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Abstract

We consider the Cauchy problem for the anisotropic (unbalanced) Allen–Cahn equation on Rn with n ≥ 2 and study the large 
time behavior of the solutions with spreading fronts. We show, under very mild assumptions on the initial data, that the solution 
develops a well-formed front whose position is closely approximated by the expanding Wulff shape for all large times. Such 
behavior can naturally be expected on a formal level and there are also some rigorous studies in the literature on related problems, 
but we will establish approximation results that are more refined than what has been known before. More precisely, the Hausdorff 
distance between the level set of the solution and the expanding Wulff shape remains uniformly bounded for all large times. 
Furthermore, each level set becomes a smooth hypersurface in finite time no matter how irregular the initial configuration may be, 
and the motion of this hypersurface is approximately subject to the anisotropic mean curvature flow Vγ = κγ + c with a small error 
margin. We also prove the eventual rigidity of the solution profile at the front, meaning that it converges locally to the traveling wave 
profile everywhere near the front as time goes to infinity. In proving this last result as well as the smoothness of the level surfaces, 
an anisotropic extension of the Liouville type theorem of Berestycki and Hamel (2007) for entire solutions of the Allen–Cahn 
equation plays a key role.
© 2018 L’Association Publications de l’Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved.

Résumé

Nous considérons le problème de Cauchy pour l’équation d’Allen–Cahn (de moyenne non nulle) anisotropique dans Rn avec 
n ≥ 2, et étudions le comportement en temps grand des solutions propageantes. Nous montrons, sous des hypothèses assez faibles 
sur la donnée initiale, que la solution développe un véritable front de propagation dont la position peut être approchée d’assez 
près, en temps grand, par une forme de Wulff en expansion. Un tel comportement peut être attendu formellement, et il existe aussi 
dans la littérature certaines études rigoureuses sur des problèmes analogues. Le principal objectif de cet article est d’établir des 
résultats d’approximation plus fins que ce qui était connu auparavant. Plus précisément, la distance de Hausdorff entre un ensemble 
de niveau de la solution et la forme de Wulff en expansion reste bornée uniformément en temps grand. De plus, chaque ensemble 
de niveau devient en temps fini une hypersurface régulière, quelque soit l’irrégularité de sa configuration initiale, et le mouvement 
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de cette hypersurface est régi (approximativement) par le flot de courbure moyenne anisotropique Vγ = κγ + c, avec une marge 
d’erreur petite. Nous prouvons aussi la rigidité asymptotique du profil de la solution, c’est-à-dire qu’il converge, à proximité du 
front et quand le temps tend vers l’infini, vers le profil de l’onde progressive. Une extension au cas anisotropique d’un théorème de 
type Liouville de Berestycki et Hamel (2007), portant sur les solutions entières de l’équation d’Allen–Cahn, joue un rôle clé dans 
la preuve de ce dernier résultat, ainsi que de la régularité des ensembles de niveau.
© 2018 L’Association Publications de l’Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved.
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1. Introduction

In this paper, we consider the asymptotic behavior of spreading fronts in an anisotropic Allen–Cahn type equation. 
More precisely, we consider the following Cauchy problem:{

ut = divap(∇u) + f (u), x ∈ R
n, t > 0, (a)

u(x,0) = u0(x), x ∈ R
n, (b)

(1)

where n ≥ 2, ap(p) denotes ∇p a(p), and u0(x) is bounded and sufficiently smooth. The function f is a bistable type 
nonlinearity that is smooth, say C2, and has exactly three zeros 0 < α < 1 with

f ′(0) < 0, f ′(α) > 0, f ′(1) < 0, (2)

and satisfies

1∫
0

f (s)ds > 0. (3)

The function a : Rn → R
+ in (1a) is strictly convex and homogeneous of degree two, namely a(λp) = λ2a(p), 

(∀λ ∈ R) and belongs to C2(Rn \ {0}) ∩ C1(Rn). Actually one can relax this condition slightly by requiring a to 
be only positively homogeneous, namely, a(λp) = λ2a(p), (∀λ > 0); see Appendix B. We further assume that there 
exists a positive constant � such that, for any p ∈R

n \ {0},

�−1|ξ |2 ≤
n∑

i,j=1

apipj
(p)ξiξj ≤ �|ξ |2, ξ ∈ R

n. (4)

The goal of the present paper is to study the spreading fronts of the solution of (1) and to give a rather detailed 
picture of their behavior, not only determining their rough asymptotic shape (i.e., the Wulff shape, as one would 
naturally expect) but also showing the eventual smoothness of the level surfaces and proving the asymptotic rigidity 
of the transition layers at the front position, neither of which has been known before except in very limited situations. 
Note that we derive these refined estimates not for a specially chosen class of initial data but for a rather large class of 
initial data (that are possibly sign-changing) as specified in (17)–(19). Thus our results will confirm the validity and 
universality of fine asymptotics of spreading fronts that are expected from formal analysis.

Now, for the convenience of the reader who are not familiar with anisotropic diffusion equations of the form (1a), 
let us make a few remarks on the term a(p). Condition (4) implies that a(p) is strictly convex, but the converse is not 
necessarily true. Equation (1a) can be rewritten formally as

ut =
n∑

i,j=1

apipj
(∇u)uxixj

+ f (u).

Therefore condition (4) is needed to ensure that equation (1a) be uniformly parabolic. Note that the functions apipj

are homogeneous of degree zero and are therefore bounded on Rn \ {0}, but are not necessarily continuous at p = 0
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(see Subsection 2.1). Thus, one cannot expect the solution u(x, t) to be classical. Hereafter we will deal with weak 
solutions of (1); see Definition 2.4.

The function a(p) describes the anisotropic nature of the diffusion. The function γ (p) := √
2a(p) is positively 

homogeneous of degree one and satisfies γ (p) = γ (−p). Its restriction γ0 = γ |Sn−1 : Sn−1 →R
+ is called the energy 

density function. Similar anisotropic energy functions appear in the study of crystal growth and anisotropic mean 
curvature flows, and are associated with the notion of the Wulff shape, which we define below; see, for instance, 
[15,29,28]. Conversely, if an energy density function γ0 : Sn−1 → R

+ satisfying γ (ν) = γ (−ν) is given, one can 
reconstruct the function a(p) by first extending it as a positively homogeneous function of degree one as:

γ (p) = γ0

(
p

|p|
)

|p|, p ∈R
n,

and then setting a(p) = (γ (p))2/2. The resulting function a(p) is homogeneous of degree two and satisfies

γ (p) =√2a(p). (5)

The energy density function γ0 and its extension γ lead to the following two notions: the Frank diagram F1 ⊂ R
n

and the Wulff shape W1 ⊂R
n. They are defined by

F1 = {p ∈R
n | γ (p) ≤ 1},

W1 = {x ∈R
n | γ ∗(x) ≤ 1},

where γ (p) is as in (5) and γ ∗(x) is the dual of γ (p) defined by

γ ∗(x) = sup{x · p | p ∈ F1} = sup
p∈Rn

x · p
γ (p)

= max
ν∈Sn−1

x · ν
γ (ν)

. (6)

This function γ ∗ is non-negative, convex and positively homogeneous of degree one, and satisfies γ ∗(x) = γ ∗(−x)

by the definition. Thus the Wulff shape is always convex, while the Frank diagram is convex if and only if a(p) is 
a convex function. In the present paper, since a(p) is assumed to be strictly convex in order for equation (1a) to be 
parabolic, the Frank diagram F1 and the Wulff shape W1 are both strictly convex. We note that the definition (6) is 
equivalent to γ ∗(x) = √

2a∗(x), where a∗(x) is the convex conjugate of a(p), see Lemma A.1 in Appendix A.
Since γ ∗(x) is a norm, it defines an anisotropic metric on Rn through the anisotropic distance function

γ ∗(x − y), x, y ∈R
n.

Then the Wulff shape W1 is the unit ball with respect to this anisotropic distance. We note that the equation (1a) 
reduces to the usual isotropic Allen–Cahn equation ut = 	u + f (u) in the case a(p) = |p|2/2. In this case, we have 
γ (p) = |p| and γ ∗(x) = |x|, therefore the corresponding Frank diagram F1 and Wulff shape W1 are both the usual 
unit ball in the Euclidean distance. As we will mention in Remark 1.6, some of the results in the present paper are 
new even in the isotropic case.

For later discussions, we introduce the notion of anisotropic signed distance function. Let 
 be a bounded domain 
with smooth boundary ∂
. The anisotropic signed distance function for 
 is defined by

dγ (x;
) =
⎧⎨⎩ min

y∈∂

γ ∗(x − y) if x /∈ 
, (a)

− min
y∈∂


γ ∗(x − y) if x ∈ 
. (b)
(7)

Then dγ (x; 
) = 0 if and only if x ∈ ∂
, and dγ (x; 
) > 0 (resp. < 0) if and only if x lies outside (resp. inside) of 

. Next we define the expanding Wulff shape WR(t) ⊂ R

n by

WR(t) = ρ(t;R)W1,

where ρ(t; R) is the solution of

ρ′(t;R) = − n − 1 + c, ρ(0;R) = R >
n − 1

, (8)

ρ(t;R) c
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and c is the positive constant defined in (14) below, which represents the speed of the traveling wave of the one-
dimensional Allen–Cahn equation. The condition R > (n − 1)/c in (8) guarantees that ρ(t; R) → ∞ as t → ∞. It is 
easily seen that ρ(t; R) satisfies

ρ(t;R) = R + ct − ((n − 1)/c) log t + o(log t), (9)

see also Lemma 3.5. The boundary of the set WR(t), denoted by ∂WR(t), coincides with the sphere of radius ρ(t; R)

in the anisotropic distance γ ∗(x) defined in (6), namely,

∂WR(t) = {x ∈R
n |γ ∗(x) = ρ(t;R)}.

Note that the anisotropic signed distance for WR(t), which is defined by (7) with 
 = WR(t), can simply be written 
as

dγ (x;WR(t)) = γ ∗(x) − ρ(t;R). (10)

The above identity follows from the trigonometric inequality |γ ∗(x) − γ ∗(y)| ≤ γ ∗(x − y) and the fact that γ ∗ is 
homogeneous of degree one. It is well known, and as we will see in Subsection 2.1, dγ (x; WR(t)) satisfies

∂tdγ = divap(∇dγ ) − c on ∂WR(t). (11)

Here, by the definition (10), the term −∂tdγ coincides with the anisotropic outward normal velocity of the surface 
∂WR(t) denoted by Vγ , while, as we will explain in Subsection 2.1, the term −divap(∇dγ ) represents the anisotropic 
mean curvature of ∂WR(t) denoted by κγ . Thus equation (11) implies that the motion of the surface ∂WR(t) is subject 
to the anisotropic mean curvature flow

Vγ = κγ + c. (12)

Furthermore, ∂WR(t) is an expanding self-similar solution of equation (12).
As we mentioned earlier, the goal of the present paper is to show that, under very mild assumptions on the initial 

value u0, the level surface 
(t) of the solution of (1) is well approximated by ∂WR(t), the boundary of the expanding 
Wulff shape. Such a result can naturally be anticipated formally if one pays attention to the close relation between 
equation (1a) and the anisotropic mean curvature flow (12), which can be established by a singular perturbation 
argument. Once the problem is reduced (formally) to (12), the approximation of solutions of (12) by ∂WR(t) can 
easily be shown by the comparison argument. However, the usual argument that establishes the link between (1a) and 
(12) works only on a finite time interval, therefore one has to be careful in using (12) as a replacement for (1a) if the 
main focus is the long time behavior as t → ∞. Our method in the present paper allows us to establish results on fine 
approximation of 
(t) by ∂WR(t) — including its smoothness and the direction of its normals — for a large class of 
solutions of (1).

Before presenting our main results, let us introduce some more notation. Let u(x, t) = �(x − ct) denote the 
traveling wave of the one-dimensional Allen–Cahn equation

ut = uxx + f (u), x ∈ R, t > 0. (13)

Here � and c satisfy⎧⎨⎩
�′′(z) + c�′(z) + f (�(z)) = 0, z ∈R, (a)
�(−∞) = 1, �(+∞) = 0, (b)
�(0) = α. (c)

(14)

Since f is a bistable type nonlinearity, the pair (c, �) is determined uniquely under the normalization condition (14c), 
where α is the constant defined in (2). It is also known that �′(z) < 0 for z ∈ R and that c > 0 if f satisfies (3). 
Moreover, there exist positive constants C� and λ such that

|�(z)|, |�′(z)|, |�′′(z)| ≤ C�e−λz, z ≥ 0, (15)

|�(z) − 1|, |�′(z)|, |�′′(z)| ≤ C�eλz, z ≤ 0. (16)
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Fig. 1. Generation and asymptotic behavior of the front in the problem (1).

In the Cauchy problem for equation (13), the traveling wave �(x − ct) is exponentially stable in L∞(R) under an 
appropriate class of initial perturbations. For details, see [9,14] for example. Throughout this paper, �(z) and c will 
denote the function and the constant defined in (14), and λ, C� will denote the positive constants defined in (15)–(16).

Our main results are the following.

Theorem 1.1 (Main theorem). For each m > 0 and η > 0, there exists a positive constant L such that, if the initial 
value u0 belongs to C2+θ (Rn) for some θ ∈ (0, 1) and satisfies

inf
x∈Rn

u0(x) ≥ −m, (17)

min|x|≤L
u0(x) ≥ α + η, (18)

lim sup
|x|→∞

u0(x) < α, (19)

for the constant α defined in (2), then there exist positive constants R, T , and a bounded smooth function l : Sn−1 ×
[T , ∞) → R such that the solution u(x, t) of (1) and its level set


(t) = {x ∈ R
n |u(x, t) = α}, (20)

satisfy

x ∈ 
(t) if and only if dγ (x;WR(t)) = l

(
x

|x| , t
)

, t ≥ T , (21)

where dγ (x; WR(t)) is as defined in (10). Moreover, one has

lim
t→∞ sup

x∈Rn\{0}

∣∣∣∣u(x, t) − �

(
dγ (x;WR(t)) − l

(
x

|x| , t
))∣∣∣∣= 0, (22)

lim
t→∞ sup

x∈Rn\{0}

∣∣∣∣∇u(x, t) − �′
(

dγ (x;WR(t)) − l

(
x

|x| , t
))

∇γ ∗(x)

∣∣∣∣= 0, (23)

limt→∞ u(0, t) → 1, and limt→∞ ∇u(0, t) = 0.

We note that, since dγ (x; WR(t)) = γ ∗(x) − ρ(t; R) by definition, we have

∇�
(
dγ (x;WR(t))

)= �′ (dγ (x;WR(t))
)∇γ ∗(x).

Thus (23) implies that ∇u(x, t) approaches ∇�(dγ (x; WR(t))) with a positional perturbation of l(x/|x|, t). Hence 
(22) and (23) are consistent.
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The conditions (18)–(19) are basically the same as those that guarantee occurrence of spreading fronts in the 
classical (isotropic) Allen–Cahn equation, see [3,21] for instance. Theorem 1.1 implies that, under such standard 
assumptions on the initial value u0(x), and with no other extra hypotheses, the solution u(x, t) develops a spreading 
front whose position and shape are well approximated by the boundary of the expanding Wulff shape ∂WR(t) for all 
large times (see Fig. 1). More precisely, we have the following corollary:

Corollary 1.2 (Smoothness and location of the front). Let the assumptions of Theorem 1.1 hold and let T > 0 be as 
in Theorem 1.1. Then, for each t ≥ T , the α-level set 
(t) defined by (20) is a smooth hypersurface and the region 
enclosed by 
(t) is star-shaped with respect to the origin. Furthermore, the Hausdorff distance

dH(
(t), ∂WR(t))

remains uniformly bounded for all t ≥ T .

Proof. The smoothness of 
(t) follows from (21) and the smoothness of l(ν, t). (Or it is a direct consequence of the 
fact that ∇u �= 0 around 
(t), which follows from (23) and �′(0) �= 0.) The boundedness of dH(
(t), ∂WR(t)) follows 
from (21) and the uniform boundedness of l(ν, t). The star-shapedness is a consequence of the fact that ν �→ l(ν, t) is 
a single-valued well-defined function on Sn−1. �
Corollary 1.3 (Convergence of the normals of 
(t)). Let the assumptions of Theorem 1.1 hold. For each ν ∈ Sn−1, 
let xν(t) denote the intersection point between 
(t) and the half-line {ξν | ξ > 0} for large t > 0. Then the Euclidean 
outward unit normal of 
(t) at xν(t) ∈ 
(t), denoted by n(xν(t)), satisfies

lim
t→∞n(xν(t)) = lim

t→∞
∇γ ∗(xν(t))

|∇γ ∗(xν(t))| = ∇γ ∗(ν)

|∇γ ∗(ν)| , uniformly in ν ∈ Sn−1, (24)

the right-hand side being equal to the (Euclidean) outward unit normal to the Wulff shape W1 = {x ∈R
n | γ ∗(x) ≤ 1}.

