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Abstract

For about 25 years, global methods from the calculus of variations have been used to establish the existence of chaotic behavior
for some classes of dynamical systems. Like the analytical approaches that were used earlier, these methods require nondegeneracy
conditions, but of a weaker nature than their predecessors. Our goal here is study such a nondegeneracy condition that has proved
useful in several contexts including some involving partial differential equations, and to show this condition has an equivalent
formulation involving stable and unstable manifolds.
© 2018 L’ Association Publications de I’Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved.
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1. Introduction

The study of chaotic behavior in dynamical systems goes back to Poincaré [12]. Such behavior was studied orig-
inally using qualitative arguments. On the more analytical level, the first results were for small time dependent
perturbations of autonomous systems where tools like the Melnikov function showed there was a transversal in-
tersection of stable and unstable manifolds at a hyperbolic equilibrium point. See e.g. Kirchgraber and Stoffer [10].
More recently, starting from work of Séré, [16], [17], global methods based on tools from the calculus of variations
have been used to obtain chaotic behavior.

In general, global variational methods such as minimization or mountain pass arguments, allow one to find an
initial set of solutions that are homoclinic or heteroclinic to the equilibria. E.g. for the model case that will be studied
in this paper, there are two such solutions together with their integer phase shifts. Then under some nondegeneracy
conditions on this initial set of solutions that are of a milder nature than those that are employed in perturbation
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settings, the existence of infinitely many heteroclinic and/or homoclinic solutions, as well as chaotic dynamics can
then be established for the system. See e.g. Coti Zelati and Rabinowitz [5], Rabinowitz [14], [15], Montecchiari,
Nolasco and Terracini [8], [9], Bessi [1], Buffoni and Séré [3], and Cieliebak and Séré [4]. In particular for one
dimensional Lagrangian equations these conditions allow one to obtain the existence of chaotic dynamics whenever
the stable and unstable manifolds do not coincide. See [1] where this has been done for a perturbation of a nonlinear
pendulum equation or [9] for the Duffing equation. A generalization of this property for a class of C° Hamiltonian
systems was carried out by Cieliebak and Séré in [4] where the chaotic behavior was obtained provided that the set
of homoclinic solutions has compact connected components with respect to the uniform metric on R. A different but
related connectedness condition on the set of minimal homoclinic solutions was used in Rabinowitz [14] (see also
[13]) for singular Lagrangian systems on R.

Some recent papers generalize the nondegeneracy condition introduced in [13], [14]. They employ assumptions
that have also proved useful in several contexts including some involving partial differential equations such as in
Montecchiari and Rabinowitz [6], [7] and Byeon, Montecchiari and Rabinowitz [2]. Our goal in this paper is to fur-
ther study such nondegeneracy conditions and establish their equivalence to other such conditions. For definiteness,
the condition of [13], [6], as generalized in [7], will be treated in the context of a Hamiltonian system for a double
well potential having equilibrium points at a—, a™ € R™. We will show that this condition has an equivalent formu-
lation involving the stable and unstable manifolds associated with these two points. We then show that, when the
potential is smooth, that condition is equivalent to an analogue of the assumption made in Cieliebak and Séré [4], see
Proposition 5.32.

The paper is organized as follows. In §2, we recall some earlier results from e.g. [6], [2] and [7] on the existence of a
large family of local minimizers of our Hamiltonian system, (HS), as well as an infinitude of mountain pass solutions.
These results require nondegeneracy conditions. Let YW*(a“) denote the unstable manifold of (HS), at o € {—, +}, i.e.
the global continuation of the local unstable manifold as given by the implicit function theorem. Likewise let W*(a?)
denote the corresponding stable manifold. In §4, the equivalence of the above mentioned nondegeneracy conditions
to ones involving W (a) and W?*(a“) will be shown. Some technical results required for this purpose will be given
in §3. Lastly some more degenerate situations will be studied in §5.

2. Some preliminaries

We consider the Hamiltonian system:

—§+ Vy(t,9)=0, teR, geR" (HS)

where

(V1) VeC'R x R™,R) and is 1-periodic in 7 € R.
(V5) There are points a~ # at € R™ such that V(t, g) > V(t,a*) =0 for any g € R™ \ {a*}.
(V3) There is a constant, Vg > 0, such that liminf),| 100 V (2, q) > V.

By (V3), (HS) is a double well potential system. It is not difficult to prove that there are heteroclinic solutions of (HS)
from a~ to a™ as well as from a™ to a~, the former being obtained as minima of

1(q>=/L(q>drs/<%|cﬂ2+V<r,q>)dr
R R

defined on

T ,a*)=1{g e WLAR,R™) | I(g) < o0 and ||g — ai||L2([j,j+1]) — 00, j — Fo0}

loc

and the latter is obtained in a similar fashion. See e.g. [13]. Define

= inf 1),

cla ,a
gel(a—,at)

and set
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M@ ,a")={QeT(a ,a")|1(q)=cla,a™)).
Then if g € M(a™,a™), sois g(- — k) for any k € Z. Interchanging the roles of — and + gives us I'(a™,a™), c(a™,
a”),and M(at,a").
In addition to the minimizers of I in I'(@~,a™) and I'(a™,a™), I possesses a large family of local minimizers
provided that M(a~, a™) and M(a™, a™) satisfy mild nondegeneracy conditions. To formulate them, set

S ,a™)={ulp,1lu e M@ ,a")}.
Thus the members of S(a—,a*) are unit time snapshots of heteroclinic solutions of (HS) that minimize I
on I'(a~,a™). Define C,-(a~,a™’) to be the component of S(a~,a™) in WH2([0, 1], R™) containing a~ and

C,+(a”,a™) to be the component of S‘(a_, a™) containing a™. Then from e.g. [15] or [2], we have a sharp alter-
native for these sets: Either

1° C,-(@a,at)={a"}and Cyr(a—,a*) ={a™}, or
2° Cp-(a™,at)=Cy+(a",a™).

Using the natural notation, a similar alternative holds for C,+(a*,a™) and C,-(a™, a™). Together the pair of condi-
tions in 1° represent the nondegeneracy conditions required for chaotic behavior here. They allow us to “variationally
glue” the members of M(a~,a™) and M(a™,a™) to obtain, for any k € N, infinitely many solutions of (HS) that
undergo k transitions between a~ and a™ and that are local minima of 1. See [2] for details.

To continue, assume

(Va) V € C3(R x R™, R) and for each ¢ € [0, 1], the matrix
9%V
V,o(t,at) = (———(t,a*
qq( a”) (8%36]}'( a))

is positive definite.

Condition (V4) together with some further nondegeneracy conditions on the set of solutions of (HS) leads to the
existence of solutions of mountain pass type. To be more precise, let d > 0 and let D? denote the set of heteroclinic
and homoclinic solutions, g of (HS) with 7 (g) < d and define

S = {uljo,1) | u € D).
Note that S¢ differs from S(a~, a™) in that the former set includes snapshots of all heteroclinics or homoclinics, g,
of (HS) with I(g) < d. By Proposition 3.29 of [7], S? =S¢ U {a~} U {a™} is a compact subset of W1-2([0, 1], R™).
As above, let C? (ai) denote the component of gd to which a® belongs and for &1, & € {a~,a™}, set

S4 (&1, &) = {uljo,1) lu e D! NT (&, &)

Then we have a stronger variant of our earlier alternatives: One of the following mutually exclusive possibilities holds:

30 C(a*) = {a*},
40 Cd(a*) =Cd(aT),
59 C4(a%) # {a*} and C? (a™) C S%(a*, a™) U {a™).

Assuming the new nondegeneracy conditions 3° for all large d leads to the existence of an infinitude of mountain
pass solutions of (HS) that are distinct from the local minima obtained above.

For both the local minimum and the mountain pass settings, an important consequence of assuming that alternatives
1° or 3° hold is that they imply the corresponding sets of solution snapshots can be split into two pieces. More precisely
for gd, there exist closed nonempty disjoint subsets, K, K, of gd such that K" UK, = gd. Moreover a™ € K|
and for any z € K|\ {a™}, there exists a p € Z such that g”(z) € K, where for j € Z,

¢ 8184, gl(glo) =qC+ Dlo.-
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Similarly there exist closed nonempty disjoint subsets, K", K2+ of 3‘1 such that K 1+ U K; = gd, at ek f and for
any z € K| \ {a™}, there exists a p € Z such that g”(z) € K.

With the aid of these decompositions of 89, classes of functions that shadow the 4 sets, Kl.lL, i=1,2, in an
appropriate fashion are introduced and minimization or minimax arguments then lead to critical points of / and
corresponding solutions of (HS). For the (local) minimization setting, the classes are distinguished by the number of
transitions between being near S(a~, a™) and near S(a™, a™~) and by the amount of time it takes for each transition.
Minimizing I over these classes then produces the local minima of I that were mentioned earlier, see e.g. [2]. The
presence of these local minima causes the geometric structure of the Mountain Pass Theorem to occur at higher and
higher level sets of the functional and alternative 3° above is used to gain the compactness needed to obtain related
mountain pass type solutions. See [7].

Our goal in this paper is to show that this splitting or separation property, which is a consequence of 3 is in fact
equivalent to 3°. In §3, a more precise formulation of the separation property and its consequences will be made. Then
in §4, the equivalence theorem will be stated and proved.

3. The separation property

We will show that 3° is equivalent to a separation property that in turn is related to the stable and unstable
manifolds of (HS) at the equilibrium points, ¢~ and a™*. For o € {—, +}, we are interested in certain subsets of
W (a%), W*(a®), that lie in D¢, possess an invariance property under integer phase shifts, and also possess a uni-
formity property. To be more explicit, for o, T € {—, +}, let D?(a”, a*) denote the class of solutions of (HS) that are
heteroclinic from a? to a® (or homoclinic if 0 = t) and have I (¢) < d. Assume for each such o,

(®"(a®)) There exists a compact set K“(a’) C 89 and an r~ > 0 such that
i) K“@a°)N{a~,at})={a’} and
ii) Foreach U € D¥(a”,a~)UDa’,a™"), there is a unique j*(U) € Z such that U (- + j*(U) +i)lj0,1] €
K"(a?) for any i <0 and

||U( + ]M(U) + 1) — Ku(ad)uwll([o’]]’Rm) Z 3}’7

A word about notation. For a set, A, the notation [[u(-) — Ally1.2(0,17,rm) as appears in the above definition of
(" (a”)) will be used repeatedly, but also sometimes we write disty 12 17, gm) (#(-), A) which has the same meaning.

