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Abstract

We consider the Cauchy problem for the anisotropic (unbalanced) Allen—Cahn equation on R” with n > 2 and study the large
time behavior of the solutions with spreading fronts. We show, under very mild assumptions on the initial data, that the solution
develops a well-formed front whose position is closely approximated by the expanding Wulff shape for all large times. Such
behavior can naturally be expected on a formal level and there are also some rigorous studies in the literature on related problems,
but we will establish approximation results that are more refined than what has been known before. More precisely, the Hausdorff
distance between the level set of the solution and the expanding Wulff shape remains uniformly bounded for all large times.
Furthermore, each level set becomes a smooth hypersurface in finite time no matter how irregular the initial configuration may be,
and the motion of this hypersurface is approximately subject to the anisotropic mean curvature flow V), = «;, + ¢ with a small error
margin. We also prove the eventual rigidity of the solution profile at the front, meaning that it converges locally to the traveling wave
profile everywhere near the front as time goes to infinity. In proving this last result as well as the smoothness of the level surfaces,
an anisotropic extension of the Liouville type theorem of Berestycki and Hamel (2007) for entire solutions of the Allen—Cahn
equation plays a key role.
© 2018 L’ Association Publications de 1’Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved.

Résumé

Nous considérons le probleme de Cauchy pour I’équation d’ Allen—Cahn (de moyenne non nulle) anisotropique dans R” avec
n > 2, et étudions le comportement en temps grand des solutions propageantes. Nous montrons, sous des hypotheses assez faibles
sur la donnée initiale, que la solution développe un véritable front de propagation dont la position peut étre approchée d’assez
pres, en temps grand, par une forme de Wulff en expansion. Un tel comportement peut étre attendu formellement, et il existe aussi
dans la littérature certaines études rigoureuses sur des problémes analogues. Le principal objectif de cet article est d’établir des
résultats d’approximation plus fins que ce qui était connu auparavant. Plus précisément, la distance de Hausdorff entre un ensemble
de niveau de la solution et la forme de Wulff en expansion reste bornée uniformément en temps grand. De plus, chaque ensemble
de niveau devient en temps fini une hypersurface réguliere, quelque soit I’irrégularité de sa configuration initiale, et le mouvement
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de cette hypersurface est régi (approximativement) par le flot de courbure moyenne anisotropique V), = «y + ¢, avec une marge
d’erreur petite. Nous prouvons aussi la rigidité asymptotique du profil de la solution, c’est-a-dire qu’il converge, a proximité du
front et quand le temps tend vers I’infini, vers le profil de I’onde progressive. Une extension au cas anisotropique d’un théoreme de
type Liouville de Berestycki et Hamel (2007), portant sur les solutions entieres de 1’équation d’ Allen—Cahn, joue un rdle clé dans
la preuve de ce dernier résultat, ainsi que de la régularité des ensembles de niveau.

© 2018 L’ Association Publications de I’Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved.
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1. Introduction

In this paper, we consider the asymptotic behavior of spreading fronts in an anisotropic Allen—Cahn type equation.
More precisely, we consider the following Cauchy problem:

u; =diva,(Vu) + f(u), xeR", t>0, (a) 1
u(x,0) =ug(x), x eR", (b) M

where n > 2, a,(p) denotes V, a(p), and ug(x) is bounded and sufficiently smooth. The function f is a bistable type
nonlinearity that is smooth, say C2, and has exactly three zeros 0 < o < 1 with

f(0) <0, fl=>0, f(1)<0, 2

and satisfies
1
/ f(s)ds > 0. 3)
0

The function a : R* — R* in (la) is strictly convex and homogeneous of degree two, namely a(Ap) = 1a(p),
("2 € R) and belongs to C2(R" \ {0}) N C'(R™). Actually one can relax this condition slightly by requiring a to
be only positively homogeneous, namely, a(Ap) = A%a(p), ("A > 0); see Appendix B. We further assume that there
exists a positive constant A such that, for any p € R" \ {0},

n
ATNEP <) app (PEE; < AlEP. E€R" (4)
i,j=1
The goal of the present paper is to study the spreading fronts of the solution of (1) and to give a rather detailed
picture of their behavior, not only determining their rough asymptotic shape (i.e., the Wulff shape, as one would
naturally expect) but also showing the eventual smoothness of the level surfaces and proving the asymptotic rigidity
of the transition layers at the front position, neither of which has been known before except in very limited situations.
Note that we derive these refined estimates not for a specially chosen class of initial data but for a rather large class of
initial data (that are possibly sign-changing) as specified in (17)—(19). Thus our results will confirm the validity and
universality of fine asymptotics of spreading fronts that are expected from formal analysis.
Now, for the convenience of the reader who are not familiar with anisotropic diffusion equations of the form (1a),
let us make a few remarks on the term a(p). Condition (4) implies that a(p) is strictly convex, but the converse is not
necessarily true. Equation (1a) can be rewritten formally as

Uy = Z ap;p; (Viuy,x; + f(u).

ij=1

Therefore condition (4) is needed to ensure that equation (la) be uniformly parabolic. Note that the functions a,;
are homogeneous of degree zero and are therefore bounded on R" \ {0}, but are not necessarily continuous at p =0
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(see Subsection 2.1). Thus, one cannot expect the solution u(x, ¢) to be classical. Hereafter we will deal with weak
solutions of (1); see Definition 2.4.

The function a(p) describes the anisotropic nature of the diffusion. The function y (p) := /2a(p) is positively
homogeneous of degree one and satisfies y (p) = y (—p). Its restriction yp = y | gn-1 : §"=1 - R+ is called the energy
density function. Similar anisotropic energy functions appear in the study of crystal growth and anisotropic mean
curvature flows, and are associated with the notion of the Wulff shape, which we define below; see, for instance,
[15,29,28]. Conversely, if an energy density function yy : sl 5 Rt satisfying y (v) = y(—v) is given, one can
reconstruct the function a(p) by first extending it as a positively homogeneous function of degree one as:

P
Y= <m) lpl, peR”,

and then setting a(p) = (¥ (p))?/2. The resulting function a(p) is homogeneous of degree two and satisfies

Y (p) =+ 2a(p). ®)

The energy density function y and its extension y lead to the following two notions: the Frank diagram F; C R"
and the Wulff shape W1 C R". They are defined by

Fi={peR"|y(p) <1},

Wi={xeR"|y"(x) <1},
where y (p) is as in (5) and y*(x) is the dual of y (p) defined by
xX-p X-v

max .
vest=1 y (V)

y*(x)=sup{x-p|peFi}= sup (6)

peRn Y (p)
This function y* is non-negative, convex and positively homogeneous of degree one, and satisfies y*(x) = y*(—x)
by the definition. Thus the Wulff shape is always convex, while the Frank diagram is convex if and only if a(p) is
a convex function. In the present paper, since a(p) is assumed to be strictly convex in order for equation (1a) to be
parabolic, the Frank diagram F7 and the Wulff shape W; are both strictly convex. We note that the definition (6) is
equivalent to y*(x) = +/2a*(x), where a*(x) is the convex conjugate of a(p), see Lemma A.1 in Appendix A.
Since y*(x) is a norm, it defines an anisotropic metric on R” through the anisotropic distance function

y*(x—y), x,yeR".

Then the Wulff shape W is the unit ball with respect to this anisotropic distance. We note that the equation (la)
reduces to the usual isotropic Allen—Cahn equation u; = Au + f(u) in the case a(p) = | p|2 /2. In this case, we have
y(p) = |p| and y*(x) = |x|, therefore the corresponding Frank diagram F; and Wulff shape W, are both the usual
unit ball in the Euclidean distance. As we will mention in Remark 1.6, some of the results in the present paper are
new even in the isotropic case.

For later discussions, we introduce the notion of anisotropic signed distance function. Let €2 be a bounded domain
with smooth boundary 9<2. The anisotropic signed distance function for Q2 is defined by

min y*(x — y) ifx¢Q, (a)

. ) yeoQ
iD= ey ifxeq. ) "
yea2

Then d, (x; 2) = 0 if and only if x € d€2, and d,, (x; ©2) > 0 (resp. < 0) if and only if x lies outside (resp. inside) of
Q. Next we define the expanding Wulff shape Wg(t) C R" by

Wr(t) = p(t; R) Wi,
where p(¢; R) is the solution of

PR =" Lo R =Rr>""L ®)
p(t; R) ¢
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and c is the positive constant defined in (14) below, which represents the speed of the traveling wave of the one-
dimensional Allen—Cahn equation. The condition R > (n — 1)/c in (8) guarantees that p(¢; R) — oo as t — oo. It is
easily seen that p(¢; R) satisfies

p(t; R)=R+ct —((n—1)/c)logt + o(logt), )]

see also Lemma 3.5. The boundary of the set Wr(¢), denoted by d Wg(¢), coincides with the sphere of radius p(¢; R)
in the anisotropic distance y*(x) defined in (6), namely,

IWR() ={x eR"|y"(x) = p(t; R)}.