Proof. When x = xν(t) ∈ 
(t), we have dγ (x; WR(t)) − l(x/|x|, t) = 0 from (21). Thus, (23) gives

lim
t→∞

∣∣∇u(xν(t), t) − �′(0)∇γ ∗(xν(t))
∣∣= 0, uniformly in ν ∈ Sn−1,

and hence (24) follows. �
As we will see in the proof of Theorem 1.1 in Section 4, the smoothness of 
(t) (and that of the function l) follows 

from the fact that ∇u(x, t) �= 0 around 
(t) for all large t . This fact also implies that the coefficient app(∇u) is smooth 
around 
(t), and therefore the solution u(x, t) belongs to (and is bounded) in C2+θ,1+θ/2 there. Consequently, the 
convergence in (22) takes place in the sense of C2,1 around 
(t). This implies, in particular, that ut is uniformly 
bounded and uniformly positive around 
(t) for all sufficiently large t (see Lemma 4.8). These observations lead to 
the following result:

Theorem 1.4 (Asymptotic behavior of the front). Let the assumptions of Theorem 1.1 hold and let 
(t) be the α-level 
set of the solution u(x, t) defined by (20). Then the following hold:

(i) 
(t) is monotonically expanding for all large t ;
(ii) there exists a constant C > 0 such that

dH(
(t + τ),
(t)) ≤ Cτ for all sufficiently large t and all τ ≥ 0;
(iii) the function l : Sn−1 × [T , ∞) → R defined in Theorem 1.1 satisfies ∂t l(ν, t) → 0 as t → ∞ uniformly in 

ν ∈ Sn−1;
(iv) Vγ → c and κγ → 0 as t → ∞ uniformly on 
(t), where Vγ and κγ denote, respectively, the anisotropic normal 

velocity and the anisotropic mean curvature of 
(t) that appear in (12).
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Remark 1.5. The statement (iv) of the above theorem asserts that the law of motion of 
t is asymptotically given by 
Vγ = c as t → ∞, and that the effect of the curvature κγ on the motion of 
t becomes nearly negligible for large t . 
However, the long-time effect of the curvature is by no means negligible. Indeed, the boundary of the expanding Wulff 
shape ∂WR(t) evolves by the equation Vγ = κγ + c, and the presence of κγ in the above interface equation gives rise 
to the positional drift of order log(t) as shown in (9). The fact that 
t remains uniformly close to ∂WR(t) implies that 
the long-time curvature effect is non-negligible on the motion of 
t .

As we will show in Appendix A.3, for each ν ∈ Sn−1, equation (1a) has planar wave solution given in the form

u(x, t) = �(∇γ ∗(ν) · x − ct). (25)

The front of this solution propagates in the direction parallel to ∇γ ∗(ν) with the speed c/|∇γ (ν)| in the Euclidean 
distance. Note that the statement (22) in Theorem 1.1 can be rewritten as

lim
t→∞ sup

x∈Rn\{0}

∣∣∣∣u(x, t) − �

(
∇γ ∗(x) · x − ρ(t;R) − l

(
x

|x| , t
))∣∣∣∣= 0,

since γ ∗(x) = ∇γ ∗(x) · x by the homogeneity of γ ∗. We also note that

ρ(t;R) + l(ν, t) = ct + o(t) as t → ∞,

since ρ(t; R) = R + ct − ((n − 1)/c) log t + o(log t) as mentioned before and since l(ν, t) is bounded. In view of 
these, we see that (22) implies that the profile of the solution at the front converges to a planar wave solution of the 
form (25).

Remark 1.6. If the equation is isotropic and if the initial value satisfies u0 ≥ 0 and has compact support, then one can 
use the reflection argument of [22] to show that ∇u �= 0 outside the convex hull of the support of u0; hence 
(t) is 
smooth there. Furthermore, the same reflection argument shows that the inward normal lines to 
(t) always hit the 
convex hull of the support of u0, therefore the shape of 
(t) becomes more and more spherically symmetric as it 
expands toward infinity. However, such a reflection argument does not work in anisotropic equations. Furthermore we 
are not assuming that u0 has compact support, nor do we assume that u0 ≥ 0. Therefore the method of [22] cannot be 
applied to the present problem. Thus the results in Corollaries 1.2 and 1.3, as well as Theorem 1.4, are new even in 
the isotropic case.

We next give a simple example of the Frank diagram and the Wulff shape. Actually the equation in the following 
example reduces to the isotropic Allen–Cahn equation ut = 	u + f (u) by linear rescaling of coordinates, so this is a 
trivial case.

Example 1.7 (Linear anisotropy). Consider the equation

ut = Auxx + Buyy + f (u), (x, y) ∈ R
2, t > 0,

namely, the case where a(p, q) = Ap2/2 + Bq2/2. Then the convex conjugate of a(p, q) is a∗(x, y) = x2/(2A) +
y2/(2B), see Appendix A. The Frank diagram F1 and the Wulff shape W1 are both ellipses given by

F1 =
{
(p, q) ∈R

2
∣∣γ (p,q) =

√
Ap2 + Bq2 ≤ 1

}
,

W1 =
⎧⎨⎩(x, y) ∈ R

2
∣∣γ ∗(x, y) =

√
x2

A
+ y2

B
≤ 1

⎫⎬⎭ .

We note that, if a(p) is homogeneous of degree two and belongs to C2(Rn), it has to be a quadratic form as 
in Example 1.7. Therefore the corresponding equation is linear and hence has trivial anisotropy. This means that 
whenever we deal with nontrivial anisotropy, the derivatives (apipj

(p))i,j are necessarily discontinuous at p = 0 (at 
least for some i, j ). This is the reason why we assume somewhat weaker regularity: a ∈ C2(Rn \ {0}) ∩ C1(Rn). As a 
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consequence, we have to consider weak solutions of (1), see Definition 2.4 and Proposition 2.5 in Subsection 2.2 for 
details.

In Theorem 1.1, we did not specify how the function l(ν, t) behaves for large t . At present, we do not know if 
l(ν, t) has a limit l∗(ν) = limt→∞ l(ν, t) in general. This question is still open, while a partial answer was obtained in 
[31], where the author proves that such a limit exists in the isotropic equation if the initial data is a small perturbation 
(in H 1(Rn)) to the radially symmetric well-formed front.

Let us now make a brief (and very partial) review of related results. Spreading fronts for the isotropic equation

ut = 	u + f (u), x ∈ R
n, t > 0, (26)

where f (u) is either bistable or monostable type, was studied systematically in the pioneering paper [3], where they 
introduced the notion of “spreading speed” and proved that it coincides with the (minimal) speed of traveling waves. 
More precisely, they proved that, for any ε > 0, the solution u(x, t) converges to 1 as t → ∞ uniformly in the region 
|x| ≤ (c∗ − ε)t , while it converges to 0 as t → ∞ uniformly in the region |x| ≥ (c∗ + ε)t , where c∗ denotes the 
spreading speed. The paper [22] studies the isotropic Allen–Cahn equation (26) and, under the assumption that u0 is 
nonnegative and compactly supported and that u → 1 as t → ∞, proves that the spreading front becomes spherically 
symmetric in the C1 sense as t → ∞, and that the profile of u around the spreading front converges to that of the 
traveling wave. This result, which is proved by the plane reflection method, is similar to (22)–(23) of our Theorem 1.1
and Corollary 1.3, though we do not need to assume that u0 be nonnegative nor compactly supported. The papers 
[31,34] also deal with the isotropic Allen–Cahn equation (26) and show that the initial spherical asymmetry does 
not necessarily disappear as t → ∞. (In our terminology, their results give an example in which the function l(ν, t)
in (22) does not converge to a constant as t → ∞.) The paper [27] considers the equation on the hyperbolic space: 
ut = 	H u + f (u) in Hn, and studies the effect of the curvature of the underlying space Hn on the speed of spreading 
fronts. The paper [30] studies spreading fronts for spatially periodic reaction–diffusion equation on Rn (both for 
bistable and monostable nonlinearity) and derives the so-called Freidlin–Gärtner formula for the spreading speed, 
which implies that the asymptotic shape of the spreading front roughly converges to the Wulff shape associated with 
the homogenized equation. Unlike the spatially homogeneous problems, whether the solution develops a well-formed 
transition layer around the front or not is not known yet. The paper [8] introduces the notion of generalized transition 
fronts in a general unbounded domain in Rn, and [19] gives classification of generalized fronts for bistable equations 
on Rn.

The asymptotic behavior of solutions of (1) is closely related to suitable singular limits of the anisotropic Allen–
Cahn equation. Consider the following equation with a small parameter ε > 0:

uε
t = εdivap(∇uε) + 1

ε
f (uε), x ∈R

n, t ∈ [0, T ], (27)

where f is a bistable nonlinearity. When f is of unbalanced type such that 
∫ 1

0 f (s)ds �= 0, the case we treat in this 
paper, the front motion of the solution of (27) is governed by the equation Vγ = c in the sharp interface limit as ε → 0. 
Note also that the equation (27) is converted to (1a) through the rescaling x̃ = ε−1x, t̃ = ε−1t . On the other hand, when 
f is of balanced or slightly unbalanced type (namely, it depends on ε in such a way that 

∫ 1
0 fε(s)ds = O(ε)), one 

needs to use a different scaling, namely

uε
t = divap(∇uε) + 1

ε2 f (uε), (28)

and the corresponding interface equation in the sharp interface limit is given by Vγ = κγ or Vγ = c + κγ , respectively, 
where c is a suitable constant. Note that, in this case, the equation is converted to (1a) by the rescaling x̃ = ε−1x, 
t̃ = ε−2t . The singular limit problem for (28) has been studied in [1,12,13,18]. However, these results are valid only 
for finite time intervals, and hence they give no precise information about the asymptotic behavior of spreading fronts 
of equation (1a) as t → ∞, which is the main theme of the present paper.

As far as the authors know, there is no earlier rigorous study of the long-time behavior of solutions of the anisotropic 
Allen–Cahn equation on Rn. On the other hand, there are many results on the long-time behavior of the correspond-
ing surface evolution equations and related problems. The papers [29,33] prove that the asymptotic shape of closed 
hypersurfaces that evolve by the crystal growth Vγ = c in Rn is characterized by the Wulff shape. This result can be 
obtained by the comparison argument. Note that, for this type of equation, the Frank diagram need not be convex for 
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the equation to be well-posed, so the corresponding Wulff shape may have corners, which adds extra subtlety to the 
comparison argument. In [29,33], this technical subtlety is handled by converting the equation to the Hamilton–Jacobi 
equation and applying the comparison principle for viscosity solutions of the Hamilton–Jacobi equation. The papers 
[20,32] study the equation Vγ = κγ + c in Rn or a more generalized version of this equation and prove that the region 

(t) enclosed by the evolving hypersurface satisfies 
(t)/t → CW1 as t → ∞, where C is some positive constant 
and W1 is the Wulff shape determined by γ . More precisely, the paper [32] derives this result by assuming the function 
γ to be C2 and strictly convex (as in the present paper) and applying the comparison argument for viscosity solutions, 
from which one obtains

WR1(t) ⊂ 
(t) ⊂ WR2(t), t > 0. (29)

In [20], convergence results similar to [32] are proved for a more general equation of the form Vγ = −tr [E(n)∇n]+c, 
where n denotes the Euclidean outward unit normal to ∂
(t) and E(n) is an arbitrary symmetric matrix that is positive 
semi-definite and continuous in n ∈ Sn−1. Here the convexity of γ is not necessarily assumed, but the equation is 
still (degenerate) parabolic because of the positive semi-definiteness of E(n). Note that −tr [E(n)∇n] = κγ when 
E(n) = ∇2γ (n); in this case γ has to be convex for E(n) to be positive semi-definite. The proofs in [20] also rely on 
the comparison argument for viscosity solutions.

We note that comparison arguments alone cannot tell whether or not the boundary ∂
(t) eventually become ade-
quately regular. Nor do they show if the normals to ∂
(t) converge to those of WR(t) as t → ∞. The results of the 
present paper answer these questions for the level surfaces of solutions of (1); see Theorem 1.1 and Corollary 1.3.

Finally, we remark that the surface evolution equations discussed above can also be obtained as sharp interface 
limits of models other than the Allen–Cahn equation. In [16], the authors study a stochastic interface model, — the 
so-called the Ginzburg–Landau ∇φ-interface model —, and show that the interface dynamics become deterministic in 
a suitable large scale limit and are described by anisotropic mean curvature flows. There is also an extensive literature 
on the phase field models with anisotropic free energy and their sharp interface limit; see, for example, [10,11,17] and 
the references therein.

The rest of the paper is organized as follows. In Section 2, we make some preparations. In Subsection 2.1, we 
recall the notion of the anisotropic mean curvature flow and its basic properties. In Subsection 2.2, we define weak 
solutions of (1) and prove their existence and uniqueness for each initial value u0 (Proposition 2.5), and establish the 
comparison principle for weak solutions (Proposition 2.6).

In Section 3, we give relatively refined upper and lower bounds for the solution u(x, t) by constructing a pair of 
comparison functions whose level sets are the expanding Wulff shapes (Proposition 3.1). This immediately implies 
that the level surface 
(t) of the solution u remains within bounded distance from ∂WR(t) for all large t . To prove 
this proposition, we first give a rough estimate of the solution near the origin and near the infinity (Lemma 3.2) 
in Subsection 3.1. In Subsection 3.2, we construct a fine set of super-solutions and sub-solutions (Lemma 3.7). In 
Subsection 3.3, we give the proof of Proposition 3.1.

In Section 4, we complete the proof of Theorems 1.1 and 1.4 by showing the fine structure of transition layers 
around the spreading front. First, in Subsection 4.1, we prove the local convergence of the solution to the planar waves 
in the topology of BC

1,0
loc (R

n × R) (Lemma 4.1). Next, in Subsection 4.2, we show the strict monotonicity of the 
solution around the front (Lemma 4.3). Finally, in Subsections 4.3 and 4.4, we complete the proof of Theorems 1.1
and 1.4, respectively.

The appendix is devoted to giving supplementary results concerning anisotropy, and to proving Lemma 4.2, which 
states that any entire solution of (1a) that lies between two planar waves for all t ∈ R is a planar wave. This lemma 
generalizes Theorem 3.1 of [7] to anisotropic equations.

We end this section by summarizing notation for function spaces in the present paper. Let D be a domain in Rn

or Rn+1. Ck(D) denotes the set of functions defined on D whose derivatives up to the k-th order are continuous, 
and Wk,∞(D) is the set of functions whose weak derivatives up to the k-th order belong to L∞(D). For any non-
negative integer k, we define BCk(D) := Ck(D) ∩ Wk,∞(D) and ‖ · ‖BCk(D) := ‖ · ‖Wk,∞(D). For θ ∈ (0, 1), Cθ(D)

denotes the Hölder space, namely, the set of functions defined on D that are bounded and uniformly Hölder contin-
uous with exponent θ . The set of functions in BCk(D) whose k-th order derivatives belong to Cθ(D) is denoted by 
Ck+θ (D).

Let u(x, t) be a function defined on a domain Q in Rn × R. By u ∈ C1,0(Q) and u ∈ C2,1(Q), we mean u, uxi
∈

C0(Q) and u, uxi
, uxixj

, ut ∈ C0(Q) for all 1 ≤ i, j ≤ n, respectively. We define BC1,0(Q) and BC2,1(Q) in a similar 
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way. For θ ∈ (0, 1), Cθ,θ/2(Q) denotes the set of functions defined on Q that are bounded and uniformly Hölder 
continuous with exponent θ and θ/2 with respect to x and t , respectively. By u ∈ C1+θ,θ/2(Q) and u ∈ C2+θ,1+θ/2(Q), 
we mean u, uxi

∈ Cθ,θ/2(Q) and u, uxi
, uxixj

, ut ∈ Cθ,θ/2(Q) for all 1 ≤ i, j ≤ n, respectively.

2. Preliminaries

In this section, we make preparations for discussions in later sections. In Subsection 2.1, we recall basic properties 
of homogeneous functions and define notions concerning the anisotropic mean curvature flow. In Subsection 2.2, we 
define weak solutions of the problem (1), and sketch the proof of their unique existence and regularity. We also recall 
the comparison principle for weak sub- and super-solutions of (1), which is a main tool for our later analysis.

2.1. Anisotropic mean curvature flow and related notions

We first summarize basic properties of a(p). Throughout this paper, we assume that a(p) in equation (1a) belongs 
to C2(Rn \ {0}) ∩ C1(Rn) and is strictly convex and homogeneous of degree two. Namely

a(λp) = λ2a(p), λ ∈R,p ∈R
n.

Then ap : Rn →R
n and app : Rn →R

n2
are homogeneous of degree one and zero, respectively:

ap(λp) = λap(p), ap(p) · p = 2a(p), λ ∈R,p ∈R
n,

app(λp) = app(p), app(p)p = ap(p), λ ∈ R \ {0},p ∈ R
n \ {0}.

The function app = (apipj
) is bounded on Rn \ {0}, but we do not assume continuity of app at p = 0. In fact, as we 

mentioned earlier, app being continuous at p = 0 implies that app is constant on Rn, which implies that a(p) is a 
quadratic polynomial and the equation (1a) has linear (hence trivial) anisotropy. We next summarize basic properties 
of γ (p) and its dual γ ∗(x) defined by (6). They are frequently used in our computations.