Each function, U € K%(a”) is uniquely determined by its initial conditions, U (0), U’(0). With this identification,
the compact set, K“(a?), can be viewed as a subset of the unstable manifold of (HS) at a® and as such consists of
unit time snapshots of heteroclinic and homoclinic solutions emanating from a° having I < d and normalized via ii).
Of course we could work directly in R*” with sets of such initial conditions and avoid dealing with our sets involving
snapshots of solutions, but such an approach would not be applicable to the existence of heteroclinic and homoclinic
solutions of nonlinear elliptic partial differential equations such as were treated in [6]. We believe the approach taken
here will readily generalize to such settings. The set K*(a“) is not uniquely determined by the above assumption.
For example, for any k € Z, the set g¥(K"(a”)) also satisfies the assumption for a different value of »~. Later in this
section a choice will be made from this class of admissible sets, K“(a?). First some consequences of (®*(a?)) will
be studied.

Consider the set

Ki@)={UC+j“(UNo1 | UeD a ,a )uDa",ah)}.
Equivalent definitions of K (a™) are:
Ki(a™)={Uljo.111U e DY (a,a”)UD%a",a™), j*(U)=0}
Ky@)={UeK"(@a )\ {a"}|j"(U)=0}
Thus Kj(a™) C K*(a™) and

Lemma 3.1. Kj(a™) is compact.
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Proof. If (u,) C Kj(a™), it has a subsequence (still denoted (u,)) that converges to a point ug € K"(a™).
Then g/ (u,) — g/ (uo) for any j < 0. Since K“(a~) is compact and g/ (u,) € K“(a™), by (®“(a7)), g/ (ug) €
K"(a™) for any j < 0. Moreover, by the definition of Kj(a™) and (ii) of (®“(a™)), it follows that ||g(u,) —
K" (@ ) lwr2qo,13,rmy = 3r™ so [[g(uo) — K" (a™)llw120,17,rm) = 3r . Thus j*(ug) =0 and ug € Kg(a™).

Now define
K“(a™) ={U e D(a",a)UD%a",a™) | U1y € K{ (@)}

Thus identifying U € K*(a™) with its initial conditions, KX“(a~) can be considered as the subset of the unstable
manifold of (HS) at a~ consisting of heteroclinic and homoclinic solutions emanating from a~ having / < d and
normalized by their behavior on [0, 1]. It has a compactness property:

Proposition 3.2. K“(a™) is compact with respect to the W-2((—o0, 2], R™) metric.

The proof of Proposition 3.2 requires some preparation. It was shown in [7] that under conditions (V})—(V4),
{q € Wll{}’f(R, R™) | I(g) < oo} is a (C?) Hilbert manifold, £, modeled on E = W'2(R, R™). Choosing any | €

M(a~,a") and Y, € M(at,a™), € consists of four components: a* + E, 1+ E, Y+ E.Forqg e '(a~,a™) and
u=q—yY €k,set

Jw) =1 +u) =1(q). (3.3)

Then J € C 2(E, R). The functional, J, is defined similarly on the other components of £. From [7], we have for
&_#E&, ef{a",a"} and ¥ the associated choice of Vi, Y,

c(E_ &) = inf I(W +u) = inf J(u) > 0. (3.4)
uck uek
Again from [7], for§_ =&, € {a™,a™},
c(E_ E0) = inf [(E_ +u) = inf J(u) > 0. 3.5)
uck uck

Therefore by (3.4)—(3.5),
co= min }c(él, &) >0. (3.6)

&1,6€f{a™at

To continue, a result about Palais—Smale (PS) sequences for J is needed. By Proposition 3.10 of [13] or Proposi-
tion 3.27 in [7] — see also [5] for similar arguments — (PS) sequences of J on E =T"(a™, at) —y are characterized by

Proposition 3.7. Suppose that (q,) C T'(a™,a™) where g, = Y1 + u, with u, € E. If further J(u,) — b > co and
J' (uy) = 0 as n — oo, then there exists

o aky=ko(b) €N,

e anly e NN[1, ko],

® (1,82, s é‘lo—H € {a’,a+} with f1=a, {lo+l =Cl+,

o Uj €D, i) for jell,.... l),

° (t,'{) cZ, jell,...,lp}, suchthatt,{+l —t;{ — 400 asn — +00

having the property that along a subsequence of n — 0o,

gn — Ui (- — ) 2 =0
Wl,2((7oo‘ I,H“%),Rm)

lgn = U; ¢ =)l R R -0 j=2,...l—1
W2 (1 ==, fi+ =), R™)
l
Ign = Uty (- =101 oo~
WL2((t) = #—5t—. +00).R™)

and
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lo
J(un) =1(gqn) = Y 1(U)).

j=1

Remark 3.8. Let £, &, be any pairin {a~, a™} and let ['(£1, &) An analogous result holds for (PS) sequences of J on
['(£1, &). The statement changes by replacing a~ by &1, a™t by &, and v/ by the appropriate member of {ai, v, Yt

Now the proof of Proposition 3.2 can be given.

Proof of Proposition 3.2. Let (¢;) C K“(a™). By (®“(a7)) and the definition of K*(a™), lg; —
K@ )llwi2qu2p,mm) = 3r— forany j € N. Since a™ € K" (a™),

”qj - a7||Wl,2([1’2]’Rm) > 3r_ for anyj eN. (39)

Now by Proposition 3.7, with &> € {a~,a™}, Uy € D4(a™, ¢») and sequences (t}), (t?) C Z as given by that result,
along a subsequence, '

lg; — Ui (- — 1)) 2 —0, asj— o0. (3.10)
W12((=o0, 1]+-L55),Rm)

Three cases must be considered: either along a further subsequence, as j — oo, (i) tjl. — 00; (i) t} — —00; or (iii) t}

is bounded. If (i) occurs, |U; (- — t}) —a |lwi2qi2,rmy = 0and so [lgj —a™ lly12 25,rmy — O, contrary to (3.9).

Thus (i) is not possible. Next suppose that (ii) occurs. By (3.10), for any 7' > 0, as j — oo along the subsequence,
lg; (- + 1} + j"WUD) = Ur ¢ + W) llw12(( oo, 71.8m) — O- 3.11)

Since t} — —00, gq;(- + t} + j*(Ui)ln2 € K*(a™) for large j, while by definition [|[Ui(- + j*(U1)) —
K ”(a_)||W1,z([1,2]’Rm) > 3r_. This contradicts (3.11) showing that (ii) is also impossible. Hence (iii) occurs and
(t }) is a bounded sequence. Hence along a subsequence it is a constant, k. Then defining go = U; (- — «), by (3.10)
we obtain in particular that along this subsequence

lg; —qollw12((—o0,2),rRmy = 0, as j — oo. 3.12)

Since g (- +1i) € K"(a™) forany i <0and |lg;(-+ 1) — K"“(a7)llw12(0,1,rm) = 3r—, the compactness of K"(a™)
and (3.12) show go(- +i) € K"(a™) forany i <0 and ||go(- + 1) — K" (@) llw1.2¢0,1},m) = 37— Thus j*(g0) =0,
qo € K" (a™) and Proposition 3.2 follows from (3.12).

Proposition 3.2 implies

sup ||61||w1v2((_OO,T),Rm) -0, T—> —0
qgeku(a~)

which immediately yields:
Corollary 3.13. For any € > 0, there exists a je > 0 such that

g™/ ) —a~ llwr2qommy <€ VJj=jeandu € Kf(a™).
A further consequence of Proposition 3.2 is
Proposition 3.14. For any ¢ € Z with € > 0, the set {a~} U (szgg_j (Ky(a™))) is compact.

Proof. If £ > 0 and (u,,) C szgg_j (Kgy(a™)), thereisav, € Kj(a™) and j, € NN[£, +-00) such thatu, = g (vy).
If along a subsequence, j, — 00 as n — 0o, by Corollary 3.13, u,, - a~ as n — oo. On the other hand, if (j,)
is bounded, along a subsequence it is constant with say j, = jo > £. Since Kj(a™) is compact, along a further
subsequence we have v, — vp € Kj(a™). The map g is a homeomorphism so u, = g 0 (v,) = g7/ (vp). This
shows that (u,,) always has an accumulation pointin {a™} U (Uj>, g/ (K{(a™))) and the Proposition follows.
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Another property of the phase shifts of Kj(a™) is:
Proposition 3.15. Forany i, j € Z,i # j >0, g~/ (K (a™)) is compact and g_i(K’(f (@a))n g_j(K(’)‘ (@) =40.

Proof. The map g is a homeomorphism on S¢ and K (a™) is compact so g/ (K (a™)) is compact for any j € Z.
The second statement reduces to showing that

g P(Ky(a ) NKy(a—)=9forany p e N.
Otherwise there exists a p € N and u,v € Kj(a™) such that g77(u) = v. By definition g(v) ¢ K“(a™) while
g(g7P(u)) € K"(a™) since —p + 1 <0, a contradiction.

Next let £ € N and set
Ki (@) =1{a"}U (Ujzg, 87 (K (@))).
As an immediate consequence of Proposition 3.14 and Proposition 3.15, we have:

Corollary 3.16. Kgo (a™) is compact and satisfies (i) and (ii) of (®"(a™)) (with a different choice of r~) for any
ﬁo > 0.