Note that the anisotropic signed distance for Wg(¢), which is defined by (7) with & = Wg(¢), can simply be written
as

dy(x; WR(2)) =y*(x) — p(t; R). (10

The above identity follows from the trigonometric inequality |y*(x) — y*(¥)| < y*(x — y) and the fact that y* is
homogeneous of degree one. It is well known, and as we will see in Subsection 2.1, d, (x; Wg(t)) satisfies

ddy =diva,(Vd,) —c on dWg(1). an

Here, by the definition (10), the term —d,d, coincides with the anisotropic outward normal velocity of the surface
0Wg(t) denoted by V,,, while, as we will explain in Subsection 2.1, the term —diva,(Vd, ) represents the anisotropic
mean curvature of d Wg(#) denoted by «), . Thus equation (11) implies that the motion of the surface dWg (¢) is subject
to the anisotropic mean curvature flow

V, =«, +c. (12)

Furthermore, 0 Wg(¢) is an expanding self-similar solution of equation (12).

As we mentioned earlier, the goal of the present paper is to show that, under very mild assumptions on the initial
value u, the level surface I'(¢) of the solution of (1) is well approximated by d Wg(¢), the boundary of the expanding
Waulff shape. Such a result can naturally be anticipated formally if one pays attention to the close relation between
equation (la) and the anisotropic mean curvature flow (12), which can be established by a singular perturbation
argument. Once the problem is reduced (formally) to (12), the approximation of solutions of (12) by 0 Wg(¢) can
easily be shown by the comparison argument. However, the usual argument that establishes the link between (1a) and
(12) works only on a finite time interval, therefore one has to be careful in using (12) as a replacement for (1a) if the
main focus is the long time behavior as + — co. Our method in the present paper allows us to establish results on fine
approximation of I'(#) by d Wg(t) — including its smoothness and the direction of its normals — for a large class of
solutions of (1).

Before presenting our main results, let us introduce some more notation. Let u(x,t) = ®(x — ct) denote the
traveling wave of the one-dimensional Allen—Cahn equation

ur=uxx + fu), xeR,t>0. (13)
Here ® and c satisfy

D"(2) +c @' (2) + f(P(2)) =0, zeR, (a)

®(—00) =1, &(+00) =0, (b) (14)

®0) =a. (©)
Since f is a bistable type nonlinearity, the pair (c, ®) is determined uniquely under the normalization condition (14c),
where « is the constant defined in (2). It is also known that ®'(z) < O for z € R and that ¢ > 0 if f satisfies (3).
Moreover, there exist positive constants Cg and A such that

[D(2)], ['(2)], [9"(2)] < Coe™, 2>0, (15)
() — 1], [®'(2)], [®"(2)| < Coe™, z<0. (16)
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finite up to t = +oo

a —levelset of u(x,t)

uo(x) 2+ n

u(x)<a

t=0 ~[> 1]

Fig. 1. Generation and asymptotic behavior of the front in the problem (1).

In the Cauchy problem for equation (13), the traveling wave ®(x — ct) is exponentially stable in L°°(R) under an

appropriate class of initial perturbations. For details, see [9,14] for example. Throughout this paper, ®(z) and ¢ will

denote the function and the constant defined in (14), and A, C¢ will denote the positive constants defined in (15)—(16).
Our main results are the following.

Theorem 1.1 (Main theorem). For each m > 0 and n > 0, there exists a positive constant L such that, if the initial
value ugy belongs to C 20 (R™) for some 6 € (0, 1) and satisfies

inf ug(x) > —m, (17)
xeR?

min ug(x) > o +n, (18)
[x|<L

limsupug(x) < «, (19)
|x]—00

for the constant « defined in (2), then there exist positive constants R, T, and a bounded smooth function [ : S~ x
[T, 00) — R such that the solution u(x,t) of (1) and its level set

I@t) ={x eR" |u(x,1) =al, (20)
satisfy
x€T() ifandonlyif dy(x: Wr(r)) =1 (|x—| t) . t>T, @1)
X
where d,, (x; Wg(t)) is as defined in (10). Moreover, one has
lim sup u(x,t)—<D<dy(x;WR(t))—l<i,t>>‘=O, (22)
1700 xR\ {0) ]
lim sup |Vu(x,t)—® (d,,(x; Wg(t)) —1 <i, t)) Vy*x)| =0, (23)
I%OOXERn\{O} |)C|

lim; oo u(0,1) — 1, and lim;_, oo Vu(0, 1) = 0.

We note that, since d), (x; Wg(1)) = y*(x) — p(t; R) by definition, we have
VO (dy (x; Wr(1))) = @ (dy (x; Wr(1))) VY™ (x).

Thus (23) implies that Vu(x, t) approaches V& (d, (x; Wg(¢))) with a positional perturbation of /(x/|x|, ). Hence
(22) and (23) are consistent.
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The conditions (18)—(19) are basically the same as those that guarantee occurrence of spreading fronts in the
classical (isotropic) Allen—Cahn equation, see [3,21] for instance. Theorem 1.1 implies that, under such standard
assumptions on the initial value uo(x), and with no other extra hypotheses, the solution u(x, ) develops a spreading
front whose position and shape are well approximated by the boundary of the expanding Wulff shape 0 Wx(¢) for all
large times (see Fig. 1). More precisely, we have the following corollary:

Corollary 1.2 (Smoothness and location of the front). Let the assumptions of Theorem 1.1 hold and let T > 0 be as
in Theorem 1.1. Then, for each t > T, the a-level set I'(t) defined by (20) is a smooth hypersurface and the region
enclosed by T'(t) is star-shaped with respect to the origin. Furthermore, the Hausdorff distance

dy (I'(1), dWR (1))

remains uniformly bounded for allt > T.

Proof. The smoothness of I'(¢) follows from (21) and the smoothness of /(v, 7). (Or it is a direct consequence of the
fact that Vu # 0 around I'(¢), which follows from (23) and @'(0) # 0.) The boundedness of dy (I'(r), dWg (¢)) follows
from (21) and the uniform boundedness of /(v, #). The star-shapedness is a consequence of the fact that v — (v, ¢) is
a single-valued well-defined function on S"~1. O

Corollary 1.3 (Convergence of the normals of T'(t)). Let the assumptions of Theorem 1.1 hold. For each v € 8",
let x,,(t) denote the intersection point between I'(t) and the half-line {§v | & > 0} for large t > 0. Then the Euclidean
outward unit normal of T'(¢) at x,,(t) € I'(t), denoted by n(x,(t)), satisfies

lim nry () = lim —L @) _ Vv )
t—00 t=o00 [Vy*(x,(1))] IVy*(v)|

the right-hand side being equal to the (Euclidean) outward unit normal to the Wulff shape W1 = {x e R" | y*(x) < 1}.

uniformly in v € 8", (24)

Proof. When x = x,(¢) € I'(t), we have d), (x; Wg(?)) — [(x/|x], ) = 0 from (21). Thus, (23) gives
Jim |Vu(x, (1), 1) — ' (0)Vy*(x,(1))| =0, uniformlyinv e $"!,
—00

and hence (24) follows. O

As we will see in the proof of Theorem 1.1 in Section 4, the smoothness of I'(#) (and that of the function /) follows
from the fact that Vu(x, t) # 0 around I"(¢) for all large ¢. This fact also implies that the coefficient a,, (Vu) is smooth
around I'(¢), and therefore the solution u(x, ¢) belongs to (and is bounded) in CHH0.140/2 there. Consequently, the
convergence in (22) takes place in the sense of C%! around T'(¢). This implies, in particular, that u; is uniformly
bounded and uniformly positive around I'(¢) for all sufficiently large ¢ (see Lemma 4.8). These observations lead to
the following result:

Theorem 1.4 (Asymptotic behavior of the front). Let the assumptions of Theorem 1.1 hold and let T'(t) be the a-level
set of the solution u(x,t) defined by (20). Then the following hold:

(i) T'(¢) is monotonically expanding for all large t;
(ii) there exists a constant C > 0 such that

dy(T(t+1),T(t)) < Crt forall sufficiently large t and all T > 0;

(iii) the function 1 : S % [T,00) > R defined in Theorem 1.1 satisfies 0;[(v,t) — 0 as t — oo uniformly in
Ve S”_l;

(iv) V, — candk, — 0ast — oo uniformly on I'(t), where V,, and «, denote, respectively, the anisotropic normal
velocity and the anisotropic mean curvature of I'(t) that appear in (12).
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Remark 1.5. The statement (iv) of the above theorem asserts that the law of motion of I'; is asymptotically given by
V), =c ast — oo, and that the effect of the curvature «, on the motion of I'; becomes nearly negligible for large 7.
However, the long-time effect of the curvature is by no means negligible. Indeed, the boundary of the expanding Wulff
shape 0 Wy () evolves by the equation V), = «,, + ¢, and the presence of «,, in the above interface equation gives rise
to the positional drift of order log(¢) as shown in (9). The fact that I'; remains uniformly close to d Wg (¢) implies that
the long-time curvature effect is non-negligible on the motion of I';.