Remark 2.1 (Basic properties of γ (p) and γ ∗(x)). By the definition, both γ (p) and its dual γ ∗(x) are positively 
homogeneous of degree one and symmetric in the sense that γ (p) = γ (−p) and γ ∗(x) = γ ∗(−x), or equivalently

γ (λp) = |λ|γ (p), γ ∗(λx) = |λ|γ ∗(x), λ ∈R, p, x ∈R
n. (30)

Consequently, ∇γ (p) and ∇γ ∗(x) are positively homogeneous of degree zero and satisfy ∇γ (−p) = −∇γ (p) and 
∇γ ∗(−x) = −∇γ (x). Thus,

∇γ (λp) = λ

|λ|∇γ (p), ∇γ ∗(λx) = λ

|λ|∇γ ∗(x), (31)

∇γ (p) · p = γ (p), ∇γ ∗(x) · x = γ ∗(x), (32)

for any λ ∈R \ {0} and any p, x ∈R
n \ {0}. Moreover, we have

γ ∗(∇γ (p)) = 1, γ (∇γ ∗(x)) = 1, (33)

γ (p)∇γ ∗(∇γ (p)) = p, γ ∗(x)∇γ (∇γ ∗(x)) = x, (34)

for any p, x ∈R
n \ {0}. For the proof of (33)–(34), see Remark A.6 in Subsection A.1. See also [5,6].

Next we define anisotropic normal vector, anisotropic mean curvature, and anisotropic normal velocity. First we 
recall the definition of anisotropic signed distance function dγ (x; 
(t)), where 
(t) is any moving domain with 
smooth boundary ∂
(t). Then it is smooth in a tubular neighborhood of ∂
(t) and (33) implies

γ (∇dγ (x;
(t))) = 1, x ∈ ∂
(t). (35)

The proof of (35) is also found in [5,6]. Now we are ready to define the anisotropic mean curvature and related notions. 
These are basically the same as found in [1,4,5]; see also Appendix A for more details.
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Definition 2.2. At each point of ∂
(t), the Euclidean outward normal vector n and the anisotropic outward normal 
vector νγ are given by

n = ∇dγ

|∇dγ | , νγ = ∇γ (n)
(=: ∇γ (p)|p=n

)
. (36)

The Euclidean normal velocity V , the anisotropic normal velocity Vγ , and the anisotropic mean curvature κγ on ∂
(t)

are defined by

V = − ∂tdγ

|∇dγ | , Vγ = V

γ (n)
, κγ = −divνγ , (37)

where n is the Euclidean outward normal vector given in (36) and “div” in (37) is taken in the usual Euclidean sense 
in Rn. (See Fig. 3 in Section A.2 for the geometric interpretation of the anisotropic normal vector νγ .)

We now recall the notion of the anisotropic mean curvature flow. First, we note that the anisotropic mean curvature 
κγ and the anisotropic normal velocity Vγ defined in (37) are rewritten as

κγ = −divap(∇dγ ), Vγ = −∂tdγ , on ∂
(t). (38)

Indeed, since ap(p) = γ (p)∇γ (p) by the definition, we have

ap(∇dγ ) = γ (∇dγ )∇γ (∇dγ ) = ∇γ (∇dγ ) = ∇γ

( ∇dγ

|∇dγ |
)

= νγ ,

where the second equality follows from (35) and the last equality follows from (36). Thus the former identity in (38)
follows. The latter identity in (38) is shown as follows:

Vγ = V

γ (n)
= − ∂tdγ

|∇dγ |γ
( ∇dγ

|∇dγ |
) = − ∂tdγ

γ (∇dγ )
= −∂tdγ ,

where the last equality comes from (35). Consequently, the anisotropic mean curvature flow (with a constant driving 
term) Vγ = κγ + c is represented in terms of the anisotropic signed distance function dγ by

∂tdγ = divap(∇dγ ) − c, on ∂
(t). (39)

Remark 2.3 (Wulff shape and the mean curvature flow). For the expanding Wulff shape WR(t), the anisotropic signed 
distance function for ∂WR(t) is given by dγ (x; WR(t)) = γ ∗(x) − ρ(t; R) as in (10). Thus the anisotropic normal 
vector for ∂WR(t) is given by νγ = ∇γ (∇γ ∗(x)). This and (34) yield

κγ = −div
(∇γ (∇γ ∗(x))

)= −div

(
x

γ ∗(x)

)
= − n − 1

γ ∗(x)
on ∂WR(t).

Since γ ∗(x) = ρ(t; R) on ∂WR(t), this implies

κγ = − n − 1

ρ(t;R)
on ∂WR(t).

Hence the anisotropic mean curvature is constant on WR(t). On the other hand, since ρ(t; R) satisfies (8), the second 
identity in (38) gives

Vγ = −∂t

(
γ ∗(x) − ρ(t;R)

)= ρ′(t;R) = − n − 1

ρ(t;R)
+ c.

Thus dγ (x; WR(t)) satisfies Vγ = κγ + c (and (39)). This means that ∂WR(t) is an expanding self-similar solution of 
the anisotropic mean curvature flow.
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2.2. Weak solutions and the comparison principle

In this subsection, we first state the definitions of weak solutions, weak sub- and super-solutions to the problem 
(1). We then show the unique existence and regularity of weak solutions, and prove the comparison principle for weak 
sub- and super-solutions. There is an extensive literature on weak solutions of parabolic equations; see for instance, 
[23,24]. However, those existence results are mainly for problems on bounded domains therefore they do not apply 
directly to our problem. Thus, for the convenience of the reader, we state and prove basic properties of weak solutions 
of (1) in this subsection. The notation for the function spaces used here are given at the end of Introduction.

Definition 2.4 (Weak solutions). By a weak solution to the problem (1), we mean a function u(x, t) ∈ BC1,0(Rn ×
[0, ∞)) that satisfies Lw[u] = 0 for any ϕ ∈ C∞

0 (Rn × [0, ∞)), where Lw is defined by

Lw[u] = −
∫
Rn

uϕ dx
∣∣
t=0 +

∞∫
0

∫
Rn

−uϕt + ap(∇u) · ∇ϕ − f (u)ϕ dx dt. (40)

A function u(x, t) ∈ BC1,0(Rn × [0, ∞)) is called a weak sub-solution (resp. weak super-solution) if it satisfies 
Lw[u] ≤ 0 (resp. Lw[u] ≥ 0) for any ϕ ∈ C∞

0 (Rn × [0, ∞)) with ϕ ≥ 0.

As we see in Definition 2.4 above, throughout this paper, we only consider weak solutions that are bounded on 
R

n × [0, ∞). We note that if u ∈ C2,1(Rn × [0, ∞)) ∩ BC1,0(Rn × [0, ∞)) is a solution (resp. sub-solution, super-
solution) of the equation (1a) in the usual classical sense, it is also a weak solution (resp. weak sub-solution, weak 
super-solution) in the sense of Definition 2.4.

To show the existence of the weak solution u(x, t) of (1), we first consider an approximate equation in which a(p)

is replaced by its mollified one. Let η : Rn → R be a smooth non-negative function that has compact support and 
satisfies 

∫
Rn η(x)dx = 1. We define the smooth function aε(p) with ε > 0 by

aε(p) = (ηε ∗ a)(p), ηε(x) = 1

ε
η
(x

ε

)
. (41)

By replacing a(p) in (1a) by aε(p), we consider the Cauchy problem of the form{
uε

t = divaε
p(∇uε) + f (uε), x ∈ R

n, t > 0, (a)
uε(x,0) = u0(x), x ∈ R

n. (b)
(42)

We note that the function aε(p) satisfies

lim
ε→0

‖aε − a‖W 1,∞(Rn) = 0,

�−1|ξ |2 ≤
n∑

i,j=1

aε
pipj

(p)ξiξj ≤ �|ξ |2, p, ξ ∈R
n, ε > 0,

where � is the constant given in (4). It is well known, see for instance [23,24], that the problem (42) has a unique clas-
sical solution uε ∈ C2+θ,1+θ/2(Rn × [0, ∞)) when u0 ∈ C2+θ (Rn). The following proposition gives a weak solution 
u of (1) as the limit of a sequence of the classical solutions {uε} of (42).

Proposition 2.5 (Unique existence and regularity of weak solutions). Assume u0 ∈ C2+θ (Rn) for some θ ∈ (0, 1). 
Then the following hold:

(i) There exists a unique weak solution u(x, t) of (1) in the sense of Definition 2.4 that satisfies

u ∈ C1+θ,θ/2(Rn × [0,∞)), u ∈ C
2+θ,1+θ/2
loc (Rn × [0,∞) \ ∂Q),

where Q = {(x, t) ∈ R
n × [0, ∞) | ∇u(x, t) = 0} and ∂Q denotes its boundary.
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(ii) There exists a sequence ε1 > ε2 > · · · → 0 such that the sequence of the classical solutions {uεi } of (42) with the 
same initial value u0 as that of (1) satisfies

uεi → u in BC
1,0
loc (Rn × [0,∞)) as i → ∞.

Proof. The problem (42) has a unique classical solution uε ∈ C2+θ,1+θ/2(Rn × [0, ∞)), since aε and u0 in (42)
are both sufficiently smooth by the assumptions, where ‖uε‖C2+θ,1+θ/2(Rn×[0,∞)) may blow up as ε → 0, however, it 
satisfies

‖uε‖C1+θ,θ/2(Rn×[0,∞)) ≤ C, (43)

with a constant C that is independent of ε > 0. For details, see Theorems 1.1 and 3.1 in Chapter V of [23] for instance. 
Therefore the sequence {uε} is relatively compact in BC

1,0
loc (R

n × [0, ∞)). Hence, there exist a sequence {εi} with 
ε1 > ε2 > · · · → 0 and a function u(x, t) defined on Rn × [0, ∞) such that

uεi → u in BC
1,0
loc (Rn × [0,∞)) as i → ∞.

Moreover, it is clear from the definition of the norm in C1+θ,θ/2 that

‖u‖C1+θ,θ/2(Rn×[0,∞)) ≤ C,

where C is the constant in (43). Since uεi satisfies the problem (42) also in the weak sense of Definition 2.4, we 
have Lw[uεi ] = 0 for any ϕ ∈ C∞

0 (Rn × [0, ∞)). By passing to the limit as i → ∞, we obtain Lw[u] = 0 for any 
ϕ ∈ C∞

0 (Rn × [0, ∞)), since the support of ϕ is compact and the convergences of uεi → u and aεi → a are in the 
senses of BC

1,0
loc (Rn × [0, ∞)) and W 1,∞(Rn), respectively. Thus, u(x, t) is the weak solution of (1) in the sense of 

Definition 2.4.
Next, we show u ∈ C

2+θ,1+θ/2
loc (Rn × [0, ∞) \ ∂Q). At any interior point of Q, since ∇u = 0 in its neighborhood, 

u is spatially constant and therefore satisfies ut = f (u), with f being smooth. Thus u is locally a smooth function of 
t alone; hence, in particular, u ∈ C2+θ,1+θ/2 in that neighborhood. At any exterior point of Q, the function ap(∇u) is 
sufficiently regular in its neighborhood, since a(p) is C2 in Rn \ {0}. Consequently, we have u ∈ C2+θ,1+θ/2 there, by 
the usual interior Schauder estimate.

Finally, the uniqueness of the weak solution follows from the comparison principle for weak solutions given by 
Proposition 2.6 below. This completes the proof. �
Proposition 2.6 (Comparison principle). Let u−(x, t) and u+(x, t) be a weak sub-solution and a weak super-solution 
of (1) in the sense of Definition 2.4, respectively. Assume that they belong to C1+θ,θ/2(Rn×[0, ∞)) for some θ ∈ (0, 1), 
and that u−(x, 0) ≤ u+(x, 0) for x ∈ R

n. Then

u−(x, t) ≤ u+(x, t), x ∈R
n, t ≥ 0.

The comparison principle for weak solutions on a bounded domain is rather standard, but the one for an unbounded 
domain does not follow immediately from the one for bounded domains. Therefore, for the convenience of the reader, 
we prove the above proposition. Our proof is based on the strong maximum principle for weak solutions and a sliding 
argument. We begin with the following auxiliary lemma.

Lemma 2.7. Let u(x, t) be a weak sub- (resp. super-) solution of (1) in the sense of Definition 2.4. Suppose that 
it belongs to C1+θ,θ/2(Rn × [0, ∞)) for some θ ∈ (0, 1). Then, for any sequence {xi}i=1,2,··· ⊂ R

n, there exist a 
subsequence {xki

} and a weak sub- (resp. super-) solution w(x, t) in the sense of Definition 2.4 such that

u(x + xki
, t) → w(x, t) in BC

1,0
loc (Rn × [0,∞)) as i → ∞.

Proof. Define ui(x, t) = u(x + xi, t). Then, we have

‖ui‖C1+θ,θ/2(Rn×[0,∞)) = ‖u‖C1+θ,θ/2(Rn×[0,∞)) < ∞, for i = 1,2, · · · .
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Thus the sequence {ui} is relatively compact in BC
1,0
loc (R

n × [0, ∞)). Hence, there exist a subsequence {uki } of {ui}
and a function w(x, t) defined on Rn × [0, ∞) such that

uki → w in BC
1,0
loc (Rn × [0,∞)) as i → ∞.

On the other hand, since the convergence to w is in the sense of BC
1,0
loc and since ap is continuous, by passing to the 

limit as i → ∞, Lw[uki ] ≤ 0 (resp. Lw[uki ] ≥ 0) gives Lw[w] ≤ 0 (resp. Lw[w] ≥ 0) for any ϕ ∈ C∞
0 (Rn × [0, ∞)). 

This completes the proof. �
We are now ready to prove Proposition 2.6.

Proof of Proposition 2.6. Since u± ∈ C1+θ,θ/2(Rn × [0, ∞)) by the assumption, they are both bounded on Rn ×
[0, ∞). Thus, the constant m below is well-defined

m = sup
x∈Rn,t∈[0,∞)

e−Mt(u− − u+).

Assume m > 0. Then there exists a sequence {(xi, ti )} ⊂ R
n × [0, ∞) such that

m = lim
i→∞ e−Mti (u−(xi, ti) − u+(xi, ti)).

Since we have lim supt→∞ supx∈Rn e−Mt(u− −u+) ≤ 0 by the boundedness of u±, we find that {ti} is bounded. Thus, 
we assume without the loss of generality that limi→∞ ti = t∗ holds for some t∗ > 0. From Lemma 2.7, by choosing 
a subsequence, which we again denote by {(xi, ti )}, we have a weak sub-solution v−(x, t) and a weak super-solution 
v+(x, t) such that

u−(x + xi, t) → v−(x, t) and u+(x + xi, t) → v+(x, t),

in BC
1,0
loc (Rn × [0, ∞)) as i → ∞. Define the function w = e−Mt(v− − v+). Then it satisfies

wt −
n∑

i,j=1

∂

∂xi

(
Aij (x, t)wxj

)− (B(x, t) − M)w ≤ 0,

in the weak sense, where Aij and B are defined by

Aij (x, t) =
1∫

0

apipj
(∇v+ + θ∇(v− − v+))dθ, B(x, t) =

1∫
0

f ′(v+ + θ(v− − v+))dθ.

We note that Aij ∈ L∞(Rn) and is positively definite. Since v± are both bounded by the assumption, we can choose 
M large enough to satisfy B(x, t) − M ≤ 0. Thus, we can apply the strong maximum principle for weak solutions 
given by Theorem 6.25 in [24], and obtain a contradiction. Indeed, w satisfies

w(0, t∗) = e−Mt∗(v−(0, t∗) − v+(0, t∗)) = lim
i→∞ e−Mti (u−(xi, ti) − u+(xi, ti)) = m > 0,

and satisfies w(x, 0) ≤ 0 for x ∈R
n. This contradiction implies m ≤ 0. �

The following lemma is a slight modification of Lemma 2.7. This will be used in Section 4.

Lemma 2.8 (Construction of weak entire solution). Let u(x, t) be a weak solution in the sense of Definition 2.4 with 
an initial value u0 ∈ C2+θ (Rn) for some θ ∈ (0, 1). Then, for any sequence {(xi, ti )} ⊂ R

n × [0, ∞) with 0 < t1 <

t2 < · · · → ∞, there exist a subsequence {(xki
, tki

)} and a function w(x, t) defined on Rn ×R such that

(i) u(x + xki
, t + tki

) → w(x, t) in BC
1,0

(Rn ×R) as i → ∞.
loc
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(ii) w(x, t) is a weak entire solution of wt = divap(∇w) + f (w), namely, it satisfies∫
R

∫
Rn

−wϕt + ap(∇w) · ∇ϕ − f (w)ϕ dx dt = 0, (44)

for any ϕ ∈ C∞
0 (Rn ×R). Moreover, one has w ∈ C1+θ,θ/2(Rn ×R).

Proof. Define ui(x, t) = u(x + xi, t + ti ). Since u ∈ C1+θ,θ/2(Rn × [0, ∞)) from Proposition 2.5, we have

‖ui‖C1+θ,θ/2(Rn×[−ti ,∞)) = ‖u‖C1+θ,θ/2(Rn×[0,∞)) < ∞, for i = 1,2, · · · .

Thus the sequence {ui} is relatively compact in BC
1,0
loc (R

n ×R). Hence, there exist a subsequence {uki } of {ui} and a 
function w(x, t) defined on Rn ×R such that

uki → w in BC
1,0
loc (Rn ×R) as i → ∞.