By (V4) — see e.g. [7] — there exists an rg € (0, |a™ — a~|/10) such that if &;,& € {a_,a,} and g € Dd(€1,$2),
then

sup llg — Sllwr2q;, j+11,Rm) = 210 for ¢ e{a_, a4} (3.17)
JjeZ

Due to Corollary 3.13, £y can be chosen so that

sup sup ||g7] (Lt) —a7||W1,2([0’1]’Rm) <ro
JZloueky(a™)

or, equivalently,

sup  [lu —a~ llw1r2(o,13,rRm) < To-
MGKZ‘O(a*)

We make this choice of £y. Since (®*(a?)) is still meaningful if the constant »~ made smaller, it can be assumed that
3r- <ry. (3.18)
These observations allow us to eliminate the non-uniqueness associated with K“(a~) by replacing it by K 2’0 (a>)

or equivalently replacing K (a™) by g‘lO(K(’)‘ (a™)). Thus abusing notation slightly, we can write:
K"(a7)={a"}U(Ujz08 /(K{(@))) (3.19)

and satisfies:

sup ”u —a ||W1,2([0!1]’]Rm) <rp. (320)
ueK"(a™)

Replacing u by s in (&% (a?)), we also assume:
(®*(a’)) There exists a compact set K*(a) C 89 and r~ > 0 such that

i) K5@°)N{a",at}=1{a’} and
ii) Foreach U € DY (a®,a™)UD¥(a’,a™t), U(- +i)|j0.1] € K*(a™) for any i >0 and

”U( - 1) - Ks(a+)||wl,2([0,1],Rm) >3r.
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Replacing unstable by stable, the sets, K*(a%), have a geometric interpretation as subsets of solution segments in
WS (a*). Applying similar reasoning to the sets K“(a™), K*(a¥) to that just employed above, we find compact sets

K!(a™), K(a*) in S for which

K“(a") ={a"}U(Ujz0g 7/ (K{(@a"))), K’ (@) ={a"}U (U208’ (Kj(@aM))), (3.21)
and

sup  [ju — a+||wlv2([0,1],Rm) =ro, (3.22)
ueK'(at)

sup lu —a " llw12¢o,17,rRm) <10, (3.23)
uekKs(a™)

sup [lu — a+||W112([0,1],Rm) =ro. (3.24)
ucks(at)

Since 10rg < |la~ —a™|| w1.2([0,1],Rm)> DY (3.20), (3.22)—(3.24) and the triangle inequality:
disty 120,11, mm) (K“(@®) U K* (a®), K" (aT) U K*(@™)) = 8r. (3.25)
Define
K" (a®) = (U € D/ (a*, aT) UD! (a*, a®) | Uljo.1) € Ki (a®))},
K3 (a®) = {U e D4 (aT,a®) UD! (aF, a®) | Ulpo.1y € K@)},

so as earlier, K* (a®) can be interpreted as the subset of the stable manifold of (H S) at a™ consisting of heteroclinic
and homoclinic solutions emanating from a™ having I < d and normalized by their behavior on [0, 1]. Proposition 3.2
leads to:

Proposition 3.26. [C* (a™) is compact with respect to the W-2((—o0, 2], R™) metric and K*(a%) is compact with
respect to the Wh2([—1, +00), R™) metric.

Next observe that the argument described in the proof of Proposition 3.15 can be adapted to show that there exists

r € (0, r7) such that

disty 120, 11.mm) (K§ (@®), K*(a™) \ K{j (@®)) = 3F (3.27)
Similarly it can be assumed that 7 is so small that

disty1.2¢0,1).5m (K3 (@®), K* (@) \ K§(@®)) > 37. (3.28)
The inequalities (3.18), (3.25) imply

disty 120, 17.mm) (K3 (@) U K (a®), K*(@¥) U K" (aF)) > 37. (3.29)
Assume for the moment that

K@ )NK @ )=K{@HNK'@h) = (3.30)

=Kj@ )NK“@ )=Ki@aHNK"@")=9.

All the sets involved in (3.30) are compact. Therefore by taking 7 smaller if necessary, by (3.30) it can be assumed
that

diStWI,Z([O’l])Rm)(K(I)l(a_), Ks(a_))» diStW1~2([(),1],R’7’)(K3(a_)’ Ku((l_)) > 3r (331)
distwl,z([oy1],Rm)(K0“(a+), K‘Y(a+)), distwl.Z([O’1]’Rm)(K6(a+), K“(a+)) > 3r (332)
To verify (3.30), consider the representative case of K;(a™) N K¥(a™) = @. Arguing indirectly, assume that there
exists £ € K{(a™) N K*(a™). By definition g/ (§) € K"(a™) for all j <0 and g/(§) € K*(a™) for all j > 0. Then

(3.20) and (3.23) show ||g/ (§) —a~ lw1.2(0,17,rm) < ro for any j € Z. But this is contrary to (3.17). Hence Ky@)n
K?(a™) = 0. The other equalities in (3.30) can be obtained in an analogous way and (3.30) is proved.
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Due to the assumptions (®“(a?)) and (®*(a?)) for o € {—, 4} and the choice of 7, it follows that

supdisty 1.2 41,8 (@, {a”,a™}) = 37 forany g € D7 (3.33)
ieZ

4. The equivalence result
Our main result can now be stated:
Theorem 4.1. C%(a*) = {a™} if and only if for o € {+, =}, conditions (®*(a®)) and (®*(a®)) hold.

Before proving Theorem 4.1, Proposition 3.7 will be used to obtain some further technical properties of the sets
K" (a*) and K*(a®).
Proposition 4.2. Assume that (" (a®)) holds for a o € {—, +} and let (¢;) C D¢, (t;) C N, be such that
ti — +o0o and disty1.2_, 11.rm)(qi, K*(a%)) <7 asi — oo.
Then there exists a U € K" (a®) such that, along a subsequence,

lgi — Ullwi2q—7,13.rm) —> 0 asi — +oo forany T > 0.

Proof. Since the proofs are the same for either choice of o, suppose that o = —. It can be assumed that

disty 12—, 1).rm)(qi, K" (@7)) <7 forany i e N. 4.3)
Since the functions, g;, are solutions of (HS) with I(g;) < d, the sequence (g;) is bounded in Wllo’c2 [2]. Therefore
(gi) converges in Wllg’c2 along a subsequence to a function U € D¢ and by (4.3),

disty1.2((— oo 11.8m) (U, K" (@7)) < 7. (4.4)
|“73_0a+|. Therefore (4.4) and arguments from [2] or [7] imply U € D%, at) U

D4(a~,a"). Thus the Proposition follows once we show that U € K“(a™) or equivalently that j*(U) = 0. Argu-
ing indirectly, suppose first that j*(U) < 0. Then j*(U) 4+ 1 < 0. By (®*(a7)),

diStW1~2([0,l],Rm)(U(' + ]M(U) + 1), K" (af)) > 3r_
and so, since {g(- —i)|[j0,111 ¢ € K*(a7)} = g_i(Kg (a™)) for any i > 0, by (3.19),

Recall that ¥ < r~ < %0 <

distyy1.2¢(— oo 11,8 (U. K*(a7)) = disty 12 juqy 1, ju(wy2y.zm (Us K (@)
= disty 120,17,z (U (- + j*(U) + 1), gV OV (K @™)))
> disty 120,11, rm) (U +j"(U) + 1), K" (7)) = 3r
which is in contradiction with (4.4). Next if j*(U) > 0, then Uljo,1j € g~/ (V) (K¢ (a™)) so by (3.27),
37 < disty1.2(g0,11.mm) (U, K§ (@) = disty1.2(0,17.5m) (U, K" (@7))
again in contradiction with (4.4).

Then j“(U) = 0 and the proof is complete.
There is a similar result for X*(a%):

Proposition 4.5. Assume that (" (a®)) holds for a o € {—, +} and let (¢;) C D¢, (t;) C N be such that
ti — +o0 and disty1.2(0.4,1.&my (i, K*(a”)) <7 asi — oo.
Then there exists a U € K*(a®) such that, along a subsequence,

lgi — Ullwi2qo,ry.rmy = 0 as i — +o0 forany T > 0.



636 P. Montecchiari, P.H. Rabinowitz / Ann. 1. H. Poincaré — AN 36 (2019) 627-653

The proof is similar to that of Proposition 4.2 and will be omitted.

The last two results and Proposition 3.7 are crucial for the proof of the next rather technical result which is of
interest for small  and will play a role in the proof of Theorem 4.1. Geometrically it roughly says if a heteroclinic or
homoclinic solution of (HS) is near the corresponding part of D? in a certain sense depending on 7, in fact it is close
in a stronger sense depending on r.

Proposition 4.6. Suppose that (O*(a®))—~(P*(a’)) hold for o € {4+, —}. Given any r > 0, there exists an n(r) € N
such that whenever L € [ii(r), +00) NN, ¢ € D%, o € {+, =} and n1, ny € 7 satisfy the conditions

(h1) na —ny > 3L,

(ha) disty12_p 13rm(q( +n2), K*(@”)) <7,

(h3) disty120, ). rm) (g (- +11), K* (@) <F,

(ha) SUPiein +L.ny—L—11.Rm) 14 = a%llwr2qigryrmy <7

then in fact

(1) distwl,Z([_L’l]’Rm)(q(' + nZ)» ’Cu(aa)) <r,
(2) diStWI,Z([O’L]’Rm)(q(' + nl)s s (aO)) <r,
(3) llg —a® llwr2quy+L.ny—L1Rmy =T

Proof. Arguing indirectly, suppose there exists an r > 0 such that for any i € N, there is an L; € N such that L; > i,
ag; € D? and numbers ny i, ny,; € Z that satisfy (h1)—(h4) but violate at least one of the conditions

(1) distyr2q_r, 11.8m) (@i (- +n2,:),K* @) <r,
(2i) distyi20,1,1.8m)(qi (- +n1,i), K (a”)) <r,
(Gi) llg —a® lwi2(ny ;4 Lisna— L1 Ry =T

Since K*(a®) is compact with respect to the W12((—oo, 1], R”) metric, there exists Ty € N such that

lSll]P ||q —a° ”Wl*z([—l,—l—l-l],Rm) < r for any g € KcH (aa). (47)
=Ty

Due to the analogous property of K*(a?), it can also be assumed that

lsu%) lg —a® w2z i41).m) <7 forany g € K*(a”). 4.8)
=1To

We claim that

sup ||q1 - a(T ||W1’2([l,l+1],Rm) < 2r for any i > T() (49)
nii+To<l<nz;i—To

Indeed first suppose that no; — L; < [ < ny; — To. By (h7) and the compactness of K“(a®) with respect to the
W12((—o0, 1], R™) metric, there is a ¢; € K*(a®) such that
disty12_p, 11.8m) (i ¢ +12.), K" (@) = g - +n2.0) — @il w21, 11.zm) (4.10)
=1gi = @i =n2.)wi2(ny;—Liny ;411 Rm) ST
Next note that by (4.7), for I > Ty,

lpi(- —n2;) — a’ ||W1-2([n21,v—l,nzv;—l+1],Rm) =g —a” ||WI-2([_1,_1+1],Rm) <r. 4.11)

Thus (4.10)—=(4.11) and the triangle inequality show (4.9) for the restricted range of ny; — L; <1 < np; — To.
A similar argument using (73) and (4.8) then gives (4.9) for ny; + To <! <ny; + L;. Lastly (h4) then yields (4.9)
for the remaining region, ny ; + L; <l <np; — L;.
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By (h2), (h3) and Propositions 4.2, 4.5, there exist functions U_ € K*(a®) and U, € K*(a”) such that, along a
subsequence, still denoted by (g;), we have