As we will show in Appendix A.3, for each v € §"~!, equation (1a) has planar wave solution given in the form
ulx,t) =d(Vy*(v) - x —ct). (25)

The front of this solution propagates in the direction parallel to Vy*(v) with the speed ¢/|Vy (v)| in the Euclidean
distance. Note that the statement (22) in Theorem 1.1 can be rewritten as

ur,1) — (w*(x) = p R 1 (i ))‘ _o,

1
|x]

lim sup
1= 20 xR\ (0}

since y*(x) = Vy*(x) - x by the homogeneity of y*. We also note that
pt; R)+1(v,t)=ct+o(t) as t — 00,

since p(t; R) = R+ ct — ((n — 1)/c)logt + o(logt) as mentioned before and since /(v, t) is bounded. In view of
these, we see that (22) implies that the profile of the solution at the front converges to a planar wave solution of the
form (25).

Remark 1.6. If the equation is isotropic and if the initial value satisfies u¢ > 0 and has compact support, then one can
use the reflection argument of [22] to show that Vu # 0 outside the convex hull of the support of ug; hence I'(¢) is
smooth there. Furthermore, the same reflection argument shows that the inward normal lines to I'(#) always hit the
convex hull of the support of uq, therefore the shape of I'(r) becomes more and more spherically symmetric as it
expands toward infinity. However, such a reflection argument does not work in anisotropic equations. Furthermore we
are not assuming that 1 has compact support, nor do we assume that ug > 0. Therefore the method of [22] cannot be
applied to the present problem. Thus the results in Corollaries 1.2 and 1.3, as well as Theorem 1.4, are new even in
the isotropic case.

We next give a simple example of the Frank diagram and the Wulff shape. Actually the equation in the following
example reduces to the isotropic Allen—Cahn equation u; = Au + f (u) by linear rescaling of coordinates, so this is a
trivial case.

Example 1.7 (Linear anisotropy). Consider the equation

= Ay + Buyy + f(u), (x,y) €R*1>0,

namely, the case where a(p, q) = Ap?/2 + Bg?/2. Then the convex conjugate of a(p, q) is a*(x, y) = x2/(2A) +
y2/(2B), see Appendix A. The Frank diagram F; and the Wulff shape W, are both ellipses given by

F1={(p,q)eRzly(p,q)Z\/Ap2+Bq2§1},

9 . x2 y2
Wi=1{(@x,yeR JY) =] —+=<1
1 (x,y) |v*(x. ) 3

We note that, if a(p) is homogeneous of degree two and belongs to C2(R"), it has to be a quadratic form as
in Example 1.7. Therefore the corresponding equation is linear and hence has trivial anisotropy. This means that
whenever we deal with nontrivial anisotropy, the derivatives (a, » ; (p))i,j are necessarily discontinuous at p =0 (at

least for some i, j). This is the reason why we assume somewhat weaker regularity: a € C ZR"\{0) N C'(R"). As a
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consequence, we have to consider weak solutions of (1), see Definition 2.4 and Proposition 2.5 in Subsection 2.2 for
details.

In Theorem 1.1, we did not specify how the function /(v, t) behaves for large . At present, we do not know if
I(v, 1) has a limit [, (v) = lim;_, », [ (v, #) in general. This question is still open, while a partial answer was obtained in
[31], where the author proves that such a limit exists in the isotropic equation if the initial data is a small perturbation
(in H'(R™)) to the radially symmetric well-formed front.

Let us now make a brief (and very partial) review of related results. Spreading fronts for the isotropic equation

ug=Au+ fw), xeR"t>0, (26)

where f(u) is either bistable or monostable type, was studied systematically in the pioneering paper [3], where they
introduced the notion of “spreading speed” and proved that it coincides with the (minimal) speed of traveling waves.
More precisely, they proved that, for any ¢ > 0, the solution u«(x, ) converges to 1 as ¢t — 0o uniformly in the region
|x] < (c* — &)t, while it converges to 0 as t — oo uniformly in the region |x| > (¢* + ¢)t, where ¢* denotes the
spreading speed. The paper [22] studies the isotropic Allen—Cahn equation (26) and, under the assumption that u is
nonnegative and compactly supported and that u — 1 as t — oo, proves that the spreading front becomes spherically
symmetric in the C! sense as t — oo, and that the profile of u around the spreading front converges to that of the
traveling wave. This result, which is proved by the plane reflection method, is similar to (22)—(23) of our Theorem 1.1
and Corollary 1.3, though we do not need to assume that #( be nonnegative nor compactly supported. The papers
[31,34] also deal with the isotropic Allen—Cahn equation (26) and show that the initial spherical asymmetry does
not necessarily disappear as t — oo. (In our terminology, their results give an example in which the function /(v, t)
in (22) does not converge to a constant as t — 00.) The paper [27] considers the equation on the hyperbolic space:
uy = Agu+ f(u) in H*, and studies the effect of the curvature of the underlying space H" on the speed of spreading
fronts. The paper [30] studies spreading fronts for spatially periodic reaction—diffusion equation on R" (both for
bistable and monostable nonlinearity) and derives the so-called Freidlin—-Gértner formula for the spreading speed,
which implies that the asymptotic shape of the spreading front roughly converges to the Wulff shape associated with
the homogenized equation. Unlike the spatially homogeneous problems, whether the solution develops a well-formed
transition layer around the front or not is not known yet. The paper [8] introduces the notion of generalized transition
fronts in a general unbounded domain in R”, and [19] gives classification of generalized fronts for bistable equations
on R”.

The asymptotic behavior of solutions of (1) is closely related to suitable singular limits of the anisotropic Allen—
Cahn equation. Consider the following equation with a small parameter & > 0:

1
uf:gdivap(Vu£)+gf(u6), xeR"te[0,T], 27)

where f is a bistable nonlinearity. When f is of unbalanced type such that fol f(s)ds # 0, the case we treat in this
paper, the front motion of the solution of (27) is governed by the equation V,, = c in the sharp interface limit as ¢ — 0.
Note also that the equation (27) is converted to (1a) through the rescaling x = ¢~ !x, 7 =¢&~!r. On the other hand, when
f is of balanced or slightly unbalanced type (namely, it depends on ¢ in such a way that fol fe(s)ds = O(¢g)), one
needs to use a different scaling, namely

f = divay (Vi) + 5 f(u), 28)

and the corresponding interface equation in the sharp interface limit is given by V,, =k, or V,, = ¢ +«,,, respectively,
where c is a suitable constant. Note that, in this case, the equation is converted to (1a) by the rescaling ¥ = ¢ 'x,
f=¢"2t. The singular limit problem for (28) has been studied in [1,12,13,18]. However, these results are valid only
for finite time intervals, and hence they give no precise information about the asymptotic behavior of spreading fronts
of equation (la) as t — oo, which is the main theme of the present paper.