Moreover, w ∈ C1+θ,θ/2(Rn × R) holds, since it is clear from the definition of the norm in C1+θ,θ/2 that 
‖w‖C1+θ,θ/2(Rn×R) = ‖u‖C1+θ,θ/2(Rn×[0,∞)). On the other hand, uki satisfies

−
∫
Rn

uki ϕ dx
∣∣
t=−tki

+
∞∫

−tki

∫
Rn

−uki ϕt + ap(∇uki ) · ∇ϕ − f (uki )ϕ dx dt = 0,

for any ϕ ∈ C∞
0 (Rn × [−tki

, ∞)). Since the convergence to w is in the sense of BC
1,0
loc (Rn × R) and since ap is 

continuous, by passing to the limit as i → ∞, we have (44) for any ϕ ∈ C∞
0 (Rn ×R). This completes the proof. �

3. Approximation by the Wulff shape

The aim of this section is to prove Proposition 3.1 below, which gives an upper and a lower bound for the solution 
u(x, t) of (1) at large time. It roughly states that the solution u(x, t) is sandwiched between two functions whose level 
sets both coincide with the expanding Wulff shapes at slightly different time phases. This fact will be important for 
the analyzes in Section 4. We also note that part of Corollary 1.2 follows immediately from Proposition 3.1.

Proposition 3.1 (Upper and lower bounds for u(x, t)). For each m > 0 and η > 0, there exists a positive constant L
such that, if the initial value u0 belongs to C2+θ (Rn) for some θ ∈ (0, 1) and satisfies

inf
x∈Rn

u0(x) ≥ −m, (45)

min|x|≤L
u0(x) ≥ α + η, (46)

lim sup
|x|→∞

u0(x) < α, (47)

for the constant α defined in (2), then there exist positive constants T , R, and K such that the solution u(x, t) of (1)
satisfies

W−(x, t) ≤ u(x,T + t) ≤ W+(x, t), x ∈ R
n, t ≥ 0,

for the functions

W±(x, t) = �(dγ (x;WR(t)) ∓ K) ± 2(1 + t)−
3
2 ,

where dγ (x, WR(t)) and � are defined in (10) and (14), respectively.
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3.1. Rough generation of the front

In this subsection, we prove Lemma 3.2 below, which gives a preliminary estimate for front propagation. It roughly 
states that, under the assumptions on u0 as in Proposition 3.1, the solution u(x, t) becomes very close to 1 on a large 
area around the origin, and very close to 0 faraway from the origin, after a certain lapse of time.

Lemma 3.2 (Rough generation of the front). For any positive constants m, η, δ and R, there exist positive constants 
L, T , and K such that, if the initial value u0 belongs to C2+θ (Rn) for some θ ∈ (0, 1) and satisfies

inf
x∈Rn

u0(x) ≥ −m, (48)

min|x|≤L
u0(x) ≥ α + η, (49)

lim sup
|x|→∞

u0(x) < α, (50)

for the constant α defined in (2), then the solution u(x, t) of (1) satisfies

−δ ≤ u(x,T ) ≤ 1 + δ, x ∈ R
n, (51)

u(x,T ) ≤ δ, |x| ≥ K, (52)

u(x,T ) ≥ 1 − δ, |x| ≤ R. (53)

Before proving Lemma 3.2, we introduce two auxiliary lemmas. Lemma 3.3 below is used to prove the estimate 
(52) in Lemma 3.2.

Lemma 3.3 (Super-solutions with one-dimensional profiles). Let α∗ and M be any given constants satisfying α∗ ∈
(0, α) and M > 1. Then there exist positive constants σ and β such that, for any ν ∈ Sn−1 and any K > 0, the 
function u+(x, t; ν) defined by

u+(x, t;ν) = M�(ν · x − σ t − K) + α∗e−βt ,

satisfies L[u+] := u+
t − divap(∇u+) − f (u+) ≥ 0 in the classical sense.

Proof. It is known (see Lemma 2.2 of [26] for instance) that there exists a positive constant k such that

|�′′(s)| ≤ −k�′(s), s ∈ R. (54)

Set δ0 = min{α − α∗, M − 1}/2, where we note that α∗ + δ0 < α < 1 < M − δ0. Since f is of bistable type as in (2), 
we can choose positive constants μ1 and μ2 such that

−f (s) ≥ μ1s, 0 ≤ s ≤ α∗ + δ0, (55)

−f (s) ≥ μ2, M − δ0 ≤ s ≤ M + α∗. (56)

Set β = min{μ1, μ2/α∗} and let σ be a positive constant satisfying

min
ν∈Sn−1

σ − k(γ (ν))2 > 0. (57)

We compute L[u+]. By noting that ∇u+ = M�′ν with M�′ < 0, it follows from (30) and (31) (with λ < 0) in 
Remark 2.1 that

γ (∇u+) = γ (M�′ν) = −M�′γ (ν),

∇γ (∇u+) = ∇γ (M�′ν) = −∇γ (ν).

Thus, since ap(p) = γ (p)∇γ (p) by the definition, we have

divap(∇u+) = div
(
M�′γ (ν)∇γ (ν)

)= M�′′γ (ν)∇γ (ν) · ν = M�′′(γ (ν))2.
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This, together with (54), implies

L[u+] = −σM�′ − βα∗e−βt − (γ (ν))2M�′′ − f (M� + α∗e−βt )

≥ −(σ − k(γ (ν))2)M�′ − βα∗e−βt − f (M� + α∗e−βt ).

When M� ∈ (0, δ0], by using (55) and (57), we have

L[u+] ≥ −βα∗e−βt + μ1(M� + α∗e−βt ) ≥ (μ1 − β)α∗e−βt .

Hence L[u+] ≥ 0, since β ≤ μ1. Next, when M� ∈ [M − δ0, M), by using (56) and (57), we have

L[u+] ≥ −βα∗e−βt + μ2.

Hence again L[u+] ≥ 0 since β ≤ μ2/α∗. Finally, when M� ∈ (δ0, M − δ0), we have

L[u+] ≥ (σ − k(γ (ν))2) inf
δ0<M�<M−δ0

(−M�′) − β + min
δ0≤s≤M−δ0+α∗

f (s).

Since infδ0<M�<M−δ0(−M�′) > 0 holds from �′ < 0, by choosing σ large enough if necessary, we have L[u+] ≥ 0. 
This completes the proof. �

The following lemma is used to prove the estimate (53) in Lemma 3.2. The key argument in the proof of Lemma 3.4
is the upper estimate for fundamental solutions given by [2], which allows us to derive an estimate that is independent 
of ε in aε in (42a).

Lemma 3.4. Let uε(x, t) be the classical solution of (42). For any positive constants m, η, δ, R, and T∗, there exist 
constants L > 0 and T ≥ T∗ that are both independent of ε such that, if the initial value u0 ∈ C2+θ (Rn) satisfies

inf
x∈Rn

u0(x) ≥ −m, (58)

min|x|≤L
u0(x) ≥ α + η, (59)

for the constant α defined as in (2), then one has

uε(x,T ) ≥ 1 − δ, |x| ≤ R. (60)

Proof. We assume u0 ≤ α + η + 1 without the loss of generality. Indeed, for a general u0 satisfying (58)–(59), we 
choose ũ0 that satisfies (58)–(59) and ũ0 ≤ u0, ũ0 ≤ α + η + 1. Once we prove the lower estimate (60) for such ũ0, 
the result for the general u0 follows immediately from the comparison theorem.

Let L be a positive constant to be determined later. By the assumptions on u0, we can choose a function v0 ∈
C2+θ (Rn) that satisfies

v0(x) = u0(x), |x| ≤ L,

u0(x) ≤ v0(x) ≤ α + η + 1, x ∈R
n,

inf
x∈Rn

v0(x) ≥ α + η

2
.

Fix ε > 0 arbitrarily and let aε(p) be the function defined as in (41). We consider the problem of the form{
vε
t = divaε

p(∇vε) + f (vε), x ∈ R
n, t > 0,

vε(x,0) = v0(x), x ∈ R
n.

Consider the function U(t) that satisfies U ′ = f (U) with the initial condition U(0) = α + η/2. Since U(0) > α, we 
have U(t) → 1 as t → ∞. Thus, by virtue of the usual comparison principle for the classical solutions, we can choose 
a constant T ≥ T∗ that is independent of ε > 0 such that

vε(x,T ) ≥ U(T ) ≥ 1 − δ
, x ∈R

n. (61)

2
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We next consider the function wε(x, t) = vε(x, t) − uε(x, t). Then it satisfies⎧⎪⎨⎪⎩wε
t =

n∑
i,j=1

∂

∂xi

(
Aε

ij (x, t)wε
xj

)
+ Bε(x, t)wε, x ∈ R

n, t > 0,

wε(x,0) = v0(x) − u0(x), x ∈ R
n,

where Aε
ij (x, t) and Bε(x, t) are given by

Aε
ij (x, t) =

1∫
0

aε
pipj

(∇uε + θ∇wε)dθ, Bε(x, t) =
1∫

0

f ′(uε + θwε)dθ.

As we have wε(x, 0) ≥ 0 by the definition of v0, the usual maximum principle for the classical solutions gives 
wε(x, t) ≥ 0 on Rn × [0, ∞). Thus, since uε and vε are both bounded as −m ≤ uε, vε ≤ α + η + 1, there exists 
a constant M > 0 independent of ε such that Bε(x, t)wε ≤ Mwε . Thus, by considering the solution hε(x, t) of the 
problem⎧⎪⎨⎪⎩ hε

t =
n∑

i,j=1

∂

∂xi

(
Aε

ij (x, t)hε
xj

)
+ Mhε, x ∈R

n, t > 0, (a)

hε(x,0) = v0(x) − u0(x), x ∈R
n, (b)

(62)

the comparison principle gives wε(x, t) ≤ hε(x, t) on Rn × [0, ∞). On the other hand, since (62a) is uniformly 
parabolic because of the strict convexity of aε(x), we have the expression

hε(x, t) = eMt

∫
Rn

Zε(x, ξ, t,0)(v0(ξ) − u0(ξ)) dξ,

where Zε(x, ξ, t, τ) is the fundamental solution of hε
t = ∑n

i,j=1(A
ε
ij (x, t)hε

xj
)xi

. By using the upper bound for 
Zε(x, ξ, t, τ) given in [2], we can choose positive constants k1 and k2 that depend only on n and � in (4) (and 
are independent of ε) such that

hε(x, t) ≤ eMt

∫
Rn

k1G(k2(x − ξ), t)(v0(ξ) − u0(ξ)) dξ,

where G(z, s) is the usual heat kernel on Rn. Consequently, since v0(ξ) − u0(ξ) is bounded as 0 ≤ v0(ξ) − u0(ξ) ≤
m + α + η + 1 and since v0(ξ) − u0(ξ) = 0 if |x| ≤ L, by choosing L large enough, we have

wε(x,T ) ≤ hε(x,T ) ≤ δ

2
, |x| ≤ R.

We again note that the constant L can be chosen independent of ε. By combining this with (61), we obtain uε(x, T ) ≥
1 − δ for |x| ≤ R. This completes the proof. �

We are now ready to prove Lemma 3.2. The estimate (51) in Lemma 3.2 is proved easily from the comparison 
principle. The estimates (52) and (53) are derived from Lemmas 3.3 and 3.4, respectively.

Proof of Lemma 3.2. Step 1: We first prove the estimate (51). Consider the functions U±(t) that satisfy U ′± = f (U±)

with the initial conditions U±(0) = ± max{‖u0‖L∞(Rn), 1}. Since f is of bistable type as in (2), we have U+(t) → 1
and U−(t) → 0 as t → ∞. Thus, since the comparison principle given by Proposition 2.6 implies U−(t) ≤ u(x, t) ≤
U+(t) on Rn × [0, ∞), there exists a positive constant T1 such that

−δ ≤ u(x, t) ≤ 1 + δ, x ∈R
n, t ≥ T1.

Step 2: By the assumption (50), we can choose constants α∗ ∈ (0, α) and K ′ > 0 such that

u0(x) ≤ α∗, |x| ≥ K ′. (63)
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Let u+(x, t; ν) be the super-solution given in Lemma 3.3 with M = max{supx∈Rn u0(x), 2}. Namely, we consider the 
super-solution of the form:

u+(x, t;ν) = M�(ν · x − σ t − K) + α∗e−βt . (64)

From (63), we can choose the constant K in (64) large enough to satisfy u0(x) ≤ u+(x, 0; ν) in x ∈ R
n for all 

ν ∈ Sn−1. Then the comparison principle given in Proposition 2.6 implies

u(x, t) ≤ min
ν∈Sn−1

u+(x, t;ν), x ∈ R
n, t ≥ 0.

Consequently, since we have limz→∞ �(z) = 0, we can choose positive constants K2 and T2 such that

u(x, t) ≤ δ, |x| ≥ K2 + σ t, t ≥ T2. (65)

Step 3: Let {uεi } be the approximating sequence for the weak solution u of (1) given in (ii) of Proposition 2.5. Then 
Lemma 3.4 implies that there exist constants L > 0 and T ≥ max{T1, T2} that are both independent of εi such that

uεi (x, T ) ≥ 1 − δ, |x| ≤ R.

By passing to the limit as i → ∞, we get u(x, T ) ≥ 1 −δ for |x| ≤ R. This establishes the estimates (53). The estimate 
(52) follows from (65) since

u(x,T ) ≤ δ, |x| ≥ K2 + σT .

This completes the proof of Lemma 3.2. �
3.2. Super-solutions and sub-solutions

In this subsection, we construct a fine set of super-solutions and sub-solutions whose level sets are the expanding 
Wulff shapes. For this purpose, we make some preparations. First, choose constants μ > 0 and δ0 ∈ (0, 14 ) satisfying

−f ′(s) ≥ μ, s ∈ [−2δ0,2δ0] ∪ [1 − 2δ0,1 + 2δ0]. (66)

Since f is of bistable type, these constants are both well-defined. We also choose a positive constant σ large enough 
to satisfy

σ ≥ max

{
3

μ
, (δ0)

− 2
3

}
, (67)

1√
σ

(
c + 2

λ
√

C�

+ 2

)
≤ μ

4
, (68)

√
σ

2
· max
�∈[δ0,1−δ0]

(−�′) − ‖f ′‖L∞(0,1) − 3

2
≥ μ

2
, (69)

where λ and C� are the positive constants defined in (15)–(16). We note that σ > 1 follows from (67) because of 
δ0 < 1/4. We next introduce the cut-off anisotropic signed distance function d̃γ (x; WR(t)) by

d̃γ (x;WR(t)) = h(dγ (x;WR(t)), t)

= h(γ ∗(x) − ρ(t;R), t), (70)

where, setting η(t) = 2λ−1 log
(√

C�(σ + t)
)+1, we define h(s, t) as a smooth odd function that satisfies (see Fig. 2)

h(s, t) = s, |s| ≤ η(t),

h(s, t) = η(t) + 1, |s| ≥ η(t) + 2,

0 ≤ hs(s, t) ≤ 1, s ∈ R, t ≥ 0,

|hss(s, t)| ≤ 1, s ∈R, t ≥ 0,

|ht (s, t)| ≤ η′(t) = 2

λ
√

C�(σ + t)
, s ∈R, t ≥ 0.
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Fig. 2. Profile of the odd function h(s, t) in (70).

Before constructing super-solutions and sub-solutions, we give two auxiliary lemmas. The first one gives basic 
estimates for ρ(t; R) given in (8). The bounds (71) for ρ(t; R) suffice for our analysis, however ρ(t; R) = R + ct −
((n − 1)/c) log t + o(log t) holds as is mentioned in the introduction.

Lemma 3.5 (Estimate for ρ(t; R)). Let ρ(t; R) be the solution of (8) with R > (n − 1)/c. Then the following hold:

(i) One has

R + ct − n − 1

c
log

(
1 + ct

R − n−1
c

)
< ρ(t;R) < R + ct, t ≥ 0. (71)

(ii) For any positive constants R1, R2 with R1 > R2 > (n − 1)/c, one has

R1 − R2 ≤ ρ(t;R1) − ρ(t;R2) <
R2(R1 − R2)

R2 − n−1
c

, t ≥ 0. (72)

Proof. Since ρ′(t; R) < c holds obviously, the second inequality of (71) follows immediately. To show the first 
inequality of (71), we integrate (8) and obtain[

ρ(s;R) + n − 1

c
log

(
ρ(s;R) − n − 1

c

)]t

0
= ct.

This implies

ρ(t;R) = R + ct − n − 1

c
log

(
ρ(t;R) − n−1

c

R − n−1
c

)

> R + ct − n − 1

c
log

(
1 + ct

R − n−1
c

)
,

where the last inequality comes from ρ(t; R) < R + ct . Thus, we obtain (71).
Next we show (72). Since ρ(t; R2) → ∞ as t → ∞ because of R2 > (n − 1)/c, there exists a positive constant t0

such that ρ(t0; R2) = R1. Thus we have

ρ(t;R1) − ρ(t;R2) = ρ(t + t0;R2) − ρ(t;R2) =
t+t0∫
t

ρ′(s;R2) ds.