”ql - U—( - ”Z,i)”W1~2([n2,,-7T,n2V,~+1],R'") —0asi — —+00. (412)
lgi = Ut —n1o)llwi2qny ;ny 417,Rm) = 0as i — +o0 (4.13)

for any T > 0. Proposition 3.7 implies ¢; is asymptotic to a chain of functions consisting of translates of members
of D?. By (4.12) and (4.13), the chain contains at least the two functions U_ and U,. We will show that U, is the
left neighbor of U_ in the chain. To be more precise, by Proposition 3.7, there is a further subsequence of (g;) that
we continue to denote by (¢;), an lp € N, &1, &2, ..., {jp+1 € {a™, at) with ¢ = &, Sor1 =&, Uj € D(&j, ¢ j41) for

je{l,...,1lp}, and sequences (tl.j) C Z, such that tl.jJrl — tl.j — 400 as i — oo, the above having the property that
. 0__ lo+1 _
(setting 1 = —oo and 1;""" = +00),
llgi = U =)l ) —Oforj=1,....1. (4.14)
WI,Z((—2 , —2 ),R’”)

By (h1),n2,; —n1; — 0o as i — 00, so comparing (4.12) to (4.14) shows there is p € [2,lp] N N such that, along
the subsequence, tl.p — np,; must be bounded. Thus taking a further subsequence if necessary, it can be assumed that
tl.p —np,;isaconstantand U, =U_(- —ny; + tip). Now (4.14) shows as i — o0,

lgi —U—C=m2dl 1y —0. 4.15)
WL2((+—5—"=, n2,i+1),R™)

Since U_ € K*(a?), it follows that ¢, = a“. Setting U = U,_1, then U € D4, a%) with & € {a—,a™}. By (4.14)
again, forany 7 > 0

lgi — UG =Yl =0 (4.16)

—1 P
. 77 ]
W1,2((Ii1’ I—T, %)’R»z)

as i — oo. Since for large i,

1

||CI1 - a(T - (U( - t,'p_ ) - ao) - (U—( - n2,i) - aa)”W],z«t.P*l_T’ nyi+1),RM) S

<llgi—a® — U —t""Y=a%) = (U_(- —na;) —a”)| +

—1 P
_ ! 4]
WL2(f ! =T, ) Rm)

)=a®) = (U-C—m)=a)l 1, <
WI2((L——L n i+1).R™)

—1
+llgi —a” — (U —1]

-1

<lgi = W=t T
‘,1/1,2((11.1’*17Ty %)’Rm)

+ (U= —n2) —a)l p=1,p +

— t: t;
W2l =T, ) R

- zl.p71+ti” +
WI2((ge 1), R7)

-1
FNUC =17 =a)ll Pl p ,
i 77 4]
WL2((—L i i+1).R™)

+llgi —U_(-—n2;)ll

by (4.16) and (4.15), the first and third terms on the right above go to 0 as i — oo. The remaining two terms are
essentially tails of convergent integrals and therefore also go to 0 as i — o0o. Thus we have shown for any 7 > 0, as
i — 00,

lgi —a® — (U=t —a%) = (U-(- —n2y) 0. (4.17)

(e
) yrap1 oy 1y oy

Next it will be shown that (tl-p - ni,i) is a bounded sequence. First observe if tl.p L ny; — 400 asi — oo,
then for any jy € Z,

Y
@’ +jo.t] T +jo+ 1) Cnii+Tonai —To+ 1)

1
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when i =i(jp) is large enough. Hence by (4.9),

PR o 7
i =@ Wzt o 1 1y, my = 2 (4.18)

By (4.14) we know

1

lgi — U=t 0 (4.19)

M= jo? ey =~
as i — 0o. Combining (4.18)—(4.19) gives

UG-~ —a”| 2% +o(l), i — oo. (4.20)

Wl’z((tip_l+j0,tip_1+j0+l)’R"1) =
But by (3.33), there is a jj € Z such that
||U( —+ JO) —a° ||W],2([0’1]’Rm) > 2;,

contrary to (4.20). Thus tip - ni,; — 400 as i — oo (along a subsequence) is not possible.

To further exclude that tip -1 ny,; — —oo (along a subsequence), first note that by (4.13), as i — oo,

lgi —U+(- — nl,i)”W‘=2([n1,,-,n1.,»+1],Rm) — 0. “4.21)

Therefore for large i,

lgi = a® w12 qny gm0k Z NU+C = n10) =@ w12 qny g 4+11.m) (4.22)
—lNgi = U =nidllwiaqny g +10.8m) =7
via U4 € K*(a?) and (3.28). On the other hand,
Igi —a®llwi2qn, ;ny 417.8m < N1+ No+ N3 = (4.23)
-1
=llgi—a” = UC—1]7)=a%) = (U-(=n2) —a")llwi2qn, ; ny +11,0m +
-1
HIUC =177 = a Iy png 411 8m + 1U=C =12, = @ llwi2(uy oy 410, 20)-
Since tl.‘"_l —np,; —> —ooasi— 0o, tip_l < ny; forlarge i and (4.17) implies N1 — 0 as i — oo. Writing
— _ 40
N2 - ”U a ”Wl'z(["l,i_tip_lJ’ll,i"rl—t,-p_l],Rm)

and noting that |U — a® w12, j+17,rmy — 0 as j — oo shows Np — 0 as i — oo. Similarly

ag
N3 = U= = a"llwr2qn, ;—ny s ny +1-n2,1.R ™)

and [|U- — a® |ly12(;j, j413,rm) —> 0 as j — —oo gives N3 — 0 as i — co. Combining these observations, we have
”ql — ag”W‘-Z([nl,,-,nl_,--',-l],Rm) —> O, I — 00. (424)

Thus (4.24) is contrary to (4.22) and ,il’ - ni,; — —oo (along a subsequence) is not possible.

Now that we know (tl.p " 1.;) is a bounded sequence, along a subsequence it is a constant, «. Hence again (4.13),
(4.17) imply that U = U4 (- + «) so by (4.17),

lgi —a® = (U4 —n1i) —a”) — (U-C —n2,i) = a”) w12y, nyi41).0m) = O- (4.25)
Note that
||U+( — nl’,') — a0||W1’2((”l],i+Li, +00),RM) = ||U+ —a° ||W1*2((L,',+OO),R’”) -0 (426)

since L; — 400 as i — o0. Hence (/1) and (4.25)—(4.26) show
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disty 12—z, 1,rm (i ¢ +12,), K@) < llgi = U-C = n2,) lwr2(ny L mo 11 R7)
<llgi —a® = (U4 —n1i) —a%) = (U-(-—n2i) —a”)llwi2ny;—L; 2 411, R T
F U+ =n1i) = a% llwi2qny, —Liny ;+11.8m) = O
Thus g; satisfies the property (1;) whenever i is large.
Analogously to the above,
IU-( = n2,i) = a% llw12((—oony; —Li). Ry = 0 4.27)
asi — 00 5o (hy), (4.25) and (4.27) imply

disty1.2(10, 2,1, (Gi ¢ +11,0), K2 (@) < llgi = U+ = i) lwi2qny oy i+Li,R7)
Sllgi —a® = U4 —n1,i) —a%) = (U= —n2i) —a”)lwr2qny jony L0007+
+ I U-(—nyi) — Cl(r||WLZ([nM,nU_Q_L’,],Rm) — 0.

Thus g; also satisfies property (2;) whenever i is large.

Finally by (/1) and (4.25)—(4.27),

g = a® w2 4 Ling— LRy =
<llgi —a® = U4 —n1,) —a%) — (U= —n2,i) —a”)lwr2(n, 4L mpi— L. Rm T
F UL C = 11.0) = @ N2 14 Loma s Lo B+
+NU-C —n1i) —a w2y +Lims—LRmy —> 0

as i — oo and g; satisfies (3;) when i is large. Therefore g; satisfies properties (1;), (2;) and (3;) for i large, contrary
to the choice of the functions g;. Thus Proposition 4.6 is proved.

There are three further preliminaries needed before giving the proof of Theorem 4.1. The first provides a useful
estimate.

Proposition 4.28. Suppose that K € {K{(a™), K{(a™), Kj(@ ), KiaM}=RK q € D4 and

g’ (9) — Kllwi2qo,17,mm) =7 (4.29)
for some j € 7. Then there exists a constant, A > 0, such that

j+1

[ diar+ wa.ands = (430)

J
Proof. By (3.27)~(3.28),

diStWI-Z([O,l],]Rm)(R’ {a_7 a+}) >3r

so by (4.29),

diStW1~2([O,1],R"1)(gj (@), {a”,a™}) >2r. (4.31)

If there is no A = A(r) as above, there are sequences, (g,) C D4 and (j,) C Z such that u,, = g/ (g,) satisfies (4.29)
and (4.31), but as n — o0,

1
f(%litnl2 + W(t, up))dt — 0. (4.32)
0

Then as n — oo,
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llten

1
||§2([0’1])Rm) — O0and fW(z,un))dt — 0. (4.33)
0

2
L2([0,1],R™)

a &y € R™ such that u, — & € R™ in L>([0, 1], R™). By (4.33), fol W (t,&)dt =0. But then & € {a—,a™} and
(4.31) must hold with g/ (g) replaced by &p. Since this is impossible, there is a A as claimed.

By (4.29) and the compactness of K, |u, || 5[0, 1],R™) is bounded. Since ||, || — 0 as n — oo, there exists

Define

d r
L=[— 1 d = —. 4.34
[)\]+ and re = 2 (4.34)

The next technical result is important for an inductive argument in the proof of Theorem 4.1.

Proposition 4.35. LetE e {a=,a™},0<ri <rp <F, l; e Nwithl; — 400 as i — 0o, and (v;) C D4 be such that
ri < distwl,Z([_li’l]’Rm)(vi, ICM (S)) <nr Vi e N. (436)

Then there are integers ig, Lo € N and ng € Z, with Lo > n(r¢) (Where n(rp) is given by Proposition 4.6) and ng <
—3Lg such that

(@) diStWI,Z([,LO’1])Rm)(vi0, K"(&)) <re,

(i) disty12(, £,).Rm) (Vig (- +10), K*(§)) <r¢,
@) Nvip — Ellwr2(ng+Lo.— Lol Rm) = Te-

(iv) j"(viy) <no.