As far as the authors know, there is no earlier rigorous study of the long-time behavior of solutions of the anisotropic
Allen—Cahn equation on R". On the other hand, there are many results on the long-time behavior of the correspond-
ing surface evolution equations and related problems. The papers [29,33] prove that the asymptotic shape of closed
hypersurfaces that evolve by the crystal growth V), = ¢ in R" is characterized by the Wulff shape. This result can be
obtained by the comparison argument. Note that, for this type of equation, the Frank diagram need not be convex for
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the equation to be well-posed, so the corresponding Wulff shape may have corners, which adds extra subtlety to the
comparison argument. In [29,33], this technical subtlety is handled by converting the equation to the Hamilton—Jacobi
equation and applying the comparison principle for viscosity solutions of the Hamilton—Jacobi equation. The papers
[20,32] study the equation V), =k}, + ¢ in R" or a more generalized version of this equation and prove that the region
(1) enclosed by the evolving hypersurface satisfies Q2(¢)/t — CW; as t — oo, where C is some positive constant
and W is the Wulff shape determined by y. More precisely, the paper [32] derives this result by assuming the function
y to be C? and strictly convex (as in the present paper) and applying the comparison argument for viscosity solutions,
from which one obtains

Wg, (1) C Q(t) C Wg,y(t), t>0. 29)

In [20], convergence results similar to [32] are proved for a more general equation of the form V,, = —tr [E (n)Vn] +c,
where n denotes the Euclidean outward unit normal to d€2(¢) and E(n) is an arbitrary symmetric matrix that is positive
semi-definite and continuous in n € §"~!. Here the convexity of y is not necessarily assumed, but the equation is
still (degenerate) parabolic because of the positive semi-definiteness of E(n). Note that —tr[E(n)Vn] = k,, when
E(n) = V2y(n); in this case y has to be convex for E (n) to be positive semi-definite. The proofs in [20] also rely on
the comparison argument for viscosity solutions.

We note that comparison arguments alone cannot tell whether or not the boundary d€2(¢) eventually become ade-
quately regular. Nor do they show if the normals to d€2(¢) converge to those of Wr(#) as t — oo. The results of the
present paper answer these questions for the level surfaces of solutions of (1); see Theorem 1.1 and Corollary 1.3.

Finally, we remark that the surface evolution equations discussed above can also be obtained as sharp interface
limits of models other than the Allen—Cahn equation. In [16], the authors study a stochastic interface model, — the
so-called the Ginzburg-Landau V ¢-interface model —, and show that the interface dynamics become deterministic in
a suitable large scale limit and are described by anisotropic mean curvature flows. There is also an extensive literature
on the phase field models with anisotropic free energy and their sharp interface limit; see, for example, [10,11,17] and
the references therein.

The rest of the paper is organized as follows. In Section 2, we make some preparations. In Subsection 2.1, we
recall the notion of the anisotropic mean curvature flow and its basic properties. In Subsection 2.2, we define weak
solutions of (1) and prove their existence and uniqueness for each initial value uo (Proposition 2.5), and establish the
comparison principle for weak solutions (Proposition 2.6).

In Section 3, we give relatively refined upper and lower bounds for the solution u(x, ¢) by constructing a pair of
comparison functions whose level sets are the expanding Wulff shapes (Proposition 3.1). This immediately implies
that the level surface I'(¢) of the solution u# remains within bounded distance from d Wr(¢) for all large ¢. To prove
this proposition, we first give a rough estimate of the solution near the origin and near the infinity (Lemma 3.2)
in Subsection 3.1. In Subsection 3.2, we construct a fine set of super-solutions and sub-solutions (Lemma 3.7). In
Subsection 3.3, we give the proof of Proposition 3.1.

In Section 4, we complete the proof of Theorems 1.1 and 1.4 by showing the fine structure of transition layers
around the spreading front. First, in Subsection 4.1, we prove the local convergence of the solution to the planar waves
in the topology of BC}O’?(R” x R) (Lemma 4.1). Next, in Subsection 4.2, we show the strict monotonicity of the
solution around the front (Lemma 4.3). Finally, in Subsections 4.3 and 4.4, we complete the proof of Theorems 1.1
and 1.4, respectively.

The appendix is devoted to giving supplementary results concerning anisotropy, and to proving Lemma 4.2, which
states that any entire solution of (1a) that lies between two planar waves for all # € R is a planar wave. This lemma
generalizes Theorem 3.1 of [7] to anisotropic equations.

We end this section by summarizing notation for function spaces in the present paper. Let D be a domain in R”
or R"*!. ¢ k(D) denotes the set of functions defined on D whose derivatives up to the k-th order are continuous,
and WK% (D) is the set of functions whose weak derivatives up to the k-th order belong to L°°(D). For any non-
negative integer k, we define BC*(D) := C*(D) N W*°(D) and || - || gcx(py := Il - llyk.oo(py- For 6 € (0, 1), C?(D)
denotes the Holder space, namely, the set of functions defined on D that are bounded and uniformly Holder contin-
uous with exponent 8. The set of functions in BC k(D) whose k-th order derivatives belong to C (D) is denoted by
Ck+9 (D).

Let u(x, t) be a function defined on a domain Q in R” x R. By u € Cl'O(Q) and u € CZ’I(Q), we mean u, iy, €
C%Q)andu, Uy, Uy;x;, Up € c%Q)foralll <i,j<n, respectively. We define BC9(Q) and BC*!(Q) in a similar
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way. For 6 € (0, 1), c?o/ 2(Q) denotes the set of functions defined on Q that are bounded and uniformly Holder
continuous with exponent 6 and 6 /2 with respect to x and ¢, respectively. By u € C11%:9/2(Q) and u € C*+0-140/2(Q),
we mean u, uy; € CQ’Q/Z(Q) and u, uy,, Uxxj> Ut € CQ’Q/Z(Q) for all 1 <i, j <n, respectively.

2. Preliminaries

In this section, we make preparations for discussions in later sections. In Subsection 2.1, we recall basic properties
of homogeneous functions and define notions concerning the anisotropic mean curvature flow. In Subsection 2.2, we
define weak solutions of the problem (1), and sketch the proof of their unique existence and regularity. We also recall
the comparison principle for weak sub- and super-solutions of (1), which is a main tool for our later analysis.

2.1. Anisotropic mean curvature flow and related notions

We first summarize basic properties of a(p). Throughout this paper, we assume that a(p) in equation (1a) belongs
to C2(R" \ {0}) N C'(R") and is strictly convex and homogeneous of degree two. Namely
a(Ap) =2%a(p), reR,peR".

2 .
Then a, : R" — R" and app, : R" — R" are homogeneous of degree one and zero, respectively:

ap(Ap) =rap(p), ap(p)-p=2a(p), reR,peR",
app()\p) = llpp(l?), app(p)p Zap(l?), L eR\ {0}, p e R"\ {0}.

The function app = (ap, p;) is bounded on R" \ {0}, but we do not assume continuity of a,, at p = 0. In fact, as we
mentioned earlier, a,, being continuous at p = 0 implies that a,, is constant on R", which implies that a(p) is a
quadratic polynomial and the equation (1a) has linear (hence trivial) anisotropy. We next summarize basic properties
of y(p) and its dual y*(x) defined by (6). They are frequently used in our computations.

Remark 2.1 (Basic properties of y(p) and y*(x)). By the definition, both y (p) and its dual y*(x) are positively
homogeneous of degree one and symmetric in the sense that y (p) = y (—p) and y*(x) = y*(—x), or equivalently

yp)=Irly(p), y*Ox)=Irly*(x), reR, p,xeR™ (30)

Consequently, Vy (p) and Vy*(x) are positively homogeneous of degree zero and satisfy Vy (—p) = —Vy(p) and
Vy*(=x) = =Vy(x). Thus,

A A
Vy(ip) = WVV(P), Vy*(x) = WVV*(JC), 3D
Vy(p)-p=y(p), Vy*(x) x=y*x), (32)
for any A € R\ {0} and any p, x € R" \ {0}. Moreover, we have
Y (Vy(p) =1, y(Vy*x) =1, (33)
y(PVy*(Vy(p) =p, 7 )Vy(Vy*(x) =x, (34)

for any p, x € R" \ {0}. For the proof of (33)—(34), see Remark A.6 in Subsection A.1. See also [5,6].

