψξ1,ξ2) − α)h is compact from W 1,2(R, Rm)

to L2(R, Rm) (since Vq,q(x, u + ψξ1,ξ2) − α → 0 as |x| → +∞). Thus J ′′(u) is a Fredhlom operator. The condition 
V ∈ C2m(R ×R

m) together with (V4) implies that J ∈ C2m(E) and (P3) then follows by the application of a version 
of the Sard–Smale Lemma as given e.g. in [11].

An immediate consequence of (P3) is:

(P4) If ξ1, ξ2 ∈ {a−, a+} and C ⊂ Dd(ξ1, ξ2) is connected with respect to the W 1,2(R, Rm) metric, then I is constant 
on C.

The remainder of the proof of Proposition 5.2 uses an indirect argument. Assume to the contrary that

(CH) For every ξ1, ξ2 ∈ {a−, a+} and q ∈ Dd(ξ1, ξ2), that Cd
q is compact.

For q ∈Dd and k ∈ Z, set τk(q) = q(· + k). Note that by (CH), if ξ1, ξ2 ∈ {a−, a+},
τ1(q) ∈ Dd(ξ1, ξ2) \ Cd

q for any q ∈ Dd(ξ1, ξ2). (5.19)

Indeed the set τ1(Cd
q ) = {τ1(v) | v ∈ Cd

q } is connected since τ1 is continuous with respect to the W 1,2(R, Rm) metric. 
If τ1(q) ∈ Cd

q for some q ∈ Dd , then τ1(Cd
q ) ⊂ Cd

q and similarly τk(q) ∈ Cd
q for any k ∈ N. But the sequence (τk(q))

converges weakly and not strongly to ξ2. Hence Cd
q is not compact, contrary to (CH).

Suppose Cd(a−) �= {a−} and ζ0 ∈ Cd(a−) \ {a−, a+}. Then g(ζ0) ∈ Cd(a−) \ {a−, a+} and there exists ξ1, ξ2 ∈
{a−, a+} such that q0 = i−1(ζ0) ∈ Dd(ξ1, ξ2). By (CH), Cd

q0
is compact in Dd(ξ1, ξ2) and the continuity of i implies 

i(Cd
q0

) is connected and compact in Sd
. Moreover the compactness of Cd

q0
in Dd(ξ1, ξ2) shows

r̄0(q0) = inf
q∈Cd

q0

min
ξ∈{a−,a+}

‖q − ξ‖W 1,2([0,1],Rm) > 0. (5.20)

Indeed, if (5.20) fails, there is a sequence (qn) ⊂ Cd
q0

and a ξ ∈ {a−, a+} such that ‖qn − ξ‖W 1,2([0,1],Rm) → 0. The 
compactness of Cd

q0
in Dd(ξ1, ξ2) gives a q̄ ∈ Cd

q0
such that along a subsequence qn − q̄ → 0 in W 1,2(R, Rm). Then 

‖q̄ − ξ‖W 1,2([0,1],Rm) = 0 so q̄(x) = ξ for x ∈ [0, 1]. Hence, since both q̄ and ξ are solutions of (HS) on R, the 
uniqueness of the solution of the Cauchy problem for (HS) gives q̄(x) = ξ for any x ∈ R. But this is not possible since 
by definition Dd ∩ {a−, a+} = ∅ and (5.20) follows.

By (5.20),

distW 1,2([0,1],Rm)(i(Cd
q0

), {a−, a+}) ≥ r0(q0) (5.21)

and by (5.19), τ1(q0) /∈ Cd
q0

. Moreover g(ζ0) = i(τ1(q0)) ∈ Cd(a−) \ {a−, a+} and since i(Cd
q0

) is compact in Sd
, there 

exists an rζ0 ∈ (0, ̄r0(q0)/2) such that

distW 1,2([0,1],Rm)(g(ζ0), i(Cd
q0

)) ≡ 2rζ0 > 0. (5.22)

Since Cd(a−) is a compact connected set, contains the point g(ζ0) and the compact set i(Cd
q0

), by (5.22) and [18], 
there is a closed subcontinuum, C of Cd(a−) joining g(ζ0) to i(Cd

q ). These observations show:

0
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(P5) Let ζ0 ∈ Cd(a−) \ {a−} and set q0 = i−1(ζ0). Then there exists a point ζ̄0 ∈ i(Cd
q0

) and a closed connected set 
C(ζ0) such that g(ζ0), ζ̄0 ∈ C(ζ0).