Proof. By Proposition 4.2, there exists a function, U* € K*(§) such that the sequence v; — U* weakly in
WLZ(R, R™) as i — oo (along a subsequence that still will be denoted by v;). The sequence v; does not converge
strongly to U* in WL2((—o0, 11, R™); otherwise the constraint in (4.36) would be violated. This observation and
Proposition 3.7 imply the sequence converges to a chain of homoclinic and/or heteroclinic solutions of (HS) and U*
is not the left end of the chain. Indeed the weak convergence of v; — U* in W12(RR, R™) implies one of the sequences

(tl:/ ) given by Proposition 3.7 must be bounded. Hence there is a p € Z such that, passing to a further subsequence,
t! = pforall i € N. Thus

lvi =U; (- = p)ll -0

i—1 j+l
7 p T +p
W1.2((1T, lT)’Rm)

as i — oo showing that U* = U, (- — p). Therefore by (4.14), as i — oo,

i — Ul e —0. (4.37)
Wi2(L5—=, 11, Rm)

Knowing that v; does not converge strongly to U; in W12((—o0, 1], R™) and recalling that tl.o = —o00, (4.37) implies
that j > 1. Set s; = tij_l +pand U =U;_1(- + p). By Proposition 3.7, s; — —o0 as i — oo so without loss
of generality, (s;) C (—o00,0) N Z. Moreover U € D4(z, &) with ¢ € {a—,at). By (4.14) again, for any T > 0, as
i — 00,

i =UC=si)llwras -7, 5:/2).kRm) = 0 (4.38)

and
||Ui — U*||W1~2((s,'/2, 1),R™) -0 (439)

By definition, U (- + j*(U))l[0,1 € K3 (&) or equivalently U (- + j*(U))l[0,+00) € K*(§). Since U* € K*(§) and U €
K*(&), an Lo € N with Lo > n(r¢) can be chosen so large that

UG+ j(U)) —Ellwr2((Ly,+00),R7) = %a U™ — Ellw12((—o0,—Lol,R™) = % (4.40)
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Choose iy € N so large that —X% > max{Lg, Lo+ j*(U)}. By (4.38)—(4.39), it can be further assumed that

vip = U = Sio) w25ty W), sig /20, Rm) = T2/ (4.41)
and
||Ui0 — U*” W]’z((sio/l 1),Rm) E rg/4. (442)
Now we will show that (i)-(iv) follow on setting ng = s;, + j*(U). Indeed property (i) follows from (4.42):
diStWI'z([—L(),]],R’”)(Uioﬁ ’Cu (s))) < ||U,‘0 — U*”Wl'z([—L(),l],Rm) < V[/4.
Property (ii), is immediate from (4.41):
diStW]’z([O,Lo],Rm)(viO(. + nO)a ’CS (E))
< iy (- + iy + 7 (U)) = U (- + j*(U)) w120, Lo], R
= lig =UC = Sig) lw2(isig 4+ )51+ @)+ Lol Ry = Te/4
Next by (4.41), (4.40), (4.42), and (4.40) again,
i = &llwr2 oL, Lot k) = Wi = Elw12(ng+Lg,s, /21,m) + (4.43)
1
g = Ellwiaqsy /2.~ Lol Ry
= lvig = UC = i) w121y + 5 W)+ Lo,sig /21, Rm) T
FHUC = sig) = Ellwrasyy+j* ) +Lo.sig /21, Rm) T
Fllvig = U w25y 2.~ oty + 107 = Ellwiag 2, - Ly < 75

yielding (iii). Lastly, to verify (iv), observe that by (4.41),

vig (- +10) — Ko &) w12 0,11, m) < 71/4- (4.44)
By (3.32),
IK§ &) — K" @) llwi2qo,1y.rmy» 1K§E) — K" @) llwiaqo, 1, rm) = 37 (4.45)

Combining (4.44)—(4.45) gives

distyy 120,17, ) (Vig (- + 120), K“(a")UK"(@a"h)) > 2r. (4.46)
By the definition of j*“(vj,),

distyy1.2(0,17.rm) Wip (- + ), K* (@) UK" (@) =0 for any j < j*(viy) (4.47)
and (4.46)—(4.47) yield j*(v;,) < ng, completing the proof of Proposition 4.35.

Our final preliminary result is:

Proposition 4.48. Suppose that (®"(a®))—(P*(a®)) hold for each o € {—,+} and C4(a") # {a”}) for some T €
{—, +). Then there exist

1° €+ 1 integers po, pi, - .., pe € Z such that py > p1 > p2 > ... > pj,
2° £+ 1sets Ko, Ky,...,Kp € R,
3° a point q € D*

such that

lg — &~ PI (K Dllwraqp;, py+11mm <7 forany je{0,1,..., ). (4.49)
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Assuming this proposition for the moment, the proof of Theorem 4.1 can be given.

Proof of Theorem 4.1. First it will be shown that if conditions (®“(a°))—(®*(a°)) hold for ¢ € {a~,a™}, then
C4(a*) = {a*t}. The proofs being the same, only the ¢ = — case will be treated. Let ¢ € D¢ as given by 3° of
Proposition 4.48. Applying (4.30) to each of the sets, K;, 1 <i <{ 4 1, yields
pi+1
d=1(q) >3 / (3191 + W, @) dt = ( + Dh. (4.50)
pi

But (4.50) is impossible via (4.34) and the first half of the equivalence has been proved.
For the converse statement, suppose that C%(a~) = {a~}. Recalling (3.17), set

1 . — +
o= gmln(Zro, la— —a™).

Let B, (x) denote the open ball in WL2([0, 1], R™) of radius r about x. Consider By (a~) N gd. By Proposition 3.29
of [7], it is a compact subset of W2([0, 1, R™). If 3(Ba(a™)) NS =, take K| = By(a~)NS" and Ky =
gd \ K. Then K1 U K» = gd, K1 N Ky =10, and K| and K, are each closed and nonempty. Next suppose that
d(By(a™)) ﬂgd (. Since C%(a~) = {a~}, there does not exist a subcontinuum of gd joining a™ to (B (a™)) ﬂgd.
By a separation result of Whyburn [18], there are closed nonempty disjoint subsets, G, G2 of By(a™) N gd such that
a~e€Gy, 3(By(a™)) ﬂgd CGy,and G1UG, =By (@a™)N gd. For this case, we obtain a splitting of Ed by taking
K, =Giand K, -5 \ K . Now choose any z € K, \ {a™}. If z =¢|7, withq € D4(a~,a"), by the choice of
—see (3.17) —there is a p € Z such that ||g,(z) — a” llwr2(p, p+11,Rmy > @, L. g?(z) € K, . Now we have to find a

compact set, K*(a™) C gd and an r~ > 0 such that (i)—(ii) of (®“(a™)) hold. The set, K*“(a™) will be obtained from
(3.19) by making an appropriate choice of K (a™). Set

KYa)=1lgeK; |g ') eKy forjeZ, j>0and gu)cK; }.

Due to (3.17), for each U € D4(a®,a~) UD%(a®, a™t), there is a unique p(U) € Z such that U(- 4+ p(U) +i)lj0,1] €
K| foranyi <0 and

IUC+pU)+ 1) =Ky liwizgo,,zm) = 1K7 — Ky w2 o, 17,rm)-
Thus an alternate characterization of Kj(a™) is
K& (a ) ={Uj0, 111U e D(a°,a™)UDa’,a") and p(U) = 0}.

Clearly Kj(a™) # #. It is also compact since if (g,) C K (a™), (gn) lies in the compact set K| . Therefore there
is a ¢* € K| such that along a subsequence, g, — ¢* as n — oo. Since these functions are all solutions of (HS),
gn — q* in CIZOC(R,]R’"). Thus g(g*) € K5 so p(g*) < 0. Similarly, g/ (q") € K| for all j € N. It follows that
(@) =0,q" € Kj(a™) and Kj(a™) is compact. Now (3.19) shows K"(a™) and (i)—(ii) of (®“(a™)) hold with

_ 1 — _
rm =31k = Ky llwiago, i rm)-
Replacing C4(a~) = {a~} by C%(a™) = {a*}, with minor changes, the above argument implies (®*(a™)) holds.
The remaining two cases are treated similarly and the proof of Theorem 4.1 is complete.

It remains to give the

Proof of Proposition 4.48. The proofs being the same for either choice of t, we take 7 = —. Since Cla~)#{a"},
34 ¢° € D such that £° = ¢°|;0.1; € C%(a™). 4.51)

For each k € N, we say property (Py) is satisfied if the following 6 conditions are satisfied:
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(Py) (i) There exists a function qk € D4 such that qkl[oyl] eCla).
For each j €{l,...,k},
(ii) there are integers L; € N and ny j,ns j € Z, such that L; > n(rg) (with n(r¢) given by Proposition 4.6),
na j—nij >3L; and

. k .
j4(q") < Nk <Nk <Nlj—1 <...<ngp<npj<nyi=0;
(iii) there are points £/ € {a~,a™} and pairs of sets H’_, H’ where

i @) ifgi=a-

Hy = and H/ = K“a™) ifg/=a~
l =

KS(a®) ifg/ =at - | Kkv@t) ifgl=at
such that )

(iv) disty12_z, 11.mm) (" ¢+ 12, ), HD) <7,

(U) diStwl,Z([O’L‘j]’Rm)(qk(' + n],j)y Hi) <rye,

. k i
(i) llg _SJ”W1v2([n1,_,+L_/,nzy_,—L_,],Rm) <ryg.

We will show that (4.51) implies property (Py) is valid for each k € {1, ..., £}.

However, before doing so, assuming property (Py), the proof of Proposition 4.48 can be completed. Using (i)
of (Py), by taking po =nz1,..., pe—1 =nzy, and py = j“(qz), 12 of Proposition 4.48 is satisfied. To verify 27,
take K; ={qljo,111q € ”HJ,—H} for j =0,..., ¢, where the sets ’ijl are given by (iii) of (P;). Then K; € & by the
definition of the sets, H. Lastly to prove 3°, choose qe e D? as given by (i) of (Py). Then by (iv) of (Py), for
j=0,...,£—1,

||q — g Pi(K; )||W‘2([17/ pj+1LRm) = ||q ¢+ pj)—Kjlwi2qo..rm) =
= dlStW1~2([O,l],R’")(q ( + n2,j+1)7 HJ_ ) <rge < r

while for j = £ again by (iv) and the definition of j*(g"),
lg" = & P (K llw12((py. ppt 1.8 = 1g°C + pe) = Kellwiaqo, 1y mmy =
=disty12(0, 1) 7y (@ ¢+ j (@), HT) =0 <7

Thus Proposition 4.48 is proved.

To verify that (4.51) implies property (Px) for each k € {1, ..., ¢}, a few further remarks are required. For any
i € NU {0}, define the sets

S =1qli-inn1g e DY), S =8 Ula",a"},
Ky (@) ={qli-i.1q € D!, qlio.11 € K§ @)},

In analogy with earlier results, the set S%-/ is a compact metric space under the metric of W'2([—i, 1], R”). Moreover
for g € 8¢, the map (; @lo11=9, ¢ : 54 — S%i is a homeomorphism.