Next we define anisotropic normal vector, anisotropic mean curvature, and anisotropic normal velocity. First we
recall the definition of anisotropic signed distance function d,, (x; €2(7)), where €2(¢) is any moving domain with
smooth boundary d€2(¢). Then it is smooth in a tubular neighborhood of d€2(¢) and (33) implies

y(Vd, (x; Q1)) =1, xe€dQ(). (35)

The proof of (35) is also found in [5,6]. Now we are ready to define the anisotropic mean curvature and related notions.
These are basically the same as found in [1,4,5]; see also Appendix A for more details.
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Definition 2.2. At each point of 9€2(¢), the Euclidean outward normal vector n and the anisotropic outward normal
vector v, are given by

vd
n=—"" v, =Vy®m (= Vy(p)lp=n). (36)

|Vd, |’

The Euclidean normal velocity V/, the anisotropic normal velocity V,,, and the anisotropic mean curvature k,, on d€2(t)
are defined by

_ 0d, v

Vdy | Ty @)

ky = —divy,, 37

where n is the Euclidean outward normal vector given in (36) and “div” in (37) is taken in the usual Euclidean sense
in R". (See Fig. 3 in Section A.2 for the geometric interpretation of the anisotropic normal vector v,,.)

We now recall the notion of the anisotropic mean curvature flow. First, we note that the anisotropic mean curvature
ky and the anisotropic normal velocity V), defined in (37) are rewritten as

K, =—diva,(Vd,), V,=—-dd,, ondQ). (38)

Indeed, since a, (p) = y (p)Vy (p) by the definition, we have

vd
ay(Vdy) = y(Vd,)Vy (Vdy) = Vy(Vdy) = Vy <|de|) =y,
14

where the second equality follows from (35) and the last equality follows from (36). Thus the former identity in (38)
follows. The latter identity in (38) is shown as follows:

14 dd, drd,
V)/ = = — = — = _al‘d)/7
vd
y(n) |Vd},|y(|Vd:|) y(Vd,)

where the last equality comes from (35). Consequently, the anisotropic mean curvature flow (with a constant driving
term) V), =k, + c is represented in terms of the anisotropic signed distance function d,, by

0rdy =diva,(Vdy) —c, on dQ(z). (39)

Remark 2.3 (Wulff shape and the mean curvature flow). For the expanding Wulff shape Wr(¢), the anisotropic signed
distance function for dWg(¢) is given by d, (x; Wg(t)) = y*(x) — p(¢; R) as in (10). Thus the anisotropic normal
vector for 9 Wg(¢) is given by v, = Vy (Vy*(x)). This and (34) yield

= —div (Vy(Vy* () = —div [ — _ el awea
ky =— IV( y(Vy ()C)))—_ v (y*(x)) __y*(x) on R (D).

Since y*(x) = p(t; R) on dWg(¢), this implies
n—1

Ky =—
e R

Hence the anisotropic mean curvature is constant on Wg(¢). On the other hand, since p(¢; R) satisfies (8), the second
identity in (38) gives

on dWg (7).

v, =—d, (y* LR)) = p/(t; R) = ———
Y =—=0 (¥ (x) = p(t; R)) = p'(t; )——p(t;R)

Thus d), (x; Wg(¢)) satisfies V), = «,, + ¢ (and (39)). This means that d Wg () is an expanding self-similar solution of
the anisotropic mean curvature flow.

+c.
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2.2. Weak solutions and the comparison principle

In this subsection, we first state the definitions of weak solutions, weak sub- and super-solutions to the problem
(1). We then show the unique existence and regularity of weak solutions, and prove the comparison principle for weak
sub- and super-solutions. There is an extensive literature on weak solutions of parabolic equations; see for instance,
[23,24]. However, those existence results are mainly for problems on bounded domains therefore they do not apply
directly to our problem. Thus, for the convenience of the reader, we state and prove basic properties of weak solutions
of (1) in this subsection. The notation for the function spaces used here are given at the end of Introduction.

Definition 2.4 (Weak solutions). By a weak solution to the problem (1), we mean a function u(x,t) € BC LOR" x
[0, 00)) that satisfies L,,[u] =0 for any ¢ € Cgo (R"™ x [0, 00)), where L,, is defined by

ﬁw[u]:—/ugodx|t:0+[/—u<p,+ap(Vu)~V(p—f(u)<pdxdt. (40)
R” 0 R»

A function u(x,t) € BCLO(R" x [0, 00)) is called a weak sub-solution (resp. weak super-solution) if it satisfies
Ly[u] <0 (resp. Ly[u] > 0) for any ¢ € CF°(R" x [0, 00)) with ¢ > 0.

As we see in Definition 2.4 above, throughout this paper, we only consider weak solutions that are bounded on
R x [0, 00). We note that if u € CZ!(R” x [0, 00)) N BCLO(R" x [0, 00)) is a solution (resp. sub-solution, super-
solution) of the equation (1a) in the usual classical sense, it is also a weak solution (resp. weak sub-solution, weak
super-solution) in the sense of Definition 2.4.

To show the existence of the weak solution u(x, t) of (1), we first consider an approximate equation in which a(p)
is replaced by its mollified one. Let 1 : R” — R be a smooth non-negative function that has compact support and
satisfies f]R” n(x)dx = 1. We define the smooth function a®(p) with ¢ > 0 by

e 1 /x
a*(p) = xa)(p). me()=—n(%). (41

By replacing a(p) in (1a) by a®(p), we consider the Cauchy problem of the form

{ uj =diva,(Vu®) + f@®), xeR",t>0, (a) (42)

uf(x,0) =up(x), x e R, (b)

We note that the function a®(p) satisfies

lim ||a® — a1 =0,
5»0” ll w100 (R

n
ATNEP < Y, (P)EE < AIEP, pEER"6>0,
ij=1
where A is the constant given in (4). It is well known, see for instance [23,24], that the problem (42) has a unique clas-
sical solution u® € C210-119/2(R" x [0, 00)) when ug € C>T?(R"). The following proposition gives a weak solution
u of (1) as the limit of a sequence of the classical solutions {u®} of (42).

Proposition 2.5 (Unique existence and regularity of weak solutions). Assume ug € C>T?(R") for some 6 € (0, 1).
Then the following hold:

(1) There exists a unique weak solution u(x, t) of (1) in the sense of Definition 2.4 that satisfies

2+6,1+6/2
loc

weCHOI@®RY [0, 00)), ueC (R" x [0,00)\ 8Q),

where Q = {(x,t) € R" x [0, 00) | Vu(x, t) =0} and 9 Q denotes its boundary.
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(ii) There exists a sequence €| > &3 > --- — 0 such that the sequence of the classical solutions {u®'} of (42) with the
same initial value ug as that of (1) satisfies

u® — uin BCLY

1oc R x [0, 00)) as i — oo.

Proof. The problem (42) has a unique classical solution u® € C 2+0.140/2(R" % [0, 00)), since a® and ug in (42)
are both sufficiently smooth by the assumptions, where |[u® | c2+6.146/2®n «[0,00)) MY blow up as & — 0, however, it
satisfies

||”8||C1+919/2(R"><[0,oo)) < C, (43)

with a constant C that is independent of ¢ > 0. For details, see Theorems 1.1 and 3.1 in Chapter V of [23] for instance.
Therefore the sequence {u®} is relatively compact in BCIIO’?(R" x [0, 00)). Hence, there exist a sequence {g;} with
&1 > & > ---— 0 and a function u(x, t) defined on R" x [0, co) such that

s — uin BC,;Y(R" x [0, 00)) as i — 0.

Moreover, it is clear from the definition of the norm in C1+9:¢/2 that

||M ||CI+H,9/2(Rn x[0,00)) S C,

where C is the constant in (43). Since u® satisfies the problem (42) also in the weak sense of Definition 2.4, we
have L,[u®] = 0 for any ¢ € Cg°(R" x [0, 00)). By passing to the limit as i — oo, we obtain Ly [u] = 0 for any
@ € CP(R" x [0, 00)), since the support of ¢ is compact and the convergences of u® — u and a® — a are in the
senses of BC 11(;? (R" x [0, 00)) and W12 (R"), respectively. Thus, u(x, t) is the weak solution of (1) in the sense of
Definition 2.4.

Next, we show u € C120t9,1+0/ 2(R” x [0, 00) \ dQ). At any interior point of Q, since Vu = 0 in its neighborhood,
u is spatially constant and therefore satisfies u; = f(u), with f being smooth. Thus u is locally a smooth function of
t alone; hence, in particular, u € C 240,140/2 ip that neighborhood. At any exterior point of Q, the function a,(Vu) is
sufficiently regular in its neighborhood, since a(p) is C? in R” \ {0}. Consequently, we have u € C>+%-119/2 there, by
the usual interior Schauder estimate.