Since ρ′(t; R2) = c − (n − 1)/ρ(t; R2) is monotone increasing in t , the first inequality of (72) follows from

t+t0∫
ρ′(s;R2) ds ≥

t0∫
ρ′(s;R2) ds = R1 − R2.
t 0
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On the other hand, since ρ′(t; R2) ≥ c − (n − 1)/R2, we have t0 ≤ (R1 − R2)/(c − (n − 1)/R2). Thus the second 
inequality of (72) follows from

t+t0∫
t

ρ′(s;R2) ds < ct0 ≤ R2(R1 − R2)

R2 − n−1
c

.

This completes the proof of Lemma 3.5. �
We give another auxiliary lemma. As is mentioned in Remark 2.3, we have divap(∇dγ ) = (n − 1)/γ ∗(x). Since it 

blows up at x = 0, to avoid this, we consider divap(∇d̃γ ) instead and obtain the estimate for ∂t d̃γ − divap(∇d̃γ ) + c

as follows.

Lemma 3.6. Let d̃γ (x; WR(t)) be the cut-off anisotropic signed distance function defined by (70). Then, for any 
constant C ∈ (0, 1], there exists a positive constant R∗ > (n − 1)/c such that, if R ≥ R∗, one has

|∂t d̃γ − divap(∇d̃γ ) + c| ≤
{

C(σ + t)− 3
2 , |dγ (x;WR(t))| ≤ η(t),

c + 2
λ
√

C�
+ 2, |dγ (x;WR(t))| ≥ η(t),

where λ and C� are the positive constants defined in (15)–(16) and σ is the positive constant defined in (67)–(69).

Proof. By the definition of d̃γ , we have

∂t d̃γ (x;WR(t)) = −ρ′(t;R)hs + ht =
(

n − 1

ρ(t;R)
− c

)
hs + ht .

Since a(p) is homogeneous of degree two and since divap(∇γ ∗) = (n − 1)/γ ∗ as is mentioned in Remark 2.3, we 
have

divap(∇d̃γ ) = div (hsap(∇γ ∗))
= div

(
ap(∇γ ∗)

)
hs + (ap(∇γ ∗) · ∇γ ∗)hss

= n − 1

γ ∗(x)
hs + 2a(∇γ ∗)hss .

Thus, since (33) in Remark 2.1 gives 2a(∇γ ∗) = (γ (∇γ ∗))2 = 1, we have

∂t d̃γ − divap(∇d̃γ ) + c =
(

n − 1

ρ(t;R)
− n − 1

γ ∗(x)

)
hs + c(1 − hs) + ht − hss .

Let I1 and I2 be the first term and the remaining terms of the right-hand side of the above. If |dγ (x; WR(t))| ≥ η(t) +2, 
we have hs ≡ 0 and thus I1 ≡ 0 holds. On the other hand, if |dγ (x; WR(t))| ≤ η(t) +2, namely, if |γ ∗(x) −ρ(t; R)| ≤
η(t) + 2, we have

|I1| ≤
∣∣∣∣ (n − 1)(γ ∗(x) − ρ(t;R))

ρ(t;R)γ ∗(x)

∣∣∣∣ ≤ (n − 1)(η(t) + 2)

ρ(t;R)|ρ(t;R) − η(t) − 2| ,

if ρ(t; R) is sufficiently large. Thus, by using the lower bound for ρ(t; R) given by (71) in Lemma 3.5, we find that 
there exists a constant R∗ > (n − 1)/c such that, if R ≥ R∗, one has |I1| ≤ C(σ + t)− 3

2 .
Finally, I2 is estimated easily as

|I2| ≤
{

0, |dγ (x;WR(t))| ≤ η(t),

c + 2
λ
√

C�(σ+t)
+ 1, |dγ (x;WR(t))| ≥ η(t).

Since σ > 1 and C ≤ 1 by the definitions, by combining the above estimates for I1 and I2, we obtain the desired 
estimates. �
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The next lemma gives a fine set of sub-solutions and super-solutions whose level sets are roughly the expanding 
Wulff shapes. An important point of this lemma is that the Hausdorff distance between the corresponding level sets of 
the super-solution and the sub-solution remains uniformly bounded up to t = +∞, since the function p(t) is bounded 
as −1 ≤ p(t) ≤ 0.

Lemma 3.7 (Super-solutions and sub-solutions). Let d̃γ (x; WR(t)) be the cut-off anisotropic signed distance function 
defined in (70), and let σ be the positive constant defined in (67)–(69). Then there exists a positive constant R∗ >

(n − 1)/c such that, if R ≥ R∗, the functions

u±(x, t;R) = �(d̃γ (x;WR(t)) ± p(t)) ± q(t),

with

p(t) = σ
1
2 (σ + t)−

1
2 − 1, q(t) = (σ + t)−

3
2 ,

satisfy ±L[u±] ≥ 0 in the classical sense, where L[w] := wt − divap(∇w) − f (w).

Proof. We only prove L[u+] ≥ 0, since L[u−] ≤ 0 can be proved in the same way. By direct computations, we have

u+
t =

(
∂t d̃γ + p′)�′ + q ′,

divap(∇u+) = div
(
�′ap(∇d̃γ )

)
= div (ap(∇d̃γ ))�′ +

(
ap(∇d̃γ ) · ∇d̃γ

)
�′′,

= div (ap(∇d̃γ ))�′ + 2a(∇d̃γ )�′′,

f (u+) = f (�) +
1∫

0

f ′(� + θq)dθ · q,

where, to compute divap(∇u+), we used the homogeneity of a(p) and γ (p); see Remark 2.1. By using the relation 
�′′ + c�′ + f (�) = 0, we have L[u+] = I1 + I2 + I3, where

I1 =
(
∂t d̃γ − divap(∇d̃γ ) + c

)
�′,

I2 =
(

1 − 2a(∇d̃γ )
)

�′′,

I3 = p′�′ −
1∫

0

f ′(� + θq)dθ · q + q ′.

We first estimate I1. From Lemma 3.6, there exists a positive constant R∗ > (n − 1)/c such that, for any R ≥ R∗,

|I1| ≤
∣∣∣∂t d̃γ − divap(∇d̃γ ) + c

∣∣∣ · ‖�′‖L∞(R) ≤ μ

4
(σ + t)−

3
2 ,

holds if |dγ (x; WR(t))| ≤ η(t). On the other hand, if |dγ (x; WR(t))| ≥ η(t), we have

|I1| ≤
(

c + 2

λ
√

C�

+ 2

)
|�′(d̃γ (x;WR(t)) + p(t))|

≤
(

c + 2

λ
√

C�

+ 2

)
C� exp (−λ (η(t) − 1))

=
(

c + 2

λ
√

C�

+ 2

)
(σ + t)−2,

where the first inequality comes from Lemma 3.6 and the second inequality comes from the estimates for |�′| given 
in (15)–(16) and −1 ≤ p(t) ≤ 0. Thus (68) gives |I1| ≤ μ

(σ + t)− 3
2 if |dγ (x; WR(t))| ≥ η(t).
4
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Next, we estimate I2. From (33) in Remark 2.1, we have

2a(∇d̃γ ) = 2a(∇γ ∗)(hs)
2 = (γ (∇γ ∗))2(hs)

2 = (hs)
2.

If |dγ (x; WR(t))| ≤ η(t), we have hs ≡ 1 and hence I2 ≡ 0. If |dγ (x; WR(t))| ≥ η(t), since |hs | ≤ 1 by the definition, 
we have

|I2| ≤
(

1 − (hs)
2
)

|�′′(d̃γ (x, t) + p(t))|
≤ C� exp (−λ (η(t) − 1))

≤ (σ + t)−2.

Since (68) gives 1/
√

σ ≤ μ/4, we obtain |I2| ≤ μ
4 (σ + t)− 3

2 .
Finally, we estimate I3 and show L[u+] ≥ 0. By computing p′ and q ′, we have

I3 =
⎛⎝−

√
σ

2
�′ −

1∫
0

f ′(� + θq)dθ − 3

2
(σ + t)−1

⎞⎠ · (σ + t)−
3
2 .

When � ∈ (0, δ0] ∪ [1 − δ0, 1) for the constant δ0 defined in (66), since �′ < 0, the inequality (67) gives

I3 ≥
⎛⎝−

1∫
0

f ′(� + θq)dθ − 3

2
(σ + t)−1

⎞⎠ · (σ + t)−
3
2

≥ μ

2
(σ + t)−

3
2 .

On the other hand, when � ∈ [δ0, 1 − δ0], the inequality (69) gives

I3 ≥
(√

σ

2
· max
�∈[δ0,1−δ0]

(−�′) − ‖f ′‖L∞(0,1) − 3

2
(σ + t)−1

)
· (σ + t)−

3
2

≥ μ

2
(σ + t)−

3
2 .

By combining the above estimates for I1, I2 and I3, we obtain L[u+] ≥ 0. �
3.3. Proof of Proposition 3.1

We here prove Proposition 3.1. To complete the proof, it suffices to show that the roughly generated front shown 
in Lemma 3.2 is captured between the sub-solution and the super-solution given in Lemma 3.7 for all large times.

Proof of Proposition 3.1. Step 1: Let p(t) and q(t) be the functions defined in Lemma 3.7 and let σ be the constant 
defined in (67)–(69). We will first prove

|�(d̃γ ± p(t)) − �(dγ ± p(t))| ≤ (σ + t)−2, (73)

where, for simplicity, dγ and d̃γ denote dγ (x; WR(t)) and d̃γ (x; WR(t)) defined in (10) and (70). In the case of 
|dγ | ≤ η(t), we have d̃γ ≡ dγ by the definition, and thus (73) holds.

In the case of dγ ≥ η(t), since d̃γ ≤ dγ in this case and since �(z) is monotone decreasing in z ∈ R, we have

�(d̃γ ± p(t)) − �(dγ ± p(t)) ≥ 0. (74)

On the other hand, since dγ ≥ η(t) implies d̃γ ≥ η(t), we have

�(d̃γ ± p(t)) ≤ �(η(t) ± p(t))

≤ C� exp(−λ(η(t) − 1))

= (σ + t)−2,



608 H. Matano et al. / Ann. I. H. Poincaré – AN 36 (2019) 585–626
where the second inequality follows from (15) and −1 ≤ p(t) ≤ 0. Since �(dγ ± p(t)) ≥ 0 holds obviously, this 
implies

�(d̃γ ± p(t)) − �(dγ ± p(t)) ≤ (σ + t)−2.

This and (74) imply (73). The case of dγ ≤ −η(t) is proved in a similar way.

Step 2: We set δ = σ− 3
2 for simplicity. Since �(−∞) = 1 and �(+∞) = 0, we can choose a positive constant M

such that

�(−M) ≥ 1 − δ

2
, �(M) ≤ δ

2
.

Let R be the constant defined as in Lemma 3.7, and define M∗ = minν∈Sn−1 γ ∗(ν) and M∗ = maxν∈Sn−1 γ ∗(ν). Then 
Lemma 3.2 implies that there exist positive constants L, T , and K such that, if u0(x) ≥ α + η for |x| ≥ L, it holds 
that

− δ

2
≤ u(x,T ) ≤ 1 + δ

2
, x ∈ R

n, (75)

u(x,T ) ≤ δ, |x| ≥ K, (76)

u(x,T ) ≥ 1 − δ, |x| ≤ R + M

M∗
. (77)

Then, since M∗|x| ≤ γ ∗(x), it holds from (77) that

u(x,T ) ≥ 1 − δ, γ ∗(x) ≤ R + M. (78)

On the other hand, since M∗|x| ≥ γ ∗(x), by choosing a large constant K ′, (76) gives

u(x,T ) ≤ δ, γ ∗(x) ≥ R + K ′. (79)

Consequently, the inequalities (75), (78), and (79) imply

�(γ ∗(x) − R) − δ ≤ u(x,T ) ≤ �(γ ∗(x) − R − K ′ − M) + δ, x ∈R
n.

Then, by using the sub-solution given in Lemma 3.7, the lower bound is obtained as

u(x,T + t) ≥ �
(
d̃γ (x;WR(t)) − p(t)

)
− q(t)

≥ �
(
dγ (x;WR(t)) − p(t)

)− q(t) − (σ + t)−2

≥ �
(
dγ (x;WR(t)) + 1

)− 2(1 + t)−3/2,

where the first inequality is obtained by applying the comparison principle and the second inequality follows from 
(73). Similarly, by using the super-solution given in Lemma 3.7, the upper bound is obtained as

u(x,T + t) ≤ �
(
d̃γ (x;WR+K ′+M(t)) + p(t)

)
+ q(t)

≤ �
(
dγ (x;WR+K ′+M(t)) + p(t)

)+ q(t) + (σ + t)−2

≤ �

(
dγ (x;WR(t)) − R(K ′ + M)

R − n−1
c

− 1

)
+ 2(1 + t)−3/2,

where the last inequality follows from the second inequality of (72) in Lemma 3.5. The proof of Proposition 3.1 is 
complete. �
4. Fine formation of the front

In this section, we analyze the fine formation of the front and prove Theorems 1.1 and 1.4. We first give the local 
convergence result (Lemma 4.1) in Subsection 4.1. It says that, for each direction ν ∈ Sn−1, the solution converges to 
the planar waves in the sense of BC

1,0
loc (Rn × R) for a time sequence 0 < t1 < t2 < · · · → ∞. In Subsection 4.2, we 

prove the strict monotonicity of the solution around the front and analyze the α-level set of the solution. Subsections 
4.3 and 4.4 are devoted to the proof of Theorems 1.1 and 1.4, respectively.
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4.1. Local convergence to the planar wave

The aim of this subsection is to prove Lemma 4.1 below. The key of its proof is Lemma 4.2, which characterizes 
weak entire solutions of the equation (1a).

Lemma 4.1 (Local convergence to planar waves). Let the assumptions of Proposition 3.1 hold and let R be the 
constant defined in Proposition 3.1. Suppose further that there exists a sequence {(xi, ti )} ⊂ R

n × (0, ∞) such that 
0 < t1 < t2 < · · · → ∞ and that

xi

|xi | → ∃ν ∈ Sn−1, dγ (xi;WR(ti)) → ∃M ∈ R,

as i → ∞. Then there exist a subsequence {(xki
, tki

)} of {(xi, ti )} and a constant μ ∈R such that

lim
i→∞u(xki

+ x, tki
+ t) = �(∇γ ∗(ν) · x − ct + μ) in BC

1,0
loc (Rn ×R).

Proof. Step 1: We will first show that, for any fixed x ∈R
n and any fixed t ∈ R, it holds that

lim
i→∞dγ (xi + x;WR(ti + t)) = ∇γ ∗(ν) · x + M − ct. (80)

Fix x ∈ R
n and t ∈ R arbitrarily. In what follows, we estimate the terms

dγ (xi + x;WR(ti + t)) = γ ∗(xi + x) − γ ∗(xi)

+ γ ∗(xi) − ρ(ti;R)

+ ρ(ti;R) − ρ(ti + t;R).

Let Ii , Ji , and Ki be the first two, the next two, and the last two terms of the right-hand side of the above. We first 
estimate Ii . For each i, there exists a constant θi ∈ [0, 1] such that

Ii = ∇γ ∗(xi + θix) · x = ∇γ ∗
(

xi + θix

|xi + θix|
)

· x,

where the last equality comes from the homogeneity of ∇γ ∗. By the assumptions of the lemma, we have 
limi→∞ |xi | = ∞. Thus, for any fixed x ∈ R

n, we have

lim
i→∞

xi + θix

|xi + θix| = lim
i→∞

xi

|xi | = ν.

Consequently, since ∇γ ∗ is continuous in Rn \{0}, we have limi→∞ Ii = ∇γ ∗(ν) ·x. Secondly, Ji is estimated simply 
as limi→∞ Ji = M by the assumption of the lemma. Finally, for any fixed t ∈R, we estimate Ki as

Ki = −
ti+t∫
ti

ρ′(s;R)ds = −
ti+t∫
ti

(
c − n − 1

ρ(s;R)

)
ds → −ct as i → ∞.

By combining these estimates for Ii , Ji , and Ki , we obtain (80).
Step 2: From Lemma 2.8, by choosing a subsequence {(xki

, tki
)} ⊂ {(xi, ti )}, we have a weak entire solution in the 

sense of Lemma 2.8 such that

u(xki
+ x, tki

+ t) → w(x, t) in BC
1,0
loc (Rn ×R) as i → ∞.

Letting T , R, and K be the constants given in Proposition 3.1, the upper bound for u(x, t) given in Proposition 3.1
implies

w(x, t) = lim
i→∞u(xki

+ x, tki
+ t)

≤ lim
i→∞�

(
dγ (xki

+ x;WR(tki
+ t − T )) − K

)+ 2(1 + tki
+ t − T )−

3
2

= �
(∇γ ∗(ν) · x + M − c(t − T ) − K

)
,
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for any fixed x ∈R
n and any fixed t ∈ R, where we used (80) to obtain the last equality. Similarly, we obtain w(x, t) ≥

�(∇γ ∗(ν) · x + M − c(t − T ) + K) by using the lower bound for u(x, t) given in Proposition 3.1. Thus, Lemma 4.2
given below implies that there exists a constant μ such that w(x, t) ≡ �(∇γ ∗(ν) · x − ct + μ). This completes the 
proof. �
Lemma 4.2 (Liouville type theorem). Let u(x, t) be a weak entire solution in the sense of Lemma 2.8. Suppose that 
there exist ν ∈ Sn−1 and K > 0 such that

�(∇γ ∗(ν) · x − ct + K) ≤ u(x, t) ≤ �(∇γ ∗(ν) · x − ct − K), (81)

holds for any x ∈R
n and any t ∈R. Then there exists a constant μ ∈ [−K, K] such that

u(x, t) ≡ �(∇γ ∗(ν) · x − ct + μ).