Note that K ;(a®) = ; (K (a)). The shift map g induces the map g; -84 5 84t defined as gi=tiogol
Even though they are formally different, for notational brevity, the maps g; will still be denoted by g.

For o € {—, 4}, let C%(a”) be the component of S containing a?. For any i € NU {0}, Kjj,(a®) can also be
characterized as -

—1

Kg (@) =1{ql-inlq € K" @)} (4.52)
and since ¢; is a homeomorphism,
C(a”) =1 (4 @)). (4.53)

Finally observe that
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K(‘)‘ﬁ ; (a?)is compact and
disty12(_i41,17,rm) (Kq; (@”), 8(Kg ;(@”))) = 3r™.

Now we are ready to show that (4.51) implies property (Py) for each k € {1, ..., £}. This will be done via an inductive
argument. First (Py) will be established. Then assuming (Py) holds for 1 <k < €, (Pg+1) will be proved.

(4.54)

Proof of (P;):
Let ¢” be given by (4.51) and let o € {4+, —} be such that

¢°eD?@’,a")uDa’,at). (4.55)
Equations (4.51) and (4.53) show ¢ = 1;(¢%) € €%/ (a®) for any i € NU {0}. Note that

g/ () cc®i(a”) forany j € Z. (4.56)
Using (4.55) and (®*(a”)) shows that for any i € NU {0},

g (0 e Ky (a®) and disty12q_i 1y rm (@O (D), K¥ (@) = 3. (4.57)
By the connectedness of C%i(a%), the continuity of the function

disty 12— 17.m) (-, K" (@),
and (4.56)—(4.57), for any i € NU {0},

there exists g € C"' (a”) such that disty12_; 15.gm) (g}, K* (@) =re. (4.58)

By (4.58), the hypotheses of Proposition 4.35 with v; = q?, & =a° and [; =i are satisfied. Taking io, Lo, and ng as
given by Proposition 4.35, set ¢! = Vip = ‘11%’ L =Ly, HL =K*@a®), H! = K*(a?), ny,1 =no and n,1 = 0. Then
properties (i)—(vi) of (Pr) follow from (4.58) and Proposition 4.35.

Finally it will be shown that:

If (P;) holds for some k with 1 <k < ¢, then (P ) is also satisfied:
Suppose qk satisfies (Py) forak € [1,£ — 11NN so for some o € {—, +},

¢ e D a’, a7 )uUDa®, ah). (4.59)

Then for each j € {1, ..., k}, there exist integers ny j,na j, L;, points &,...,&; € {a™, at) and sets HZ, H’, for
which the properties (ii)—(vi) of (Px) are satisfied. In particular, by (iv)—(vi), the interval [ j”(qk), 1] contains the
k intervals [n1 j,n2 ;] in each of which qk enters and leaves a small neighborhood of a™ or at. Moreover by the
definition of j“(¢¥), the function ¢*(¢) remains in a small neighborhood of @~ or a™ for values of t < j*(gh).
The idea of the proof of (P 1) is to find a new function g¥*! near ¢g¥ with three properties. First, it possesses the
same qualitative behavior as ¢ on the interval [ j*(¢*), 1]. More explicitly, it continues to enter and leave a small
neighborhood of @™ or a™ on precisely the same intervals, [n1,j,n2,;] for j=1,...,k, as for qk, and otherwise
satisfies the properties (P;). Secondly to the left of j*(g*), there is a new interval [71 k+1, 12 k+1] where gt again
enters and leaves a small neighborhood of a~ or a™ and further satisfies the remaining requirements of (Pg1).
Thirdly, as in (4.56)—(4.58), using in particular the connectedness of C%(a®), and the continuity of the function,
fi.k(q) (that will be introduced shortly and plays the role of

distwl,z([_i,l]’ﬂgm)(w K"(a?)),

in the proof of (Py)) shows ¢**! lies in C4 (a%).
To implement these ideas, intervals [—i, 1] larger than [j ”(qk), 1] must be considered. Hence assume i € N and
i > —j"(¢%) for what follows. For such values of i, set

gik = qk|[_,-,1] and note that g/ (g‘ik) e % (a”) for any j € Z.
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By definition ¢*(- + j*(¢%)) 0,1 € K¢ (a®) and by (¥*(a”)),
cu( k . su gk —
g/ (k) e K§ 1 (a%) and distyioq_;_jughy (@7 4T, K (a%)) = 3F
For ¢ € 8?1, define

. _sugk
fik(q@) =distyr2_; jughy+1y,rm) (@, 87 @ (K" (a”))+

k
—+ ZdiStWLZ([—Lj,l],Rm)(‘I(' + n2,j), H]_)+
j=1
k .
—+ Zdistwl,Z([O’Lj]’Rm)(q(‘ + n],j)a Hi)‘i‘
j=1

k
+ Z llg — Sl ”lez([n1.j+Lj,nz,j—Lj],Rm)
=1

where g~/ @) (K" (a%)) = {g (- — j"(¢%)) | ¢ € K*(a®)}. Properties (iv)—(vi) of (P;) show
fik(@F) < 3kre, fin(g(cf)) = 3r™ and ¢f, g(¢f) e €M (@”). (4.60)
From the choice of ry in (4.34), for any k € {1, ..., £}, 3kr;, <1 /4. Therefore as in the argument establishing (P;),
there exists ql-k € C% (a”) such that f,',k(qf) =r/2. (4.61)
Consequently for any j € {1,...,k}
disty12_p 1. (FC +n2.)), HD) <7/2 <F,
diStW1-2([0,Lj],Rm)(‘L{((' + nl’j), Hi) < f/2 < f, (462)
1" — &l wr2ny 1m0 -1 0m) SF/2 <F.
But L; > n(r)) and np j —ny j > 3L; forany j € {1, ..., k} so by Proposition 4.6, (4.62) can be improved to
diSth,Z([_Lj’l]’Rm)(qik(' + nz,j), Hi) <ryp,
diStW”([O,Lj],Rm)(Q,k(' +n1,j), HY) <re, (4.63)

gk — §j||WI-Z([nl,j+L,-,n2,j—Lj],Rm) =re.
Moreover, by (4.61), (4.63) and since 3kr; < /4, we find that for any i > )
P12 2 disty 2 i juighy i @ 8700 (K" @))) 2 /4
or equivalently that
F/2 = distyioq__jughy ) @ ¢+ 71 (@5). K @) = 7/4. (4.64)

By (4.64), for i > —j*(g*), the hypotheses of Proposition 4.35 are satisfied by taking v; = qik(~ + j"(q"), E =a°

and [; = —i — j*(¢*). Then with ig > —j*(¢*), Lo > i(r¢) and ng < —3Lg obtained from Proposition 4.35, set
g =vi (= "¢ ) =g, §F' =a”, L =Lo (4.65)
H]i—‘rl :,CS(a(T)’ Hli+l — ,Cu(aa)7
n ke =no+ j(g") and np g1 = j* ().

By (4.61), ¢*Tj0.1) € C?(a®). By definition, 12 x+1 < n1.k+1 < j*(g¥) so from (Py),

Mg+l <N2g+1 <Nk <...<ngp<np1<nzi=0.
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By Proposition 4.35, j*(v;,) < no and by (Py), 4 (q" < ni k. Hence

JU@ Y = i (- = J"(q"))) < no + j“(q") =no+nix

and qk+l verifies (i)—(iii) of (Px+1). Moreover (4.63) shows qk+l = q{; satisfies (iv)—(vi) of (Px+1) on the intervals

(n1,j,n2,; + 1) for the same set of values: §;, L}, 7/ and H’_ for j=1,...,k, as for g*. To complete the proof it,
remains to verify that properties (iv)—(vi) for qk+1 also hold on the new interval (n1 k41, 12 k+1 + 1).
By (4.65) and (i) of Proposition 4.35,

. 1 . 1 =
dlstwl,Z([_Lk+l’1]’Rm)(qk+1(‘ + n2,k+]), Hk_+ ) = dlStWLz([—LH],l],Rm)(Uio’ H]i+ ) <ry,

i.e. (iv). Similarly by (4.65) and (ii) of Proposition 4.35,

. k+1 . k+1 =
dlStW'=2([0,Lk+1],Rm)(qk_H(' + n2’k+]), H++ ) = dlStWLz([O,LkH],]R'")(vio(' + no), H++ ) <ry,

i.e. (v). Lastly property (vi) is a consequence of

k ekl e gkl _
g™ =& Mwr2qn por+Listmop— Ly 1R = 1io = 8 w2 (gt Ly, —Liga) Ry =76

Thus (Pg41) follows and Theorem 4.1 is proved.
5. Some degenerate cases

In this section, it will be shown how the methods introduced earlier in §3—4 can be applied to study the behavior
of D? when C%(a™) # {a~} or C%(a™) # {a™}, i.e. when we are in a degenerate situation. It will also be shown that
condition 3° of §2 is equivalent to a non degeneracy condition used by Cieliebak and Séré in [4].

To be more precise, by 4°-5° or from [7] we know if cd (ai) #* {ai}, Ed contains a connected set, F, to which
a* belongs and F consists of snapshots of heteroclinic or homoclinic solutions of (HS). Given &1, & € {a~,a™}, the
space D?(£1, &) under the W!2(R, R™) metric will be considered. Define the projection map, i by

iD= 8% ig) =ql0,17 for ¢ eD?

and note that it is continuous and invertible. The map i~! associates to any element ¢ € S¢, the unique element

i~'(¢) = ¢ € D? such that qlio,11 = ¢. In general, i~! is not continuous on S? although Proposition 3.7 gives us

some information about it. Therefore when C¢(a™) # {a*}, the connectedness properties of gd given by 4°-5° do not
provide similar information for D4 1f it were continuous, i ! (F) would be a connected subset of D¢. (Note that ; !
is continuous if e.g. D4 and S¢ are replaced by D4a~,a"t),8%a",at) and d = c(a—,ar).) Our first result shows
that in fact D? does possess some connectivity properties,

Proposition 5.1. If C%(a™) # {a~} or C%(a™) # {at)}, then there exists a q € D¢ whose component is different
from {q}.

When the potential V is sufficiently smooth, a stronger result obtains:

Proposition 5.2.If V € C*"(R x R™) and C%(a™) # {a~} or C%(a™) # {a™}, then there exists points £_, &, €
{a=,at} such that D (&_, £4) contains a point U whose component with respect to the WH2(R, R™) metric is not
compact.