Finally, the uniqueness of the weak solution follows from the comparison principle for weak solutions given by
Proposition 2.6 below. This completes the proof. O

Proposition 2.6 (Comparison principle). Let u™ (x,t) and u™ (x, t) be a weak sub-solution and a weak super-solution
of (1) in the sense of Definition 2.4, respectively. Assume that they belong to C'79-9/2(R" x [0, 00)) for some 6 € (0, 1),
and that u=(x,0) <u*(x,0) for x € R". Then

u (x,t) <ut(x,1), xeR" t>0.

The comparison principle for weak solutions on a bounded domain is rather standard, but the one for an unbounded
domain does not follow immediately from the one for bounded domains. Therefore, for the convenience of the reader,
we prove the above proposition. Our proof is based on the strong maximum principle for weak solutions and a sliding
argument. We begin with the following auxiliary lemma.

Lemma 2.7. Let u(x,t) be a weak sub- (resp. super-) solution of (1) in the sense of Definition 2.4. Suppose that
it belongs to C]H"Q/Z(R” x [0, 00)) for some 0 € (0, 1). Then, for any sequence {x;}i=12,.. C R", there exist a
subsequence {xi,} and a weak sub- (resp. super-) solution w(x,t) in the sense of Definition 2.4 such that

0

U(x 4 xg, 1) = wix, 1) in BCY (R x [0, 00)) as i — oo.
Proof. Define u’(x,t) = u(x + x;, ). Then, we have

||Ml ||C1+6-9/2(R”x[0,oo)) = ||u||cl+9'e/2(R”><[O,oo)) < 00, fori = 1, 2, HICN
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Thus the sequence {u'} is relatively compact in BCIIO’?(R" x [0, 00)). Hence, there exist a subsequence {u*i} of {u'}
and a function w(x, t) defined on R" x [0, c0) such that

ubi > win BC;O’?(R” x [0, 00)) as i — oo.

On the other hand, since the convergence to w is in the sense of BCllf;? and since a,, is continuous, by passing to the
limit as i — 00, Ly, [u*i]1<0 (resp. Loy[uki]1>0) gives Ly[w] <0 (resp. Ly[w] > 0) for any ¢ € C5°(R" x [0, 00)).
This completes the proof. O

We are now ready to prove Proposition 2.6.

Proof of Proposition 2.6. Since u™ € C!79:9/2(R" x [0, 00)) by the assumption, they are both bounded on R" x
[0, 00). Thus, the constant m below is well-defined

m= sup e M@ —u).

xeR",1€[0,00)
Assume m > 0. Then there exists a sequence {(x;, #;)} C R" x [0, 0co) such that

m= lim e M @™ (i, ) —ut (xi, 1),
11— 0

Since we have limsup,_, . sup,cgs €M’ (u™ —u™) < 0 by the boundedness of u*, we find that {#;} is bounded. Thus,
we assume without the loss of generality that lim;_, oo #; = #, holds for some 7, > 0. From Lemma 2.7, by choosing
a subsequence, which we again denote by {(x;, #;)}, we have a weak sub-solution v~ (x, t) and a weak super-solution
vT(x, t) such that

u (x+xi,0) > v (x, 1) and uT(x+x;,1) > v (x, 1),

in BC-?

10c R x [0, 00)) as i — oo. Define the function w = e Mt (y~ —v1). Then it satisfies

a
we = Z 8_)61 (Aij(x’t)w)g) —(Bx,t) —M)w <0,
i,j=1

in the weak sense, where A;; and B are defined by

1 1
Ajj(x,t) =/a,,ipj (Vor +0V(@™ —vh)ds, Bx,1)= / Wt +00@™ —vh))ds.
0 0

We note that A;; € L°°(IR") and is positively definite. Since v* are both bounded by the assumption, we can choose
M large enough to satisfy B(x,t) — M < 0. Thus, we can apply the strong maximum principle for weak solutions
given by Theorem 6.25 in [24], and obtain a contradiction. Indeed, w satisfies

w(0, 1) =e M (0, 8) — v (0, 1)) = lim e ™M (™ (xi, 1) —u (i, 1)) =m >0,
1—> 00
and satisfies w(x, 0) <0 for x € R". This contradiction implies m <0. O

The following lemma is a slight modification of Lemma 2.7. This will be used in Section 4.

Lemma 2.8 (Construction of weak entire solution). Let u(x,t) be a weak solution in the sense of Definition 2.4 with
an initial value ug € C*H9 (R") for some 0 € (0, 1). Then, for any sequence {(x;,t;)} C R" x [0,00) with 0 < t| <
Iy <---— 00, there exist a subsequence {(xy;, t,)} and a function w(x, t) defined on R" x R such that

1,0
loc

(1) ulx+xg,t+t,) = wx,t)in BC;,) (R" xR) asi — oo.
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(il) w(x,1) is a weak entire solution of w, = diva,(Vw) + f(w), namely, it satisfies

//—w(p, +ap,(Vw) - Vo — f(w)pdxdt =0, 44)
R R”

for any ¢ € C°(R" x R). Moreover, one has w € ClH0.9/2(R" x R).
Proof. Define u’(x, ) = u(x +x;,t +1;). Since u € CH08/2(R" x [0, 00)) from Proposition 2.5, we have

' | c1+6.0/2@n e[ 00)) = Ul c140.02RAx[0.00y) <00, fOri=1,2,---.

Thus the sequence {u'} is relatively compact in BCllo’S(R" x R). Hence, there exist a subsequence {1%} of {1’} and a
function w(x, t) defined on R” x R such that

uki = win BCLO

1oc (R x R) as i — oo.

Moreover, w € C 1+9'9/2(R" x R) holds, since it is clear from the definition of the norm in C 14+0.0/2 that
lwllcive.62rnxry = Null c1+6.0/2 @R x10,00))- On the other hand, uki satisfies

oo
_/ wlpds|__, + / f —ubigr +ap(Vul) - Vo — fuM)pdxdi =0,
R” —l; R"

for any ¢ € Cj°(R" x [—f;,00)). Since the convergence to w is in the sense of BCII(;?(]R” x R) and since a, is
continuous, by passing to the limit as i — oo, we have (44) for any ¢ € C5°(R" x R). This completes the proof. O

3. Approximation by the Wulff shape

The aim of this section is to prove Proposition 3.1 below, which gives an upper and a lower bound for the solution
u(x,t) of (1) at large time. It roughly states that the solution u(x, t) is sandwiched between two functions whose level
sets both coincide with the expanding Wulff shapes at slightly different time phases. This fact will be important for
the analyzes in Section 4. We also note that part of Corollary 1.2 follows immediately from Proposition 3.1.

Proposition 3.1 (Upper and lower bounds for u(x,t)). For each m > 0 and n > 0, there exists a positive constant L
such that, if the initial value ug belongs to C*+? (R™) for some 6 € (0, 1) and satisfies

inf ug(x) > —m, (45)
xeR?

min uo(x) > o + 1, (46)
|x|<L

limsupug(x) < a, 47)
|x|]—00

for the constant o defined in (2), then there exist positive constants T, R, and K such that the solution u(x,t) of (1)
satisfies

W_(x,t) Su(x,T+1) < Wi(x,1), xeR", t>0,
for the functions
3
Wi(x, 1) =®(d,(x; W) F K) £2(1+1) "2,
where d,, (x, Wg(t)) and ® are defined in (10) and (14), respectively.
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3.1. Rough generation of the front

In this subsection, we prove Lemma 3.2 below, which gives a preliminary estimate for front propagation. It roughly
states that, under the assumptions on u( as in Proposition 3.1, the solution u(x, ) becomes very close to 1 on a large
area around the origin, and very close to 0 faraway from the origin, after a certain lapse of time.

Lemma 3.2 (Rough generation of the front). For any positive constants m, 1, § and R, there exist positive constants
L, T, and K such that, if the initial value uq belongs to C 0 (R7) for some 6 € (0, 1) and satisfies

inf ug(x) > —m, (48)
xeR?

min ug(x) > o +1n, (49)
lx|<L

limsupug(x) < a, (50)
|x|—00

for the constant « defined in (2), then the solution u(x, t) of (1) satisfies

—S<u(x,T)<1+8, xeR", (5D
ux,T)<s, Ix|=K, (52)
ux, Ty>1-4, |x|<R. (53)

Before proving Lemma 3.2, we introduce two auxiliary lemmas. Lemma 3.3 below is used to prove the estimate
(52) in Lemma 3.2.

Lemma 3.3 (Super-solutions with one-dimensional profiles). Let oy, and M be any given constants satisfying o, €
(0,0) and M > 1. Then there exist positive constants o and B such that, for any v € S"~' and any K > 0, the
function u™ (x, t; v) defined by

ut(x, ;) =MOW-x —ot — K) +ase P,

satisfies Llu™]:= u;’_ — divap(Vu+) — f(ut) >0 in the classical sense.