Lemma 4.2 implies that any weak entire solution sandwiched between two planar traveling waves is itself a planar 
wave. This result generalizes, in some sense, Theorem 3.1 of [7] to anisotropic equations. The proof goes along almost 
the same lines as that of [7], but for the convenience of the reader, we give it in Appendix C.

4.2. Strict monotonicity and level sets of the solution

In this subsection, we first prove the strict monotonicity of the solution u(x, t) around the front at the large time 
(Lemma 4.3). Then we prove that the α-level set of the solution is a smooth hypersurface that is star-shaped with 
respect to the origin (Lemma 4.4). A similar argument is used in [25] to analyze the large time behavior of disturbed 
planar fronts in the isotropic Allen–Cahn equation.

Lemma 4.3 (Strict monotonicity around the front). Let the assumptions of Proposition 3.1 hold and let R be the 
constant defined in Proposition 3.1. Then, for any C > 0, there exists a positive constant T such that

inf
|dγ (x;WR(t))|≤C

(
−∂u

∂ν

)
> 0, t ≥ T ,

where ∂/∂ν means the differential along x/|x|.

Proof. Assume that the conclusion does not hold. Then there exists a sequence {(xi, ti )} ⊂ R
n × [0, ∞) such that 

0 < t1 < t2 < · · · → ∞, that |dγ (xi; WR(ti))| ≤ C, and that

lim sup
i→∞

∂u(xi, ti)

∂νi

≥ 0, (82)

where νi = xi/|xi |. By choosing a subsequence, which is denoted by {(xi, ti )} again, we have

νi → ∃ν ∈ Sn−1, dγ (xi;WR(ti)) → ∃M ∈ [−C,C],
as i → ∞. Then Lemma 4.1 implies that, by choosing a subsequence again, which is also denoted by {(xi, ti )}, we 
have

lim
i→∞u(xi + x, ti + t) ≡ �(∇γ ∗(ν) · x − ct + μ) in BC

1,0
loc (Rn ×R),

for a constant μ ∈R. This implies limi→∞ ∇u(xi, ti ) = �′(μ)∇γ ∗(ν) and thus

lim
i→∞

∂u(xi, ti)

∂νi

= lim
i→∞νi · ∇u(xi, ti) = ν · (�′(μ)∇γ ∗(ν)) = �′(μ)γ ∗(ν).

This contradicts (82), because �′(z) < 0 holds for all z ∈R. The proof of Lemma 4.3 is complete. �
Lemma 4.4 below is a simple corollary of Proposition 3.1 and Lemma 4.3. We note that a part of Theorem 1.1

follows immediately from Lemma 4.4.



H. Matano et al. / Ann. I. H. Poincaré – AN 36 (2019) 585–626 611
Lemma 4.4 (α-level set of the solution). Let the assumptions of Proposition 3.1 hold and let R be the constant defined 
in Proposition 3.1. Then there exist a positive constant T and a smooth bounded function l : Sn−1 ×[T , ∞) → R such 
that

u(x, t) = α if and only if dγ (x;WR(t)) = l

(
x

|x| , t
)

, t ≥ T . (83)

Proof. Define δ = min{α, 1 − α}/2. From Proposition 3.1, there exist positive constants C and T such that

{x ∈ R
n | |u(x, t) − α| ≤ δ} ⊂ {x ∈R

n | |dγ (x;WR(t)| ≤ C},
holds for any t ≥ T . Moreover, by choosing T larger if necessary, Lemma 4.3 gives

inf|u−α|≤δ

(
−∂u

∂ν

)
≥ inf|dγ (x;WR(t))|≤C

(
−∂u

∂ν

)
> 0, t ≥ T .

Thus, there exists a bounded function l(ν, t) : Sn−1 × [T , ∞) → [−C, C] that satisfies (83). Here, l is smooth by the 
implicit function theorem, since u(x, t) is smooth for t > 0 when ∇u �= 0. The proof of Lemma 4.4 is complete. �

By virtue of Lemma 4.4, we can refine Lemma 4.1 as follows, where the constant μ in Lemma 4.1 is replaced by the 
specific constant K . Moreover, the convergence to a planar wave takes place for {(xi, ti )} itself, not for a subsequence.

Lemma 4.5 (Local convergence to planar waves). Let the assumptions of Lemma 4.4 hold and let R, T , and l :
Sn−1 × [T , ∞) → R be the constants, and the smooth bounded function defined in Lemma 4.4. Suppose further that 
there exists a sequence {(xi, ti )} ⊂ R

n × (0, ∞) such that 0 < t1 < t2 < · · · → ∞ and that

xi

|xi | → ∃ν ∈ Sn−1, dγ (xi;WR(ti)) − l

(
xi

|xi | , ti
)

→ ∃K ∈R,

as i → ∞. Then one has

lim
i→∞u(xi + x, ti + t) = �(∇γ ∗(ν) · x − ct + K) in BC

1,0
loc (Rn ×R). (84)

Proof. Lemma 4.1 implies that, by choosing a subsequence {(xki
, tki

)} of {(xi, ti )}, we have

lim
i→∞u(xki

+ x, tki
+ t) ≡ �(∇γ ∗(ν) · x − ct + μ) in BC

1,0
loc (Rn ×R),

for a constant μ ∈R. For each xki
, we define the point yki

∈ R
n by

yki
=
(

ρ(tki
;R) + l

(
xki

|xki
| , tki

))
xki

γ ∗(xki
)
.

Then u(yki
, tki

) = α holds, since we have γ ∗(yki
) = ρ(tki

; R) + l(xki
/|xki

|, tki
) and thus dγ (yi; WR(ti)) =

l(xki
/|xki

|, tki
). Then we have

α = lim
i→∞u(yki

, tki
)

= lim
i→∞u

((
ρ(tki

;R) + l

(
xki

|xki
| , tki

))
xki

γ ∗(xki
)
, tki

)
= lim

i→∞u

(
xki

+
(

−dγ (xi;WR(ti)) + l

(
xki

|xki
| , tki

))
xki

γ ∗(xki
)
, tki

)
= �

(
∇γ ∗(ν) · −Kν

γ ∗(ν)
+ μ

)
= �(−K + μ).

This implies μ = K because �(0) = α by the definition. Thus, the subsequence {(xki
, tki

)} satisfies (84). Moreover, 
since the constant K does not depend on the choice of subsequences of {(xi, ti )}, the given sequence {(xi, ti )} itself 
satisfies (84). The proof is complete. �
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4.3. Proof of Theorem 1.1

In this subsection, we complete the proof of Theorem 1.1. Before that, we prepare an auxiliary lemma that shows 
the convergences of the solution u(x, t) and its gradient around the front.

Lemma 4.6 (Convergence around the front). Let the assumptions of Lemma 4.4 hold and let R, T , and l : Sn−1 ×
[T , ∞) → R be the constants, and the smooth bounded function defined in Lemma 4.4. Then, for any C > 0, one has

lim
t→∞ sup

|dγ (x;WR(t))|≤C

∣∣∣∣u(x, t) − �

(
dγ (x;WR(t)) − l

(
x

|x| , t
))∣∣∣∣= 0, (85)

lim
t→∞ sup

|dγ (x;WR(t))|≤C

∣∣∣∣∇u(x, t) − �′
(

dγ (x;WR(t)) − l

(
x

|x| , t
))

∇γ ∗(x)

∣∣∣∣= 0. (86)

Proof. We only prove (86), since (85) can be proved in a similar and easier way. Assume that (86) does not hold. Then 
there exist a positive constant δ and a sequence {(xi, ti )} such that |dγ (xi; WR(ti))| ≤ C, that 0 < t1 < t2 < · · · → ∞, 
and that∣∣∣∣∇u(xi, ti) − �′

(
dγ (xi;WR(ti)) − l

(
xi

|xi | , ti
))

∇γ ∗(xi)

∣∣∣∣≥ δ, (87)

for all i = 1, 2, · · · . By choosing a subsequence, which is denoted by {(xi, ti )} again, we have

xi

|xi | → ∃ν ∈ Sn−1, dγ (xi;WR(ti)) − l

(
xi

|xi | , ti
)

→ ∃K ∈R,

as i → ∞. Then Lemma 4.5 implies that

lim
i→∞u(xi + x, ti + t) = �(∇γ ∗(ν) · x − ct + K) in BC

1,0
loc (Rn ×R). (88)

This implies

lim
i→∞∇u(xi, ti) = ∇x

(
�(∇γ ∗(ν) · x − ct + K)

) |(x,t)=(0,0) = �′(K)∇γ ∗(ν).

However, this contradicts (87), since we have

lim
i→∞�′

(
dγ (xi;WR(ti)) − l

(
xi

|xi | , ti
))

∇γ ∗(xi) = �′(K)∇γ ∗(ν).

Thus we obtain (86). The proof of Lemma 4.6 is complete. �
We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. Lemma 4.4 implies that, under the assumptions of Theorem 1.1, there exist positive constants 
R, T , and a bounded smooth function l : Sn−1 × [T , ∞) → R such that (21) holds.

We next prove the convergence of u(x, t). Fix ε > 0 arbitrarily. Since l(x/|x|, t) is bounded, Proposition 3.1 implies 
that there exist positive constants C and t∗ such that

sup
|dγ (x;WR(t))|≥C,x �=0

∣∣∣∣u(x, t) − �

(
dγ (x;WR(t)) − l

(
x

|x| , t
))∣∣∣∣≤ ε, t ≥ t∗.

Combining this with (85) of Lemma 4.6, we have

sup
x∈Rn\{0}

∣∣∣∣u(x, t) − �

(
dγ (x;WR(t)) − l

(
x

|x| , t
))∣∣∣∣≤ ε, t ≥ t∗,

by choosing t∗ larger if necessary. Thus we obtain (22). Moreover, limt→∞ u(0, t) = 1 follows immediately from 
Proposition 3.1.



H. Matano et al. / Ann. I. H. Poincaré – AN 36 (2019) 585–626 613
We finally prove the convergence of ∇u(x, t). Fix ε > 0 arbitrarily. Then there exist positive constants C and t∗
such that

sup
|dγ (x;WR(t))|≥C

|∇u(x, t)| < ε

2
, (89)

sup
|dγ (x;WR(t))|≥C, x �=0

∣∣∣∣�′
(

dγ (x;WR(t)) − l

(
x

|x| , t
))

∇γ ∗(x)

∣∣∣∣< ε

2
, (90)

for any t ≥ t∗. Indeed, (89) holds since Proposition 2.5 gives ‖∇u‖Cθ,θ/2(Rn×[0,∞)) < +∞ and since the upper and the 
lower bounds given in Proposition 3.1 give

lim
C→∞ lim

t→∞ osc
dγ (x;WR(t))≤−C

u(x, t) = 0, lim
C→∞ lim

t→∞ osc
dγ (x;WR(t))≥C

u(x, t) = 0,

where oscA = supA − infA. Moreover, (90) holds since ∇γ ∗(x) is bounded on Rn \ {0} because it is positively homo-
geneous of degree zero and since |�′(z)| decays exponentially as |z| → ∞ as in (15)–(16). By combining (89) with 
(90), we have

sup
|dγ (x;WR(t))|≥C, x �=0

∣∣∣∣∇u(x, t) − �′
(

dγ (x;WR(t)) − l

(
x

|x| , t
))

∇γ ∗(x)

∣∣∣∣≤ ε,

for any t ≥ t∗. Combining this with (86) of Lemma 4.6, we obtain (23). On the other hand, (89) gives
limt→∞ ∇u(0, t) = 0. The proof of Theorem 1.1 is complete. �
4.4. Proof of Theorem 1.4

To prove Theorem 1.4, we prepare two auxiliary results. The first one implies that the weak solution u(x, t) of (1)
in the sense of Definition 2.4 satisfies the equation (1a) in the classical sense around the front at the large time. The 
second one describes the large time behavior of ut around the front. These results follow from the fact that ∇u �= 0
(and hence apipj

(∇u) are sufficiently smooth) around the front at the large time.

Proposition 4.7 (Regularity of solutions around the front). Let the assumptions of Theorem 1.1 hold and let R, T , 
and l : Sn−1 × [T , ∞) → R be the constants, and the smooth bounded function defined in Theorem 1.1. Then, for any 
C > 0, there exists a constant T∗ ∈ [T , ∞) such that u ∈ C2+θ,1+θ/2(QC) and that

‖u‖C2+θ,1+θ/2(QC) < ∞,

holds, where QC = {(x, t) ∈R
n × [T∗,∞) | |dγ (x;WR(t))| ≤ C

}
.

Proof. Since �′(z) < 0 holds for z ∈ R and since ∇γ ∗(x) �= 0 holds if x �= 0, it follows from (23) in Theorem 1.1
that there exists a constant T∗ ∈ [T , ∞) such that ∇u(x, t) �= 0 holds on

Q̃C := {(x, t) ∈ R
n × [T∗ − 1,∞) | |dγ (x;WR(t))| ≤ C + 1

}
.

Then, since apipj
(p) is continuous when p �= 0 and since ‖∇u‖Cθ,θ/2(Rn×[0,∞)) < ∞ holds from Proposition 2.5, we 

find that apipj
(∇u) ∈ Cθ,θ/2(Q̃C) and that

‖apipj
(∇u)‖Cθ,θ/2(Q̃C) < ∞.

Consequently, since the equation (1a) is rewritten as ut =∑n
i,j=1 apipj

(∇u) + f (u), the interior Schauder estimate 
gives the desired result. �

By combining Proposition 4.7 with Lemma 4.5, we obtain the convergence of ut around the front. Note that 
Lemma 4.8 below implies that ut is uniformly bounded and uniformly positive around 
(t) for all sufficiently large t . 
This fact is essential to prove Theorem 1.4.
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Lemma 4.8 (Convergence of ut around the front). Let the assumptions of Theorem 1.1 hold and let R, T , and l :
Sn−1 ×[T , ∞) → R be the constants, and the smooth bounded function defined in Theorem 1.1. Then, for any C > 0, 
one has

lim
t→∞ sup

|dγ (x;WR(t))|≤C

∣∣∣∣ut (x, t) + c�′
(

dγ (x;WR(t)) − l

(
x

|x| , t
))∣∣∣∣= 0.

Proof. Assume that the conclusion of the lemma does not hold. Then there exist a positive constant δ and a sequence 
{(xi, ti )} such that |dγ (xi; WR(ti))| ≤ C, that 0 < t1 < t2 < · · · → ∞, and that∣∣∣∣ut (xi, ti) + c�′

(
dγ (xi;WR(ti)) − l

(
xi

|xi | , ti
))∣∣∣∣≥ δ, (91)

for all i = 1, 2, · · · . By choosing a subsequence, which is denoted by {(xi, ti )} again, we have

xi

|xi | → ∃ν ∈ Sn−1, dγ (xi;WR(ti)) − l

(
xi

|xi | , ti
)

→ ∃K ∈R,

as i → ∞. Define ui(x, t) = u(xi + x, ti + t). Then Lemma 4.5 implies that

lim
i→∞ui(x, t) = �(∇γ ∗(ν) · x − ct + K) in BC

1,0
loc (Rn ×R). (92)

Let C = ‖l‖L∞(Sn−1×[T ,∞)) + K + 1. From Proposition 4.7, we can choose a positive constant T∗ ∈ [T , ∞) such 
that u ∈ C2+θ,1+θ/2(QC) and that

‖u‖C2+θ,1+θ/2(QC) < ∞,

holds, where QC = {(x, t) ∈R
n × [T∗,∞) | |dγ (x;WR(t))| ≤ C

}
. On the other hand, since

lim sup
i→∞

|dγ (xi;WR(ti))| ≤ ‖l‖L∞(Sn−1×[T ,∞)) + K,

we can choose a positive constant r such that

Br(xi) × [ti − r, ti + r] ⊂ QC for all sufficiently large i,

where Br(x) is the closed ball with the center x ∈ R
n and the radius r . Then we have

‖ui‖C2+θ,1+θ/2(Br (0)×[−r,r]) = ‖u‖C2+θ,1+θ/2(Br (xi )×[ti−r,ti+r])
≤ ‖u‖C2+θ,1+θ/2(QC),

for all sufficiently large i. Combining this with (92), we obtain

lim
i→∞ui(x, t) = �(∇γ ∗(ν) · x − ct + K) in BC2,1(Br(0) × [−r, r]).

Consequently, we have

lim
i→∞ut (xi, ti) = lim

i→∞ui
t (0,0) = −c�′(K).

However, this contradicts (91), since we have

lim
i→∞ c�′

(
dγ (xi;WR(ti)) − l

(
xi

|xi | , ti
))

= c�′(K).