Proof of Proposition 5.1. An indirect argument will be used. For a given g € D (£1,&),and &1, & € {a—,a™)}, let
Cg denote the component of ¢ in D? (£, &). Suppose that

Cd = {q} for each g € D?. (5.3)

This has an important consequence:
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(P1) Suppose that C%(a~) # {a~} and (5.3) holds. Let ¢y € C%(a™) \ {a~} and p > 0. Set

—d —d
By (50, S ) =1{¢ €S |IE = Sollwi2qo.1.rmy < P}

and
U= (C%a )\ {a )N B0, 5.

Then the map i ~! lcd (q- is not continuous on U.

To prove (P1), assume to the contrary that there exists a ¢y € C%a~)\ {a"} and a p > 0 for which the map
it lcda—) 1s continuous on U. Suppose i(z9) = {o for z9 € D4 Let g = g! be as in the Introduction. Since ¢o €

Ca)\{a™},

g(%0) €Ca™) \ {a~} with [[50 — g(&0) w2, 1).mm) =Ty > 0. (5.4)
Choose r < min{ry, p}. By (5.4) and a result from [18], since C%(a™) is compact and connected, there exists a
connected set Co C U containing o and a point ¢, € C%a™) \ {a~} such that ||gy — Srliwizqo,17,rmy = r- Since
i1 lcd 4~ 18 continuous on U, the set i~1(Cp) is connected and so by (5.3), i~1(Co) C Cffo = {qo}. But this is contrary
to (5.3) since go =i~ 1(20) € i "1 (Co), g, =i 1 (¢) € iV (Co) and g # g,. Thus (P1) follows.

Set
Mo = inf I(q)
qeD4
and note that, as observed in [7], A¢g > 0. As a consequence of (P1), we have:

(P2) Under the hypotheses of (P1), for any ¢gg € D? such that & =qoljo.1] € Cla) \ {a"}, there exists a g1 € D
such that & = g1 0,1) € C?(a™) \ {a~} and 1 (q1) > I (q0) + 3 0.

Assuming (P2) for the moment, it will be shown that it leads to a contradiction so Proposition 5.1 holds. Indeed using
(P2), chose any point gg € D such that &0 =qolj0.1] € Cla) \ {a™}. Iterating this application of (P2) k times, with
k > 2d /1o, yields k points g, ..., gx € D? such that £; = g0, € C?(a™) \ {a~} and I(g;) = I(gj—1) + SAo for
j=1,...,k. But then

k

1
1(qx) > 21 S0 =Kko/2>d
j=

contrary to the fact that ¢; € D?.
Now to conclude the proof of Proposition 5.1, (P2) will be derived from (P1). Let gg € D4 be such that ¢y =
qolj0.11 € C%(a™) \ {a~}. Since go € D4,

{min } llgo — &llw12(0,17,rm) =r(go) > 0. (5.5)

tela=,at
Chose Ry > 0 so large that
Ro
liro@) = [ daoP + V@an)dr = 1w = b (5.6)
“Ro
Due to the continuous dependence on the initial data of the Cauchy problem for (H S), r¢ € (0, r(go)) can be taken so
small that if ¢ € D is such that [|g — qollw1.2(0,17,rm) < ro, then
I—Ro,R01(40) = 30 = T[—Ro.Ro1(@) =< T~ Ry, R01(@0) + g0 (5.7)
By (5.6) and (5.7),

1(g) > 1(q0) — %)»0 for any g € D4 such that ¢ =i(q) € By (Lo, gd). (5.8)
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Since by (P1), the map i1 |Cd(a—) is not continuous on (C4(a™) \ {a™}) N Byy,2(%o, gd), there exists a {1 € Cla) \
{a=} with |1 — Zollyr2o,17.rm) < ro/2 and a sequence (1) € (CY(a™) \ {a™}) N By 2(%o, S%) such that
e — &1 in WH2([0, 11, R™) but (5.9)
v =i &) A g1 =i~ '(¢1) in the W2 (R, R™) metric. (5.10)

Note that v, may belong to a component of I'(§1, &) different from the one containing g;. Taking a subsequence if
needed, it can be assumed that for some pair &1, & € {a~,at},

v, € DY(&1, &) for any n € N. (5.11)
The sequence (vy) is a (PS) sequence for I since, by (5.11), it consists of elements of DAL, &). By Proposition 3.7,
there exists an lop € N, & = &1, &, ... &1 =& € {a™,at}, Uj e Dd(sj,éjH) for j € {1,...,lp}, and sequences
(t]) CZ, j efl,...,1ly}, such that t,{H — 1] — 400 as n — +oo having the property that along a subsequence,
setting 1) = —o00 and £ = 40, as n — oo,
—Ui(-—¢ o o i =
lv, — Uj( t")nwlﬂ(%(z,{ﬂ,{"), %(dﬂﬂ’{))’Rm) —0forj=1,...,1 (5.12)
and
lo
I(vy) > > 1(U)). (5.13)
j=1

Since v, =i ' (n,) and g1 =i~ (&1), by the definition of i, 1,,(x) = v, (x) and ¢ (x) = g1 (x) for any x € [0, 1]. Thus
by (5.9), as n — oo,

M — Sillwr2qo, 17,7 = vn — 1 llw1.2¢0,1),Rm) = 0. (5.14)
We claim that (5.12) and (5.14) imply
£0

(W) for some jo € {1,...,Ip}, along a subsequence, is constant, fg, SO t,{o = 1y € Z independently of n € N, and

Uj, =q1(- +10).

To prove (W), arguing indirectly suppose first that as n — oo, |t,{ | = +ooforany j €{l,...,lp}. Since t,{ A t,{ —

o0 forany j €{l,...,lo — 1}, there exists a pg € {0, 1, ..., lp} for which
t,{ — —oo for j < po and t,{ — +oo for j > po (5.15)

as n — 0o. Set Up = &. Since U; € D4(§;,&;11) forany j € {1,...,1o}, taking j = po or j = po + 1 shows

1Epot — U ¢ — D llw12qo.11.m) — O (5.16)

as n — 00. Since rg € (0,7(qo)) and ||¢1 — qollw1.20,17, 87y = 151 — Sollw1.2((0,17,Rmy < ro/2 by (5.5), it follows that

121 — Epor1 lwr2o,1).8my > O (5.17)
Writing the interval [0, 1] as the union of the intervals [0, %(t,{7 o+l +tP%)] and [%(t,ﬁ7 o+l + %), 1] with the under-
standing that the first or the second of these intervals is the empty set whenever respectively %(t,f o+l 4 ) <0 or

%(t,{’ 0Fl 4 £P0) > 1 Jeads to the estimates:

161 = Epg+1 lwi2qo,11.8my < 161 = vnllwr2go.1ymemy + I1ow = St llwiz o1y emy
=&t — vallwr2qo, 17,8+
+ {lvn — Upy (- — 5]

+
W12(0,% (70 4470y Rm)

+ 1Epgt1 — Upo - — 2l +

1 1
WL2([0, 5 (670" 4+470) ] R™)
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+1
=+ |lv, — —y 1
” n po+1( n )||W1~2([%(t,f0+ +t,f0),l],R”‘)

po+1

+ ||§p()+] - Up0+l ( - tl’l )”Wu([%(t,fO+l+th),1],Rm)'

Applying (5.14), (5.12) and (5.16) yields ||¢1 — épo ||W1,2([0’1]’Rm) =0, in contradiction with (5.17).
This argument shows there is a jo € {1, ..., lo} such that along a subsequence, #.° is bounded and therefore can be

assumed to be constant on a further subsubsequence. Reindexing this latter subsequence with n € N, let t,{o =tel
for any n € N, and set U, = g1 (- + tp). Since by (5.12), as n — oo,

lon = Us C = 10)lwr2qo.ymemy < Mow = Ui C =10)ll 15 Loty ) Ly oty omy = O

and by (5.14),
lvn = gillwr2go,17,Rm) = 0
as n — oo, we conclude that U, (x — fp) = q1(x) for x € [0, 1]. Since both U}, (x — fp) and g1 (x) satisfy (HS), they

then coincide on R and (W) follows.

Combining (W) and (5.12) shows that as n — 00, v, — Uj,(- — fo) and v, — g1 in W,>*(R, R"™). By (5.10),
v, /> g1 with respect to the WL2Z(R, R™) metric. Hence (5.12) implies that [y > 1 and so, by the definition of X¢, as
n— oo,

lo
I(w) > Y TWU) = 1)+ Y 1U;)) = 1(Ujy) + ko
j=1 J#Jo

Since 1 (Uj,) = 1(q1) and g1 € By /2(%o, gd), by (5.8), we conclude that
lim 1 (vy) = 1(G1) + X0 > 1(q0) + 3X0
n——+00

and (P2) follows by choosing g1 = v, for n sufficiently large.

The proof of the above proposition contains the following result which will also be useful in the arguments that
follow:

Lemma 5.18. Let &1, & € {a,a™}, vu =i~ ' (n,) € DY(&1, &) with n, € S¢ forn e Nand g1 =i~"(¢1) € D? fora
¢1 € 84, such that as n — oo,

nn — ¢1 in WH2([0, 1], R™) but

v, = i_l(’g‘n) 5 q1 = i_l(g‘]) with respect to the WI’Z(R, R™) metric.

Then along a subsequence

lim 1(v,)>1(q1)+ Xo.

n——+00

Now we are ready for the
Proof of Proposition 5.2. The role of the smoothness condition V € C?"(R x R™) is to show that
(P3) For any pair, &1, & € {a_, a4}, the set of critical values of 7 on I'(§1, &) is of measure 0.

Property (P3) is obtained from a version of the Sard—Smale Theorem. Indeed let &1, &> € {a_, ay} with V¢, ¢, the
appropriate normalizing function and J (u) = I (u + ¢, &,) foru € E = W12(R, R™). Then J'(u) is a nonlinear Fred-
holm operator for every u € E. To see this, consider the matrix function « : R — R” such that a(x) =V, 4(x, a®)
for x > 1 and a(x) =V, 4(x,a™) for x < —1 and
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a(x) =51 —x)Vyq(=1,a) + 1A+ 1)V, 4(1,a") forx e [-1,1].