Property (P5) implies

(P6) Let ζ0 ∈ Cd(a−) \ {a−, a+} and q0 = i−1(ζ0). If ζ̄0 ∈ i(Cd
q0

) and C(ζ0) are as in (P5), then for any ρ ∈ (0, rζ0/2), 
where rζ0 is given by (5.22), we have

i−1|Cd (a−) is not continuous on C(ζ0) ∩ NSd

ρ (i(Cd
q0

))

where NSd

ρ (i(Cd
q0

)) = {ζ ∈ Sd | distW 1,2([0,1],Rm)(ζ, i(Cd
q0

)) ≤ ρ}.

To prove (P6), note that since ρ ∈ (0, rζ0/2), ‖g(ζ0) − ζ̄0‖W 1,2([0,1],Rm) ≥ 2ρ via (5.22). The set C(ζ0) is closed, 

connected and contains the points g(ζ0) and ζ̄0. We claim that there exists a connected set C0 ⊂ C(ζ0) ∩ NSd

ρ (i(Cd
q0

))

containing ζ̄0 and a point ζρ such that

distW 1,2([0,1],Rm)(ζρ, i(Cd
q0

)) ≥ ρ.

Indeed the set C(ζ0) ∩ NSd

ρ (i(Cd
q0

)) is compact. Consider its subsets

C(ζ0) ∩ ∂NSd

ρ (i(Cd
q0

)) and {ζ̄0}.

They are compact, disjoint and nonempty. If our claim is false, by a separation lemma from [18], NSd

ρ (i(Cd
q0

)) ∩ C(ζ0)

is the union of two disjoint compact sets K1 and K2, the first containing C(ζ0) ∩ ∂NSd

ρ (i(Cd
q0

)) and the second ζ̄0. 
Then

C(ζ0) = (C(ζ0) \ NSd

ρ (i(Cd
q0

)) ∪ K1 ∪ K2

is not connected, a contradiction which proves our claim.
Since distW 1,2([0,1],Rm)(ζρ, i(Cd

q0
)) ≥ ρ,

ζρ /∈ i(Cd
q0

). (5.23)

If i−1|Cd

a− is continuous on C(ζ0) ∩ NSd

ρ (i(Cd
q0

)), then i−1(C0) is connected and contains i−1(ζ̄0). Since ζ̄0 ∈ i(Cd
q0

), 

i−1(ζ̄0) ∈ Cd
q0

and so i−1(C0) ⊂ Cd
q0

. By construction, ζρ ∈ C0 and so we also have

i−1(ζρ) ∈ Cd
q0

. (5.24)

But it is not possible for both (5.23) and (5.24) to hold. Thus (P6) follows.

Now as the final step in the proof of Proposition 5.2, as in the proof of Proposition 5.1, we will show

(P7) For any q0 ∈ Dd such that ξ0 = q0|[0,1] ∈ Cd(a−) \ {a−, a+}, there exists a q1 ∈ Dd such that ξ1 = q1|[0,1] ∈
Cd(a−) \ {a−} and I (q1) ≥ I (q0) + 1

2λ0.

As earlier, (P7) leads to a contradiction and Proposition 5.2 follows.

To verify (P7), choose any q0 ∈Dd such that ζ0 = q0|[0,1] ∈ Cd(a−) \ {a−, a+}. Recall that by (P4) we have I (q) =
I (q0) for any q ∈ Cd(a−). Then an argument similar to the one which establishes (5.8) in the proof of Proposition 5.1
shows that there exists an r̄ > 0 such that

I (q) ≥ I (q0) − 1
4λ0 for any q ∈ Dd such that ζ = i(q) ∈ NSd

ρ (i(Cd
q0

)). (5.25)

Indeed since Cd
q is compact, there exists an R0 > 0 such that for any q̄0 ∈ Cd

q ,

0 0
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I[−R0,R0](q̄0) =
R0∫

−R0

1
2 |q̄0|2 + V (t, q̄0) dt ≥ I (q̄0) − 1

8λ0 = I (q0) − 1
8λ0. (5.26)

By the continuous dependence of solutions of (HS) on the data of the Cauchy problem, and the compactness of Cd
q0