The proof of the lemma is complete. �
We can also show the convergences of uxixj

around the front. We omit the proof of Lemma 4.9, since it is done by 
the same argument as Lemma 4.8.
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Lemma 4.9 (Convergences of uxixj
around the front). Let the assumptions of Theorem 1.1 hold and let R, T , and 

l : Sn−1 × [T , ∞) → R be the constants, and the smooth bounded function defined in Theorem 1.1. Then, for any 
C > 0, one has

lim
t→∞ sup

|dγ (x;WR(t))|≤C

∣∣∣∣uxixj
(x, t) − γ ∗

xi
(x)γ ∗

xj
(x)�′′

(
dγ (x;WR(t)) − l

(
x

|x| , t
))∣∣∣∣= 0.

Proof of Theorem 1.4. We first prove the statement (i) of Theorem 1.4. Set δ = min{α, 1 − α}/2. From Proposi-
tion 3.1, there exist positive constants C and T ′ such that

{x ∈ R
n | |u(x, t) − α| ≤ δ} ⊂ {x ∈R

n | |dγ (x;WR(t)| ≤ C},
holds for any t ≥ T ′. Since �′ < 0, Lemma 4.8 implies that, by choosing T ′ larger if necessary,

inf|u(x,t)−α|≤δ
ut (x, t) ≥ inf

|dγ (x;WR(t))|≤C
ut (x, t) > 0, t ≥ T ′.

This implies that the region {x ∈ R
n | u(x, t) ≥ α} and hence the α-level set 
(t) of the solution u(x, t) are monoton-

ically expanding for t ≥ T ′. Thus the statement (i) of Theorem 1.4 is proved.
We next show the statements (iii). Since x ∈ 
(t) implies dγ (x; WR(t)) − l(x/|x|, t) = 0, Lemma 4.8 gives

lim
t→∞ut (x, t) = −c�′(0) uniformly in x ∈ 
(t). (93)

Similarly, (23) in Theorem 1.1 gives

lim
t→∞∇u(x, t) = �′(0)∇γ ∗(x) uniformly in x ∈ 
(t). (94)

For ν ∈ Sn−1, let xν(t) be the intersection point between 
(t) and the half-line {ξν | ξ > 0}, namely, we define

xν(t) = 1

γ ∗(ν)
(ρ(t;R) + l(ν, t)) ν. (95)

Since xν(t) ∈ 
(t), we have u(xν(t), t) = α. By differentiating this with respect to t , we have

x′
ν(t) · ∇u(xν(t), t) + ut (xν(t), t) = 0.

By computing x′
ν(t) from (95), this implies

1

γ ∗(ν)

(
c − n − 1

ρ(t;R)
+ lt (ν, t)

)
ν · ∇u(xν(t), t) + ut (xν(t), t) = 0,

since ρ satisfies (8). By passing to the limit as t → ∞ and by using (93)–(94), we have

lim
t→∞

(
1

γ ∗(ν)
(c + lt (ν, t)) ν · ∇γ ∗(xν(t)) − c

)
= 0 uniformly in ν ∈ Sn−1.

Since ν · ∇γ ∗(xν(t)) = ν · ∇γ ∗(ν) = γ ∗(ν), this implies limt→∞ lt (ν, t) = 0 uniformly in ν ∈ Sn−1, namely, the 
statement (iii) is proved.

Finally we prove the statements (iv) and (ii). Since u(x, t) is strictly monotone decreasing along ν at large time as 
in Lemma 4.3, the Euclidean outward normal vector n(ν, t) and the Euclidean normal velocity V (ν, t) at xν(t) are 
given by

n(ν, t) = − ∇u(xν(t), t)

|∇u(xν(t), t)| , V (ν, t) = ut (xν(t), t)

|∇u(xν(t), t)| .
Thus the anisotropic normal velocity Vγ (ν, t) at xν(t) defined in Definition 2.2 is given by

Vγ (ν, t) = V (ν, t)

γ (n(ν, t))
= ut (xν(t), t)

γ (−∇u(xν(t), t))
.

Since xν(t) ∈ 
(t), by using (93)–(94), we have
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lim
t→∞Vγ (ν, t) = −c�′(0)

γ (−�′(0)∇γ ∗(ν))
= c

γ (∇γ ∗(ν))
= c uniformly in ν ∈ Sn−1,

where the last equality comes from (33) in Remark 2.1. On the other hand, the anisotropic mean curvature κγ (ν, t) at 
xν(t) defined in Definition 2.2 is given by

κγ (ν, t) = −div∇γ (n(ν, t))

= −div∇γ (−∇u(xν(t), t))

=
n∑

i,j=1

γxixj
(−∇u(xν(t), t))uxixj

(xν(t), t),

where, to derive the second equality, we used the fact that ∇γ is positively homogeneous of degree zero. Lemma 4.9
gives

lim
t→∞uxixj

(x, t) = �′′(0)γ ∗
xi

(x)γ ∗
xj

(x) uniformly in x ∈ 
(t).

Since xν(t) ∈ 
(t), by using this and (94), we have

lim
t→∞κγ (ν, t) = −�′(0)�′′(0)

n∑
i,j=1

γxixj
(∇γ ∗(ν))γ ∗

xi
(ν)γ ∗

xj
(ν) uniformly in ν ∈ Sn−1.

Since γxj
is positively homogeneous of degree zero, we have 

∑n
i=1 γxixj

(∇γ ∗(ν))γ ∗
xi

(ν) = 0 for every 1 ≤ j ≤ n. 
Thus, we obtain limt→∞ κγ (ν, t) = 0 uniformly in ν ∈ Sn−1. The statement (vi) of Theorem 1.4 is proved. The 
statement (ii) follows immediately from (iii) or (vi). The proof of Theorem 1.4 is complete. �
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Appendix A. Supplementary remarks on anisotropy

We here give supplementary remarks on the notion of anisotropy. We first recall further properties of the dual γ ∗(x)

of γ (p), and explain the relation between Euclidean normal vectors and anisotropic normal vectors. The latter will be 
important in understanding the properties of planar waves of the problem (1).

A.1. Dual and convex conjugate

There is a close relation between the dual γ ∗(x) of γ (p) defined in (6) and the convex conjugate a∗(x) of a(p), 
namely, the Fenchel convex conjugate a∗(x) defined by

a∗(x) = sup
p∈Rn

(x · p − a(p)) . (96)

From its definition, it is clear that a∗(x) is convex and homogeneous of degree two. Furthermore the following holds:

Lemma A.1. For the dual γ ∗(x) defined by (6) and the convex conjugate a∗(x) defined by (96), one has γ ∗(x) =√
2a∗(x).

The above lemma implies, among other things, that the Wulff shape is the conjugate convex set of the Frank 
diagram (in the sense of Fenchel) up to dilation by a factor of two. To prove Lemma A.1, we provide two preliminary 
lemmas.

Lemma A.2. The map ap : Rn →R
n is bijective.
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Proof. Since a is strictly convex and homogeneous of degree two and satisfies (4), there exists a positive constant C
such that

(ap(p1) − ap(p2)) · (p1 − p2) ≥ C|p1 − p2|2, p1,p2 ∈R
n,

see Lemma 4.3 in [1] for instance. Thus, ap : Rn → R
n is injective, that is, p1 �= p2 implies ap(p1) �= ap(p2). To 

show surjectivity, we use a homotopy argument. Choose x ∈R
n arbitrarily and consider the equation

x = (1 − t)p + tap(p) with t ∈ [0,1]. (97)

If p satisfies (97), then we have

x · p = (1 − t)p · p + tap(p) · p
= (1 − t)|p|2 + 2ta(p)

≥ ((1 − t) + 2�−1t)|p|2,
hence |x| ≥ min{1, 2�−1}|p|, where � is the constant defined in (4). This implies that, for each x ∈R

n and 0 ≤ t ≤ 1, 
the equation (97) has no solution on the sphere |p| = R, if R > |x|/ min{1, 2�−1}. On the other hand, if t = 0, the 
map (1 − t)p + tap(p) is an identity map. Therefore, the mapping degree of (1 − t)p + tap(p) on the ball |p| < R

with respect to the value x is 1, since R > |x|. It follows that the mapping degree of (1 − t)p + tap(p) with respect 
to the value x is equal to 1 for each 0 ≤ t ≤ 1. Hence (97) with t = 1 has a solution in the ball |p| < R. This proves 
that ap(p) : Rn → R

n is surjective. �
Lemma A.3. For the convex conjugate a∗(x) of a(p) defined in (96), one has

a∗(x) = a((ap)−1(x)), x ∈R
n. (98)

Proof. Since a(p) is strictly convex and homogeneous of degree two, x · p − a(p) takes the maximum when x =
ap(p). Since ap is bijective from Lemma A.2, by substituting p = px := (ap)−1(x), we have

a∗(x) = sup
p∈Rn

(x · p − a(p)) = x · px − a(px). (99)

By noting x · px = ap(px) · px = 2a(px), we obtain a∗(x) = a(px), which implies (98). �
Proof of Lemma A.1. Recall that γ ∗(x) is given by

γ ∗(x) = sup
p∈Rn

x · p
γ (p)

= sup
p∈Rn

x · p√
2a(p)

.

Differentiating x · p/
√

2a(p) by p, one easily finds that the maximum of this quantity is attained if and only if 
ap(p) = Cx for some (arbitrary) constant C > 0, or, equivalently, p = C(ap)−1(x). Thus, by substituting p = px :=
(ap)−1(x), we obtain

γ ∗(x) = x · px

γ (px)
= ap(px) · px√

2a(px)
=√2a(px) =√2a∗(x),

where the last equality follows from (98) of Lemma A.3. This completes the proof of Lemma A.1. �
Next we investigate further properties of the convex conjugate a∗(x), in order to prove (33) and (34) in Section 2.

Lemma A.4. For the convex conjugate a∗(x) of a(p) defined in (96), one has

a∗
x(x) = (ap)−1(x) for x ∈R

n, ap(p) = (a∗
x)−1(p) for p ∈R

n. (100)
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Proof. Letting px := (ap)−1(x), we differentiate the expression (99), namely,

a∗(x) = x · px − a(px) = x · (ap)−1(x) − a((ap)−1(x)),

and obtain

a∗
x(x) = (ap)−1(x) + ∂x((ap)−1(x))x − ∂x((ap)−1(x))ap((ap)−1(x)),

for x ∈ R
n \ {0}, where ∂x((ap)−1(x)) denotes the matrix whose (i, j)-component is the xi-derivative of the j th-

component of (ap)−1(x). This implies the first equality of (100) for x ∈ R
n \ {0}, since the third term of the right-hand 

side equals ∂x((ap)−1(x))x. When x = 0, we have a∗
x(x) = (ap)−1(x) = 0, since it is easily found that a∗

x(x) and 
(ap)−1(x) are both homogeneous of degree one. Thus the first equality of (100) holds for all x ∈ R

n. The second 
equality of (100) follows immediately from the bijectivity of ap : Rn →R

n. �
Lemma A.5. a∗

xx(x) is positive definite and satisfies

�−1|ξ |2 ≤
n∑

i,j=1

a∗
xixj

(x)ξiξj ≤ �|ξ |2, ξ ∈R
n, (101)

for x ∈R
n \ {0}.

Proof. From the first equality of (100), we have x = ap(a∗
x(x)), namely, xi = api

(a∗
x(x)) for 1 ≤ i ≤ n. By differen-

tiating this with respect to xj , we have

δij =
n∑

k=1

apipk
(a∗

x(x))a∗
xkxj

(x),

where δij = 1 if i = j and δij = 0 if i �= j . This means that the Hessian matrix of a∗ at x is the inverse of the 
Hessian matrix of a at a∗

x(x). We here note that x �= 0 if and only if a∗
x(x) �= 0 since we have a∗

x(x) = (ap)−1(x) from 
Lemma A.4 and since ap is bijective from Lemma A.2 and satisfies ap(0) = 0 by the homogeneity of degree two. 
Consequently, since app is positive definite and satisfies (4) for all p �= 0 by the assumptions, a∗

xx is positive definite 
and satisfies (101) for all x �= 0. �
Remark A.6. The equalities (100) in Lemma A.4 give

x = ap(a∗
x(x)) for x ∈ R

n, p = a∗
x(ap(p)) for p ∈ R

n.

On the other hand, the identities γ (p) = √
2a(p) and γ ∗(x) = √

2a∗(x) imply ap(p) = γ (p)∇γ (p) and a∗
x(x) =

γ ∗(x)∇γ ∗(x). Combining these, we obtain

x = γ ∗(x)γ (∇γ ∗(x))∇γ (∇γ ∗(x)), (102)

p = γ (p)γ ∗(∇γ (p))∇γ ∗(∇γ (p)). (103)

Now we take an inner product of (103) with the vector ∇γ (p), and apply the identities (32), to obtain

γ (p) = γ (p)
(
γ ∗(∇γ (p))

)2
.

This implies γ ∗(∇γ (p)) = 1. Similarly we obtain γ (∇γ ∗(x)) = 1, which proves (33). Substituting (33) into (102)
and (103) establishes the identities (34).

A.2. Euclidean and anisotropic normal vectors

We here explain the relation between the Euclidean normal vectors and the anisotropic normal vectors on any given 
surface.

Let us start with studying the two notions of normal vectors on the surface of the Wulff shape, ∂W1. By noting that 
(33) in Remark 2.1 implies
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Fig. 3. (Left) Wulff shape W1 and its Gauss map ∇γ ∗ : νγ = x �→ nγ and the inverse Gauss map ∇γ : nγ �→ νγ = x. Note that the vector 
νγ (x)(= x) is normal to ∂W1 at x in the anisotropic metric γ ∗ , since ∂W1 is the unit sphere in this metric. (Right) Euclidean normal vector nγ

and the anisotropic normal vector νγ to the boundary of a general domain 
.

∇γ (p) ∈ ∂W1 = {x ∈R
n |γ ∗(x) = 1},

∇γ ∗(x) ∈ ∂F1 = {p ∈ R
n |γ (p) = 1},

if p �= 0 and x �= 0, we consider the restrictions

∇γ |∂F1 : ∂F1 → ∂W1, ∇γ ∗|∂W1 : ∂W1 → ∂F1.

Then we find that

(∇γ |∂F1)
−1 = ∇γ ∗|∂W1, (∇γ ∗|∂W1)

−1 = ∇γ |∂F1 . (104)

Indeed, since ∇γ and ∇γ ∗ are both positively homogeneous of degree zero, (34) in Remark 2.1 gives

∇γ ∗
(

∇γ

(
p

γ (p)

))
= p

γ (p)
, ∇γ

(
∇γ ∗

(
x

γ ∗(x)

))
= x

γ ∗(x)
,

for any p, x ∈ R
n \ {0}. This implies (104), since p/γ (p) ∈ ∂F1 and x/γ ∗(x) ∈ ∂W1. From (104), we find that the 

Euclidean normal vector and the anisotropic normal vector are connected by the bijections ∇γ |∂F1 and ∇γ ∗|∂W1 .

Remark A.7 (Conversion of normal vectors). The anisotropic signed distance function for ∂W1 is given by 
dγ (x; W1) = γ ∗(x) − 1. At each point x ∈ ∂W1, we consider the Euclidean outward (not necessarily unit) normal 
vector nγ (x) and the anisotropic outward normal vector νγ (x) for ∂W1 given by

nγ (x) = ∇dγ (x;W1), νγ (x) = ∇γ (nγ (x)).

Here, γ (nγ (x)) = 1 follows from (35) and γ ∗(νγ (x)) = 1 follows from the first formula of (33). Thus, we have 
nγ (x) ∈ ∂F1 and νγ (x) ∈ ∂W1. Moreover, we have

νγ (x) = ∇γ (∇dγ (x;W1)) = ∇γ (∇γ ∗(x)) = x

γ ∗(x)
= x, x ∈ ∂W1,

where the second equality from the last comes from the second formula of (34). Consequently, (104) implies that, at 
each point x ∈ ∂W1,

∇γ maps nγ (x) ∈ ∂F1 to νγ (x) = x ∈ ∂W1,

∇γ ∗ maps νγ (x) = x ∈ ∂W1 to nγ (x) ∈ ∂F1.

In other words, ∇γ and ∇γ ∗ can be regarded as the inverse Gauss map and the Gauss map for ∂W1, respectively. See 
Fig. 3 (left).

Now that the relation between the two notions of normal vectors on ∂W1 has become clear, one can naturally extend 
this observation to understand the relation of the two notions of normal vectors on the boundary of general smooth 
domain 
. More precisely, given any boundary point y on ∂
, we consider a translation of W1 that is tangent to ∂


at y from inside (see Fig. 3 (right)). The point of tangency on the shifted Wulff shape determines a position x on ∂W1, 
and consequently the two outward normal vectors nγ (x) and νγ (x) as before. This defines the two outward normal 
vectors at y ∈ ∂
.
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Fig. 4. The planar wave whose Euclidean normal is parallel to ∇γ ∗(ν).