Then « is continuous, bounded, and by (V4) it is positive definite uniformly for x € R. Note that

J" (w)h ~k=/(izf<+cxhk)dx +/(vq,q(x,u+zp§],gz) — a)hkdx
R R

= L(h)(k) + /(Vq,q(x, u—+ e g) —a)hkdx foru, h, k€ E.
R

Since o is bounded and uniformly positive definite, the operator £ is a linear homeomorphism between E and
W~L2(R, R™). Moreover the multiplication operator & — (V, 4 (x, u + ¥, ¢,) — a)h is compact from W!2(R, R™)
to L2(R, R™) (since Vyqx,u+ g &) —a— 0as |x| > +00). Thus J”(u) is a Fredhlom operator. The condition
V € C?"(R x R™) together with (V) implies that J € C?"(E) and (P3) then follows by the application of a version
of the Sard—Smale Lemma as given e.g. in [11].

An immediate consequence of (P3) is:

P4) If&,6 efa",aT}andC C e (&1, &) is connected with respect to the WL2(R, R™) metric, then [ is constant
onC.

The remainder of the proof of Proposition 5.2 uses an indirect argument. Assume to the contrary that

(CH) Forevery £1,& €{a",aT}andq € D4 (&1, &), that Cg is compact.

For ¢ € D? and k € Z, set 1;(¢) = q(- + k). Note that by (CH), if £, & € {a~,a™},
71(g) € DY (§1,6) \ C forany g € D' (&1, &). (5.19)

Indeed the set rl(C;l Y={ti(v)|ve Cg} is connected since 71 is continuous with respect to the WL2(R, R™) metric.
If r1(q) € Cg for some ¢ € D4, then 1 (Cg) C Cg and similarly 7 (q) € Cg for any k € N. But the sequence (tx(g))
converges weakly and not strongly to &. Hence Cg is not compact, contrary to (CH).

Suppose C4(a™) # {a~} and &g € C%(a™) \ {a~,a™}. Then g(¢9) € C%a~) \ {a,a*} and there exists &, & €
{a~,a™} such that go = i~ (¢0) € D(&1, &). By (CH), C2 is compact in D?(£;, &) and the continuity of i implies

. . . —=d .
l(CgO) is connected and compact in S . Moreover the compactness of Cgo in D4 (&1, &) shows

}70((,]0) = 1nfd min - ||q - E || wb2([0,1],R™) > 0. (520)

quqo tela™,a

Indeed, if (5.20) fails, there is a sequence (g,) C Cgo and a £ € {a~,a™} such that | g, — Ellwr2¢o.17.rm) — 0. The

compactness of Cgo in D4 (&1, &) givesa g € Cgo such that along a subsequence g, — g — 0 in W"2(R, R™). Then
g — &llwi2go,17.rmy) = 0 s0 g(x) =& for x € [0, 1]. Hence, since both g and & are solutions of (HS) on R, the
uniqueness of the solution of the Cauchy problem for (HS) gives g(x) = & for any x € R. But this is not possible since
by definition D? N {a~, at} = ¥ and (5.20) follows.

By (5.20),

distyy1.2(g0,17,1m) (1 (C)- (@™, a™}) = ro(qo) (5.21)

and by (5.19), 11(q0) ¢ Cgo. Moreover g(&o) =i(t1(qo0)) € C4a~)\{a",a™} and since i(Cgo) is compact in gd, there
exists an rg, € (0,79(q0)/2) such that

disty 1.2, 1z ((£0). 1 (C)) = 2rg, > 0. (5.22)

Since C4(a™) is a compact connected set, contains the point g(¢p) and the compact set i(CgO), by (5.22) and [18],
there is a closed subcontinuum, C of C4(a ™) joining g(&p) to i (Cgo). These observations show:
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(P5) Let ¢g € C%a™) \ {a~} and set go = i "' (£p). Then there exists a point ¢y € i(C,‘jO) and a closed connected set
C(%o) such that g(%o), ¢o € C(¢o)-

Property (P5) implies

(P6) Let {o € C?(a™) \fa~,a*}and go =i~ (¢0). If {o € i(CZ)) and C(Zo) are as in (P5), then for any p € (0, r,/2),
where r;; is given by (5.22), we have

—d
i1 |lcd (4~ is mot continuous on C (o) N Nf @i (Cjo))
h S pd 314 1(5
where N> (i(Cg))) ={¢ €S | disty12g,17,rm) (¢, 1(Cg)) < p}.

To prove (P6), note that since p € (0,7,/2), [1g(%o) — E()||W],2([0’1]VR111) > 2p via (5.22). The set C(&p) is closed,
- —d
connected and contains the points g(¢p) and {y. We claim that there exists a connected set Cy C C(5p) NN ;)9 (i (Cgo))
containing o and a point ¢p such that

. . nd
dlStW1.2([0’1],Rm)(§py Z(qu)) > pP.

—=d
Indeed the set C(p) N N;)S (i (Cgo)) is compact. Consider its subsets
S . nd -
C(Lo) NANS (i(CZ)) and (Zo).

—d
They are compact, disjoint and nonempty. If our claim is false, by a separation lemma from [18], N ;)9 (i (Cfllo)) NC(&o)

=d _
is the union of two disjoint compact sets K| and K>, the first containing C(Zp) N 8N'(‘,S (i (Cgo)) and the second ¢p.
Then

_ S . ad
Ce) = (€@ \ NS ((CL) UK UK,

0
is not connected, a contradiction which proves our claim.
. . . d
Since dlStW1.2([0’ 17,R™m) (é‘p , 1 (qu)) =P,

Cp £i(Ch)- (5.23)

_d - -
If i1 lca  1s continuous on C(to)N N;)S @i (Cgo)), then i ~1(Cp) is connected and contains i ~'(¢p). Since ¢y € i(Cf;O),
i) € Cgo and so i ~1(Cy) C Cg’o. By construction, ¢, € Cy and so we also have
i~ ecs. (5.24)
But it is not possible for both (5.23) and (5.24) to hold. Thus (P6) follows.
Now as the final step in the proof of Proposition 5.2, as in the proof of Proposition 5.1, we will show
(P7) For any ¢ € D4 such that &0 = qolo,17 € Cd(a’) \ {a~,a™}, there exists a g € D such that &1 =qilo,11 €
Cla™) \ {a~} and I(g1) = I(g0) + 3 ho-
As earlier, (P7) leads to a contradiction and Proposition 5.2 follows.

To verify (P7), choose any g € D such that Zo =qol[o,1] € Cl(a™) \{a~, a*}. Recall that by (P4) we have I (¢) =
1(qo) for any g € cd (a™). Then an argument similar to the one which establishes (5.8) in the proof of Proposition 5.1
shows that there exists an 7 > 0 such that

=d
1(q) = 1(qo) — 4o forany ¢ € D such that ¢ = i(q) € N;? ((Ch)). (5.25)

Indeed since Cgo is compact, there exists an Ry > 0 such that for any gg € Cgo,
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Ro
I1—Ro,Ro1 (G0) = f Ndol* + V(t, Go)dt = 1(Go) — 20 = 1(qo) — 3 0. (5.26)
—Ro

By the continuous dependence of solutions of (HS) on the data of the Cauchy problem, and the compactness of C;ZO,

an 7 > 0 can be chosen so that if ¢ € D is such that ||g — qollwr2(0,17,rmy <7 forago € C(‘IJO, then

11— Ro,Ro1(@0) — 520 = I{—Ro,R01(@) = I[—Ro,R01(0) + §M0- (5.27)

Thus (5.25) follows by (5.26) and (5.27).
If r¢, is given by (5.22) and p € (0, min{r,, 7}/2), by (P6) the map i_l|cd(a—) is not continuous on C(&y) N

—=d
N;f @ (Cf;o)). In particular there exists a {| € C(gg) with

disty1.2(g0,17,5m) (61, 1(C4))) < p (5.28)
and a sequence (1,) € C%(a™) such that

nn — ¢1in WH2([0, 11, R™) but
v =i ) A @1 =i~ N(¢y) in WHA(R,R™).

Taking a subsequence if needed, it can be assumed that for a pair §1, & € {a™, aty,

vy € DP(&1, &) forany n € N. (5.29)

Then the sequences (v,) and (1,) satisfy the assumptions of Lemma 5.18. Hence along a subsequence
lim 1(vy) = 1(q1) + Xo. (5.30)
n—+00

Since by definition g1(x) = ¢1(x) and go(x) = Eo(x) for x € [0, 1], by (5.28), |lq1 — 6}0||W1,z([0’1]’Rm) =& —
Sollw12qo.1).rmy < p <7/2. Then by (5.25), 1(q1) > 1(q0) — %ko and (P7) follows from (5.30) by choosing g; = v,
for n sufficiently large.

Remark 5.31. Since the component, K, of U in Proposition 5.2 is not compact, there is a sequence, (U,) C K which
does not have a convergent subsequence. Therefore either along a subsequence (a) Uy,lj0,1] — & € {£1, &2} or (b)
Unlio1— Q € S9. Hence along a subsequence, if (a) occurs, U, converges weakly to & while if (b), U,, converges to
a nontrivial chain of solutions.

For our final result, suppose as in Proposition 5.2, that V € C2¥ (R x R¥). Then the following result gives the
equivalence of 3° of §2 with an analogue in the present context of the assumption made by Cieliebak and Séré in [4].

Proposition 5.32. If V € C?"(R x R™), then C%(a™) = {a~} and C%(a*) = {a™} if and only if for any pair &, & €
{a™,a™}, the components of D (&1, &) are compact with respect to the WL2(R, R™) metric.

Proof. Let &1, € {a_, as} with ¥, ¢, being the appropriate normalizing function and J(u) = I (u + ¥, ¢,) for
ueE=W-2R,RM. By Proposition 3.32 in [7], we know that if C%a~)={a"} and C%(a*) = {at} then there
exist constants v > 0, ro > 0 and a countable family of sets {4; C E | j € N} such that

@ fuecE||J Wl <v, J(u) <d}CU;Aj,
(ii) if i # j then distg (A;, A;) > ro,
(iii) the Palais—Smale condition, (PS), holds in each set A i

By (i) and (ii), any component of D (&1, &) lies in one of these sets A ;. Since by (iii), the PS condition holds in A,
it follows that any component of DA, &) is compact. This shows that if C4a~)={a"}and C¢(at) = {aT}, then
any component of D¢ (&, &) is compact with respect to the W!-2(R, R"™) metric.
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To show that the reverse implication is true, it is sufficient to use Proposition 5.2 and a contradiction argument.
Indeed if C¢(a™) # {a~} or C%(a™) # {a™T}, Proposition 5.2 guarantees that there exists a pair £1, & € {a—,a™} and
a point U € DY (&1, &) whose component is not compact and the proof is complete.
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