, 
an r̄ > 0 can be chosen so that if q ∈ Dd is such that ‖q − q̄0‖W 1,2([0,1],Rm) < r̄ for a q̄0 ∈ Cd

q0
, then

I[−R0,R0](q̄0) − 1
8λ0 ≤ I[−R0,R0](q) ≤ I[−R0,R0](q̄0) + 1

8λ0. (5.27)

Thus (5.25) follows by (5.26) and (5.27).
If rζ0 is given by (5.22) and ρ ∈ (0, min{rζ0, ̄r}/2), by (P6) the map i−1|Cd (a−) is not continuous on C(ζ0) ∩

NSd

ρ (i(Cd
q0

)). In particular there exists a ζ1 ∈ C(ζ0) with

distW 1,2([0,1],Rm)(ζ1, i(Cd
q0

))) < ρ (5.28)

and a sequence (ηn) ∈ Cd(a−) such that

ηn → ζ1 in W 1,2([0,1],Rm) but

vn = i−1(ηn) �→ q̄1 = i−1(ζ1) in W 1,2(R,Rm).

Taking a subsequence if needed, it can be assumed that for a pair ξ1, ξ2 ∈ {a−, a+},
vn ∈Db(ξ1, ξ2) for any n ∈N. (5.29)

Then the sequences (vn) and (ηn) satisfy the assumptions of Lemma 5.18. Hence along a subsequence

lim
n→+∞ I (vn) ≥ I (q̄1) + λ0. (5.30)

Since by definition q̄1(x) = ζ1(x) and q̄0(x) = ζ̄0(x) for x ∈ [0, 1], by (5.28), ‖q̄1 − q̄0‖W 1,2([0,1],Rm) = ‖ζ1 −
ζ̄0‖W 1,2([0,1],Rm) ≤ ρ ≤ r̄/2. Then by (5.25), I (q̄1) ≥ I (q0) − 1

4λ0 and (P7) follows from (5.30) by choosing q1 = vn

for n sufficiently large.

Remark 5.31. Since the component, K, of U in Proposition 5.2 is not compact, there is a sequence, (Un) ⊂ K which 
does not have a convergent subsequence. Therefore either along a subsequence (a) Un|[0,1] → ξ ∈ {ξ1, ξ2} or (b) 
Un|[0,1] → Q ∈ Sd . Hence along a subsequence, if (a) occurs, Un converges weakly to ξ while if (b), Un converges to 
a nontrivial chain of solutions.

For our final result, suppose as in Proposition 5.2, that V ∈ C2N(R × R
N). Then the following result gives the 

equivalence of 3o of §2 with an analogue in the present context of the assumption made by Cieliebak and Séré in [4].

Proposition 5.32. If V ∈ C2m(R × R
m), then Cd(a−) = {a−} and Cd(a+) = {a+} if and only if for any pair ξ1, ξ2 ∈

{a−, a+}, the components of Dd(ξ1, ξ2) are compact with respect to the W 1,2(R, Rm) metric.

Proof. Let ξ1, ξ2 ∈ {a−, a+} with ψξ1,ξ2 being the appropriate normalizing function and J (u) = I (u + ψξ1,ξ2) for 
u ∈ E = W 1,2(R, Rm). By Proposition 3.32 in [7], we know that if Cd(a−) = {a−} and Cd(a+) = {a+} then there 
exist constants ν > 0, r0 > 0 and a countable family of sets {Aj ⊂ E | j ∈ N} such that

(i) {u ∈ E | ‖J ′(u)‖ ≤ ν, J (u) ≤ d} ⊆ ∪jAj ,
(ii) if i �= j then distE(Ai , Aj ) ≥ r0,

(iii) the Palais–Smale condition, (PS), holds in each set Aj .

By (i) and (ii), any component of Dd(ξ1, ξ2) lies in one of these sets Aj . Since by (iii), the PS condition holds in Aj , 
it follows that any component of Dd(ξ1, ξ2) is compact. This shows that if Cd(a−) = {a−} and Cd(a+) = {a+}, then 
any component of Dd(ξ1, ξ2) is compact with respect to the W 1,2(R, Rm) metric.
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To show that the reverse implication is true, it is sufficient to use Proposition 5.2 and a contradiction argument. 
Indeed if Cd(a−) �= {a−} or Cd(a+) �= {a+}, Proposition 5.2 guarantees that there exists a pair ξ1, ξ2 ∈ {a−, a+} and 
a point U ∈Dd(ξ1, ξ2) whose component is not compact and the proof is complete.
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