Proof. It is known (see Lemma 2.2 of [26] for instance) that there exists a positive constant k such that
|®"(s)] < —kD'(s), seR. (54)

Set 60 = min{o — a, M — 1}/2, where we note that o, + 5o < ¢ < 1 < M — §g. Since f is of bistable type as in (2),
we can choose positive constants 1 and o such that

—f(s)=pmis, 0=s =<ax+d, (55)
—f)=p2, M-8 <s<M+a,. (56)
Set B = min{u, ua/ox} and let o be a positive constant satisfying

min o — k(y ()% > 0. (57)

vesSn—

We compute L[u™]. By noting that Vu™ = M®'v with M®' < 0, it follows from (30) and (31) (with A < 0) in
Remark 2.1 that

y(Vut) =y (MP'v) = —M®'y(v),
Vy(Vut) =Vy(Md'v)=—Vy(v).
Thus, since a,(p) =y (p)Vy (p) by the definition, we have

diva,(Vu™) =div (M®'y (0)Vy () = MO "y (0)Vy (1) -v=Md"(y ())>2.
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This, together with (54), implies
Llut=—oM — Bae™ — (y(1))*MO" — f(M® + ae™PT)
= —(0 —k(y ) HIMP' — Bae P — fF(MP +ase™ ™).
When M ® € (0, §p], by using (55) and (57), we have
Llut] = —pae ™™ + (M +awe™™) = (1 — Base ™.
Hence L[u™] > 0, since 8 < 1. Next, when M® € [M — 8§y, M), by using (56) and (57), we have
LIu™]> —Pae ™ + po.
Hence again L[u"] > 0 since B < j12/a. Finally, when M ® € (89, M — 8p), we have

LluT]= (o —k(y()*  inf (-M®)—B+_  min  f(s).
So<MD<M—4§ So<s<M —5p+o
Since infsy<pmo<m—s (=M ®") > 0 holds from &’ < 0, by choosing o large enough if necessary, we have L[u*] > 0.
This completes the proof. O

The following lemma is used to prove the estimate (53) in Lemma 3.2. The key argument in the proof of Lemma 3.4
is the upper estimate for fundamental solutions given by [2], which allows us to derive an estimate that is independent
of ¢ in a® in (42a).

Lemma 3.4. Let u®(x, t) be the classical solution of (42). For any positive constants m, 1, 8, R, and Ty, there exist
constants L > 0 and T > T, that are both independent of € such that, if the initial value ug € C> (R") satisfies

inf ug(x) > —m, (58)
xeR?

min ug(x) > o +n, (59)
[x|<L

for the constant o defined as in (2), then one has

w(x,T)>1-8, |x|<R. (60)

Proof. We assume ug < o + 1 + 1 without the loss of generality. Indeed, for a general u satisfying (58)—(59), we
choose ¢ that satisfies (58)—(59) and iy < ug, o < o« + 1 + 1. Once we prove the lower estimate (60) for such i,
the result for the general u( follows immediately from the comparison theorem.
Let L be a positive constant to be determined later. By the assumptions on u#(, we can choose a function vy €
C*9(R™) that satisfies
vo(x) =uo(x), |x|=<L,
up(x) <vo(x) <e+n+1, xeR,
. Ui
f > —.
e zaty
Fix & > 0 arbitrarily and let a®(p) be the function defined as in (41). We consider the problem of the form

vy =diva;(Vv5) + f(@%), xeR", >0,
vé(x,0) = vo(x), x e R,

Consider the function U (¢) that satisfies U’ = f(U) with the initial condition U (0) = o + 1/2. Since U (0) > «, we
have U (t) — 1 as t — oo. Thus, by virtue of the usual comparison principle for the classical solutions, we can choose
a constant 7 > T, that is independent of ¢ > 0 such that

& 8 n
v ZUM) 21—, xeR" (61)
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We next consider the function w®(x, t) = vé(x, 1) — u®(x, t). Then it satisfies

n

ad

wf = Z P (Afj(x,t)w;f) + Bf(x,nHw®, xeR" >0,
ij=1

w®(x, 0) = vo(x) — uo(x), x eR",

where Afj (x,1) and B®(x,t) are given by

1 1
Afj(x, ) =fa;ipi(Vu8 +0Vw®)do, Bf(x,t) = / f(uf +0w)deo.
0 0
As we have w®(x,0) > 0 by the definition of vg, the usual maximum principle for the classical solutions gives
wé(x,t) >0 on R" x [0, 00). Thus, since u® and v® are both bounded as —m < u®, v® < a + n + 1, there exists
a constant M > 0 independent of ¢ such that B®(x, t)w® < Mw?. Thus, by considering the solution A°(x, t) of the
problem

n

9
=3 —(Afj(x,t)hij)—i-Mhs, XeR", 1>0, (a)

Bx,-

ij=1 (62)
h(x,0) =vo(x) — up(x), x e R", (b)

the comparison principle gives w®(x,1) < h®(x,7) on R"” x [0, 00). On the other hand, since (62a) is uniformly
parabolic because of the strict convexity of a®(x), we have the expression

B (x, 1) =€M’/Ze(x, €,1,0)(vo(§) —uo(§))d§,
Rﬂ
where Z°(x,&,t, 1) is the fundamental solution of h{ = Z?,j:l(Afj (x, t)hfc/,)xl.. By using the upper bound for
Z%(x,&,t,7) given in [2], we can choose positive constants k; and k, that depend only on n and A in (4) (and
are independent of ¢) such that

nrn = [ iGllat = £).0w0E) ~ o) ds,
Rn
where G (z, s) is the usual heat kernel on R”. Consequently, since vg(§) — up(€) is bounded as 0 < vp(§) — ug(€) <
m+ o+ n—+ 1 and since vo(§) — up(§) =0 if |x| < L, by choosing L large enough, we have
8
w D) <h* @, T) <5, lx|<R.
We again note that the constant L can be chosen independent of ¢. By combining this with (61), we obtain u®(x, T) >

1 — 6 for |x| < R. This completes the proof. O

We are now ready to prove Lemma 3.2. The estimate (51) in Lemma 3.2 is proved easily from the comparison
principle. The estimates (52) and (53) are derived from Lemmas 3.3 and 3.4, respectively.

Proof of Lemma 3.2. Step 1: We first prove the estimate (51). Consider the functions U (¢) that satisfy U} = f(Uy)
with the initial conditions U4 (0) = = max{||ug|| L @®n), 1}. Since f is of bistable type as in (2), we have Uy () — 1
and U_(t) — 0 as t — oo. Thus, since the comparison principle given by Proposition 2.6 implies U_(¢) < u(x,t) <
U4 (t) on R" x [0, 00), there exists a positive constant 77 such that

—S$<u(x,t)<1+4+68, xeR" t>T.
Step 2: By the assumption (50), we can choose constants a, € (0, @) and K’ > 0 such that

ug(x) <o, x| =K' (63)



H. Matano et al. / Ann. I. H. Poincaré — AN 36 (2019) 585-626 603

Let u™*(x, t; v) be the super-solution given in Lemma 3.3 with M = max{sup, cgn o(x), 2}. Namely, we consider the
super-solution of the form:

u*(x,t;v):MCD(v-x—at—K)—i—a*e*ﬁt. (64)

From (63), we can choose the constant K in (64) large enough to satisfy ug(x) < u*(x,0;v) in x € R* for all
v € 8"~ 1. Then the comparison principle given in Proposition 2.6 implies

u(x,t) < min u(x,t;v), xeR t>0.
vesn—1

Consequently, since we have lim;_, ., ®(z) =0, we can choose positive constants K, and 7> such that
u(x, 1) <68, |x|=Ky+ot, 1 =T. (65)

Step 3: Let {u#%} be the approximating sequence for the weak solution u of (1) given in (ii) of Proposition 2.5. Then
Lemma 3.4 implies that there exist constants L > 0 and 7 > max{77, 7>} that are both independent of &; such that

ut(x, Ty>1-6, |x|<R.