A.3. Wulff shape and planar waves

For each ν ∈ Sn−1, the equation (1a) has a planar wave solution of the form

u(x, t) = �(∇γ ∗(ν) · x − ct). (105)

Indeed, this satisfies the equation (1a), since we have ut = −c�′ and divap(∇u) = �′′. Note that, since ap(p) =
γ (p)∇γ (p) by the definition and since ∇u = �′∇γ ∗(ν), we have

divap(∇u) = div
[
γ (�′∇γ ∗(ν))∇γ (�′∇γ ∗(ν))

]
= div

[
�′γ (∇γ ∗(ν))∇γ (∇γ ∗(ν))

]
= div

[
�′ ν

γ ∗(ν)

]
= �′′∇γ ∗(ν) · ν

γ ∗(ν)

= �′′,
where the second equality comes from the homogeneity of γ , the third one comes from the second formulas of 
(33)–(34), and the last one comes from the homogeneity of γ ∗.

Clearly, the Euclidean normal of the planar wave (105) is parallel to ∇γ ∗(ν) and it propagates in this direction 
with the speed c/|∇γ ∗(ν)| in the usual Euclidean distance. On the other hand, the anisotropic normal vector of this 
planar wave is parallel to ν, along which the planar wave moves with the speed c/γ ∗(ν) in the Euclidean distance and 
c in the anisotropic distance.

Let xν(t) be the intersection point between the half line {ξν | ξ > 0} and the expanding Wulff shape WR(t), namely, 
xν(t) = ρ(t; R)ν/γ ∗(ν). Then the α-level set of a translation of the planar wave (105) is tangential to WR(t) at xν(t), 
because the Euclidean normal of ∂WR(t) at xν(t) is ∇γ ∗(ν). The moving speed of xν(t) along ν in the anisotropic 
metric is not c but ρ′(t; R), however limt→∞ ρ′(t; R) = c holds obviously. Namely, the asymptotic shape and the 
speed of ∂WR(t) around xν(t) at the large time are described by those of the level set of the planar wave (105). See 
Fig. 4.

Finally, we remark that (105) can be rewritten as follows: for each n ∈ Sn−1, the equation (1a) has a planar wave 
solution of the form

u(x, t) = �

(
n

γ (n)
· x − ct

)
, (106)

that propagates in the direction n ∈ Sn−1 with the speed cγ (n) in the Euclidean distance. Indeed, since ∇γ ∗|∂W1 :
∂W1 → ∂F1 is a bijection, for any Euclidean unit vector n we can find ν ∈ Sn−1 such that n = ∇γ ∗(ν)/|∇γ ∗(ν)|. 
Substituting this into (105) and using the homogeneity of γ along with (33), we obtain

n = ∇γ ∗(ν)

∗ = ∇γ ∗(ν).

γ (n) γ (∇γ (ν))
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Fig. 5. Spreading fronts in the case where a(p) is positively homogeneous. (left) the Wulff shape W1; (center) the case of �′ < 0; (right) the case 
of �′ > 0.

Appendix B. Positive homogeneity

By the homogeneity of a(p), we have a(−p) = a(p). Thus, the Frank diagram and the Wulff shape are both 
symmetric with respect to the origin. On the other hand, if we only assume that a(p) is positively homogeneous of 
degree two, namely, if a(p) satisfies

a(λp) = λ2a(p), λ > 0,

a(p) is not necessarily symmetric. Nonetheless, all the main results of the present paper remain valid with only a 
minor modification. More precisely, assume that a(p) is positively homogeneous of degree two, then the conclusions 
of Theorems 1.1 and 1.4 and Corollary 1.2 remain true if we make either one of the following modifications:

(a) ∂WR(t) and dγ (x; WR(t)) are replaced by ∂(−WR(t)) and dγ (x; −WR(t)), respectively, where −WR(t) := {x ∈
R

n | −x ∈ WR(t)};
(b) Condition (3) is replaced by 

∫ 1
0 f (s)ds < 0, � satisfies �(−∞) = 0 and �(+∞) = 1 instead of (14b), and the 

conditions (17)–(19) are replaced by

sup
x∈Rn

u0(x) ≤ −m, max|x|≤L
u0(x) ≤ α − η, lim inf|x|→∞ u0(x) > α.

Statement (a) implies that the position of the spreading front roughly coincides with the boundary of the symmetric
image (with respect to the origin) of the expanding Wulff shape. On the other hand, statement (b) implies that Theo-
rem 1.1 holds for “reverse” fronts, where the value of u is smaller behind the expanding front, and the front is facing 
the inward direction (see Fig. 5). The reason why we need modification (a) or (b) is the following. In the original 
setting of Theorem 1.1, in which the front is facing outward, the normal velocity and ∇u have opposite signs. There-
fore, one needs to consider either the Wulff shape associated with the function a(−p) as in (a) above, or consider 
propagation of a reverse front as in (b) above, in which the normal velocity and ∇u have roughly the same sign. We 
note that the behavior of reverse fronts can be analyzed by simply setting v = 1 − u and rewriting the equation (1a) as

vt = div
(−ap(−∇v)

)− f (1 − v) = div ãp(∇v) + f̃ (v),

where ã(p) = a(−p) and f̃ (s) = −f (1 − s) satisfying 
∫ 1

0 f̃ (s)ds < 0.

Appendix C. Proof of Lemma 4.2

The aim of this section is to prove Lemma 4.2, which is a Liouville type theorem for entire solutions of the 
Allen–Cahn equation. As we mentioned, this result is an anisotropic extension of Theorem 3.1 in [7]. We first state 
the strong maximum principle for weak entire solutions of the anisotropic Allen–Cahn equation.

Lemma C.1 (Strong maximum principle). Let 
 be a (not necessarily bounded) sub-domain of Rn. Let u−(x, t) and 
u+(x, t) be a weak entire sub-solution and a weak entire super-solution of (1a), namely, the functions that belong to 
BC1,0(Rn ×R) and satisfy
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±
∫
R

∫
Rn

−u±ϕt + ap(∇u±) · ∇ϕ − f (u±)ϕ dx dt ≥ 0,

for any non-negative ϕ ∈ C∞
0 (
 × R). If there exists a point (x∗, t∗) ∈ 
 × R such that u−(x∗, t∗) = u+(x∗, t∗) and 

that

u−(x, t) ≤ u+(x, t), (x, t) ∈ 
 × (−∞, t∗],
then u− ≡ u+ holds on 
 × (−∞, t∗].

Proof. By setting w = e−Mt(u− − u+), we have

wt −
n∑

i,j=1

∂

∂xi

(
Aij (x, t)wxj

)− (B(x, t) − M)w ≤ 0,

in the weak sense in 
 ×R, where Aij and B are defined by

Aij (x, t) =
1∫

0

apipj
(∇u+ + θ∇(u− − u+))dθ, B(x, t) =

1∫
0

f ′(u+ + θ(u− − u+))dθ.

We note that Aij ∈ L∞(Rn × R) and is positively definite. Since u± are both bounded by the assumption, we can 
choose M large enough to satisfy B(x, t) − M ≤ 0 and apply the strong maximum principle for weak solutions given 
by Theorem 6.25 in [24]. Consequently, if w(x∗, t∗) = 0 holds, we have w ≡ 0 on 
 × (−∞, t∗]. This completes the 
proof. �

Lemma C.2 below implies the uniqueness (up to shift) of traveling wave solution of the Allen–Cahn equation on 
R in the sense of weak solutions. Note that the function u(x) in Lemma C.2 is not BC2(R) but BC1(R).

Lemma C.2 (Uniqueness of traveling wave). Suppose that the constant c and the function u ∈ BC1(R) satisfy 
u(−∞) = 1, u(+∞) = 0, and

u′′ + cu′ + f (u) = 0, x ∈ R,

in the weak sense. Then there exists a constant μ ∈R such that

u(x) = �(x + μ), x ∈R.

Lemma C.2 can be proved in essentially the same way as the proof of Theorem 2.1 in [9]. The only difference 
is to replace the usual strong maximum principle for the classical solutions by that for the weak solutions given in 
Lemma C.1. So we omit the proof.

We now prove Lemma 4.2. The argument is only a slight modification of the proof of Theorem 3.1 in [7].

Proof of Lemma 4.2. Step 1: Let e1 = (1, 0, · · · , 0) ∈ R
n and choose Q ∈ SO(n) satisfying Qe1 = ∇γ ∗(ν)/

|∇γ ∗(ν)|. We define the function v(z, t) by

v(z, t) = u(x, t), where x = Q

(
z + ct

|∇γ ∗(ν)|e1

)
.

In what follows, we use the notation z = (z1, z′) ∈ R
n, where z′ = (z2, · · · , zn) ∈ R

n−1. Then v(z, t) is a weak entire 
solution of

vt = div
(
Q−1ap(Q∇v)

)
+ c

|∇γ ∗(ν)|vz1 + f (v), z ∈R
n, t ∈R, (107)

in the sense of Lemma 2.8. By noting that

∇γ ∗(ν) · Qe1 = |∇γ ∗(ν)|, ∇γ ∗(ν) · Q(z − z1e1) = 0,
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we have ∇γ ∗(ν) · x = |∇γ ∗(ν)|z1 + ct . Thus, the inequality (81) is reduced to

�(|∇γ ∗(ν)|z1 + K) ≤ v(z, t) ≤ �(|∇γ ∗(ν)|z1 − K), z ∈R
n, t ∈R. (108)

Step 2: Fix ξ ∈ R
n−1 and τ ∈ R arbitrarily. We define the function vσ (z, t) by

vσ (z, t) = v(z1 − σ, z′ + ξ, t + τ).

From (108) and the monotonicity of �, we have v ≤ vσ on Rn ×R if σ is large enough. For the same reason, we have 
v ≥ vσ on Rn ×R if σ is sufficiently negative. Thus the constant σ∗ below is well-defined:

σ∗ = inf
{
σ ∈R | v(z, t) ≤ vσ ′

(z, t) on R
n ×R for all σ ′ ≥ σ

}
.

Then v ≤ vσ∗ on Rn ×R from the continuity of v. Our goal is to show that σ∗ = 0, from which the conclusion of the 
lemma easily follows. This will be done in the next two steps.
Step 3: Since f is of the bistable type as specified in (2), we can choose a positive constant δ0 that satisfies

f ′(s) ≤ 0, s ∈ [0,2δ0] ∪ [1 − δ0,1 + δ0]. (109)

Since �(−∞) = 1 and �(+∞) = 0, the upper and the lower bounds for v in (108) imply that there exists a positive 
constant M such that

v ≤ vσ∗ ≤ δ0 if z1 ≥ M − 1, (110)

vσ∗ ≥ v ≥ 1 − δ0 if z1 ≤ −(M − 2). (111)

In what follows, setting DM = [−M, M] ×R
n−1 ×R, we will show

inf
(z1,z

′,t)∈DM

(vσ∗(z1, z
′, t) − v(z1, z

′, t)) = 0. (112)

Assume that (112) does not hold. Then we can choose a constant η0 ∈ (0, 1] such that

v ≤ vσ∗−η on DM, (113)

for any η ∈ [0, η0]. Fix η ∈ [0, η0] arbitrarily. Then, since η ≤ 1, (110) and (111) give

v, vσ∗−η ∈ (0, δ0] if z1 ≥ M − 1, (114)

v, vσ∗−η ∈ [1 − δ0,1) if z1 ≤ −(M − 1). (115)

By combining these inequalities with (113), we have v ≤ vσ∗−η + δ0 on Rn × R. Thus, we can define the constant 
δ∗ ∈ [0, δ0] by

δ∗ = inf
{
δ ∈R |v(z, t) ≤ vσ∗−η(z, t) + δ on R

n ×R
}
.

Assume δ∗ > 0. Then there exist a sequence {(z1,i, z′
i , ti )} and a constant z1,∞ such that

lim
i→∞

(
vσ∗−η(z1,i , z

′
i , ti ) + δ∗ − v(z1,i , z

′
i , ti )

)= 0, (116)

lim
i→∞ z1,i = z1,∞, (117)

|z1,∞| ≥ M, (118)

where (117) follows from the boundedness of {z1,i}. Indeed, by virtue of (108), we have lim|z1|→∞(vσ∗−η + δ∗ −v) =
δ∗ uniformly in z′ ∈ R

n−1 and t ∈ R. This implies that the set {z1,i} ⊂ R is bounded. Moreover, (118) follows from 
(113).

From Lemma 2.8, by choosing a subsequence, which is denoted by {(z1,i, z′
i , ti )} again, we obtain a weak entire 

solution w(z1, z′, t) of (107) such that v(z1, z′ + z′
i , t + ti ) → w(z1, z′, t) as i → ∞ in BC

1,0
loc (R ×R

n−1 ×R). Then, 
we have
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w(z1, z
′, t) = lim

i→∞v(z1, z
′ + z′

i , t + ti )

≤ lim
i→∞vσ∗−η(z1, z

′ + z′
i , t + ti ) + δ∗

= w∗(z1, z
′, t) + δ∗,

where w∗(z1, z′, t) := w(z1 − σ∗ + η, z′ + ξ, t + τ). On the other hand, since (114) and (115) imply

0 < w∗ < w∗ + δ∗ ≤ 2δ0 if z1 ≥ M − 1,

1 − δ0 ≤ w∗ < w∗ + δ∗ < 1 + δ0 if z1 ≤ −(M − 1),

the inequality (109) gives

L[w∗ + δ∗] := w∗
t − div z

(
Q−1ap(Q∇zw

∗)
)

− c

|∇γ ∗(ν)|w
∗
z1

− f (w∗ + δ∗)

= f (w∗) − f (w∗ + δ∗) ≥ 0,

in the weak sense of Lemma C.1 if |z1| ≥ M − 1. We now apply the strong maximum principle in the region |z1| >
M − 1 to derive a contradiction. From (116)–(118), we have

w∗(z1,∞,0,0) + δ∗ = w(z1,∞,0,0), (119)

where z1,∞ is as defined in (117) (hence it satisfies |z1,∞| ≥ M > M − 1). On the other hand, from (113), we have 
w∗|z1=M−1 ≥ w|z1=M−1 and w∗|z1=−M+1 ≥ w|z1=−M+1; hence

w∗ + δ∗|z1=M−1 > w|z1=M−1, w∗ + δ∗|z1=−M+1 > w|z1=−M+1. (120)

In the case where z1,∞ ≥ M (resp. z1,∞ ≤ −M), the statements (119)–(120) contradict the strong maximum principle 
(Lemma C.1) in the region z1 > M − 1 (resp. z1 < −M + 1). Thus, we obtain δ∗ = 0, but it contradicts the minimality 
of σ∗. This contradiction establishes (112).
Step 4: From (112), there exist a sequence {(z1,i , z′

i , ti )} and a constant z1,∞ such that

lim
i→∞

(
vσ∗(z1,i , z

′
i , ti ) − v(z1,i , z

′
i , ti )

)= 0,

lim
i→∞ z1,i = z1,∞,

|z1,∞| ≤ M.

From Lemma 2.8, by choosing a subsequence, which is denoted by {(z1,i, z′
i , ti )} again, we obtain a weak entire 

solution w(z1, z′, t) such that v(z1, z′ + z′
i , t + ti ) → w(z1, z′, t) as i → ∞ in BC

1,0
loc (R ×R

n−1 ×R). Then, we have

w(z1, z
′, t) = lim

i→∞v(z1, z
′ + z′

i , t + ti )

≤ lim
i→∞vσ∗(z1, z

′ + z′
i , t + ti )

= w∗(z1, z
′, t),

where w∗(z1, z′, t) := w(z1 − σ ∗, z′ + ξ, t + τ). Moreover, we have

w(z1,∞,0,0) = lim
i→∞v(z1,i , z

′
i , ti ) = lim

i→∞vσ∗(z1,i , z
′
i , ti ) = w∗(z1,∞,0,0).

Thus, the strong maximum principle given in Lemma C.1 implies w ≡ w∗ for t ≤ 0. Then w ≡ w∗ holds for t ∈R by 
virtue of the uniqueness of the solution, which follows from the comparison principle given in Proposition 2.6 since 
Lemma 2.8 implies w ∈ C1+θ,θ/2(Rn ×R). Consequently, the equality

w(z1, z
′, t) = w∗(z1, z

′, t) = w(z1 − σ ∗, z′ + ξ, t + τ) on R×R
n−1 ×R,

gives

w(0,0,0) = w(−kσ ∗, kξ, kτ ) for all k ∈ Z.
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This is a contradiction when σ ∗ �= 0, because

lim
k→−∞w(−kσ ∗, kξ, kτ ) = 1, lim

k→+∞w(−kσ ∗, kξ, kτ ) = −1, if σ∗ > 0,

while

lim
k→−∞w(−kσ ∗, kξ, kτ ) = −1, lim

k→+∞w(−kσ ∗, kξ, kτ ) = 1, if σ∗ < 0.

Thus we obtain σ ∗ = 0, namely, we have

v(z1, z
′, t) ≤ v(z1, z

′ + ξ, t + τ), on R×R
n−1 ×R.

Since ξ ∈ R
n−1 and τ ∈ R are both arbitrary, v is independent of both z′ and t , namely, v = v(z1). Thus, from (107), 

it satisfies
1

|∇γ ∗(ν)|2 vz1z1 + c

|∇γ ∗(ν)|vz1 + f (v) = 0, z1 ∈R,

in the weak sense. Consequently, Lemma C.2 implies that there exists a constant μ such that

v(z1) = �(|∇γ ∗(ν)|z1 + μ), z1 ∈R.

This completes the proof of Lemma 4.2. �
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