By passing to the limit as i — oo, we get u(x, T) > 1 —§ for |x| < R. This establishes the estimates (53). The estimate
(52) follows from (65) since

ux,T)<ds, |x|=zKy+oT.
This completes the proof of Lemma 3.2. O

3.2. Super-solutions and sub-solutions

In this subsection, we construct a fine set of super-solutions and sub-solutions whose level sets are the expanding
Wulff shapes. For this purpose, we make some preparations. First, choose constants u > 0 and &g € (0, %) satisfying

—f ()=, s€[=280,280]U[1 — 280, 1+ 280]. (66)

Since f is of bistable type, these constants are both well-defined. We also choose a positive constant o large enough
to satisfy

3 _2
o zmax{ —, (6p)73 }, 67)
I
i<+i+z><ﬁ (68)
NCASEWN S =%
3
ve max (=) — || fllL=01n — = > 2 (69)

272’
where A and Co are the positive constants defined in (15)-(16). We note that o > 1 follows from (67) because of
8o < 1/4. We next introduce the cut-off anisotropic signed distance function d,, (x; Wg(z)) by

2 ' ®e[8o,1—80]

dy (x; Wr(t)) = h(dy (x; WR(0)), 1)
=h(y*(x) — p(t: R), 1), (70)
where, setting n(¢) = 21 log («/C(p (o + t)) + 1, we define A (s, t) as a smooth odd function that satisfies (see Fig. 2)

his,t)y=s, s <n(@),
h(s,t) =n(t) +1, Is| > n() +2,
0<hy(s,t) <1, seR,t>0,
|hss(s, D) <1, seR,t>0,

2

|he(s, )| <n (1) = m,

seR,t>0.
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Fig. 2. Profile of the odd function A (s, t) in (70).

Before constructing super-solutions and sub-solutions, we give two auxiliary lemmas. The first one gives basic
estimates for p(¢; R) given in (8). The bounds (71) for p(¢; R) suffice for our analysis, however p(t; R) = R + ct —
((n—1)/c)logt + o(logt) holds as is mentioned in the introduction.

Lemma 3.5 (Estimate for p(t; R)). Let p(t; R) be the solution of (8) with R > (n — 1)/c. Then the following hold:

(i) One has
n—1 ct
R+ ct — log<1+7) < p(t; R) < R+ct, t>0. 71)
c R — n—1
C
(i) For any positive constants Ry, Ry with Ry > R, > (n — 1)/c, one has
) ] Ry(R1 — R2)
Ri—Ry<p(t:R) —p(t: R) < =2 1>0. (72)
27 T

Proof. Since p'(¢; R) < ¢ holds obviously, the second inequality of (71) follows immediately. To show the first
inequality of (71), we integrate (8) and obtain

t
[P(S; R) + n-1 log <,0(s; R) — u)} = ct.
c c

0

This implies

-1 tR)— 1
o(t; R)=R+ct—n log(p( ) £ )

n—1
¢ R—"=

n—1 ct
>R+Ct— c IOg 1+m .
c

where the last inequality comes from p(¢; R) < R + ct. Thus, we obtain (71).
Next we show (72). Since p(¢; Ry) — 0o as t — oo because of Ry > (n — 1)/c, there exists a positive constant #
such that p(f9; R2) = R;. Thus we have

t+to

ot Ry) — p(t; Ry) = p(t +1o; Ro) — p(t; Rp) = f o' (s; Ry) ds.
t

Since p’(t; R2) =c — (n — 1)/ p(t; R) is monotone increasing in z, the first inequality of (72) follows from
t+to 1o

/ P/(s: Ra)ds = /p’(s; Ry)ds = Ry — Ry.
t 0
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On the other hand, since p’(t; Ry) > ¢ — (n — 1)/ Ry, we have fyg < (R; — Ry)/(c — (n — 1)/R). Thus the second
inequality of (72) follows from

t+to

/ p'(s; Ry)ds < ctp <

t

Ry(R1 — Ry)

n—1
2=

This completes the proof of Lemma 3.5. O

We give another auxiliary lemma. As is mentioned in Remark 2.3, we have diva,(Vd,) = (n — 1)/y*(x). Since it

blows up at x = 0, to avoid this, we consider diva p(chy) instead and obtain the estimate for Bld} —diva p(chy) +c
as follows.

Lemma 3.6. Let d~y (x; Wg(t)) be the cut-off anisotropic signed distance function defined by (70). Then, for any
constant C € (0, 1], there exists a positive constant R, > (n — 1) /c such that, if R > R, one has

Clo+173,  |d,(x: We(®)] < n(0),

Ct 1R +2, ldy (5 W) 2 0(0),

where A and Cg are the positive constants defined in (15)—(16) and o is the positive constant defined in (67)—(69).

19:dy — diva,(Vdy,) +c| < {

Proof. By the definition of d;,, we have
n—
p(t; R)

Since a(p) is homogeneous of degree two and since diva,(Vy*) = (n — 1)/y* as is mentioned in Remark 2.3, we
have

ddy, (x; WR(t)) = —p/(t; R)hs +hy = < —c) hs + hy.

diva,(Vd,) = div (hsa,(Vy™*))

=div (ap(Vy™)) hs + (@p(Vy™) - Vy )b
n—1 *
= y*(x)hs +2a(Vy*)hy.

Thus, since (33) in Remark 2.1 gives 2a(Vy*) = (y (Vy*))? = 1, we have

n—1 n—1
pt;R)  y*(x)
Let Iy and I, be the first term and the remaining terms of the right-hand side of the above. If |d, (x; Wg(?))| = n(t) +2,

we have i, = 0 and thus /; = 0 holds. On the other hand, if |d,, (x; W (¢))| < n(t) + 2, namely, if [y *(x) — p(t; R)| <
n(t) + 2, we have

=D —p@GR) | _ (n— D) +2)
p(t; R)yy*(x) =t R)pt R) —n(t) —2|
if p(#; R) is sufficiently large. Thus, by using the lower bound for p(#; R) given by (71) in Lemma 3.5, we find that

there exists a constant R, > (n — 1)/c such that, if R > R,, one has |[1| < C(o + t)’%.
Finally, I is estimated easily as

didy, —diva,(Vd,) +c= ( >hs +c(l —hg)+hy — hg,.

] <

ldy (x; Wr(1))| = n(1),

07
L <
Ll < {wmu dy (x; WR(D)] = (1),

Since o > 1 and C < 1 by the definitions, by combining the above estimates for /; and I, we obtain the desired
estimates. O
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The next lemma gives a fine set of sub-solutions and super-solutions whose level sets are roughly the expanding
Waulff shapes. An important point of this lemma is that the Hausdorff distance between the corresponding level sets of
the super-solution and the sub-solution remains uniformly bounded up to # = 400, since the function p(t) is bounded
as —1 < p() <0.

Lemma 3.7 (Super-solutions and sub-solutions). Let d;, (x; Wg(2)) be the cut-off anisotropic signed distance function
defined in (70), and let o be the positive constant defined in (67)—(69). Then there exists a positive constant R, >
(n — 1)/c such that, if R > Ry, the functions

w=(x,t; R) = ®(dy (x: Wr(t)) £ p(1)) £q(1),
with
1 1 3
py=o2(c+1) 2 -1, q)=(0c+1) 2,
satisfy +L[u®] > 0 in the classical sense, where L[w] := w, — diva,(Vw) — f(w).
Proof. We only prove L[u™] > 0, since £[u~] < 0 can be proved in the same way. By direct computations, we have
ut = (8,d~y + p’) ' +4q,
diva,(Vu®) =div (®'a,(Vd)))
= div (a,(Vd,)®' + (a,(Vd)) - Vdy ) ",
=div (a,(Vd,))® +2a(Vd,)d",
1
[ =f(@) +/f/(<13+961)d9'q,
0
where, to compute diva,(Vu™), we used the homogeneity of a(p) and y (p); see Remark 2.1. By using the relation
& +cd + f(P) =0, we have L[ut] =1, + I, + I3, where
1= (3dy — diva,(Vd,) +c) &,
L= (1 _ 2a(vciy)) @,

1
Ig:p/d>/—/f/(®+9q)d9-q+q/.
0

We first estimate /1. From Lemma 3.6, there exists a positive constant R, > (n — 1)/c such that, for any R > R,,
. ) - _3
il = |y —divay(Vdy) +c| - 10/ lLme) < T +07,

holds if |d,, (x; Wg(2))| < n(z). On the other hand, if |d, (x; Wg(t))| = n(¢), we have

n < <c+ +2> 1@'(d, (x; We(0)) + p(©))]

2
N Co

2
< <c+ e +2) Coexp (—2. (n(t) — 1))

2
=|c+ +2) @+,
< I Co ) ( )
where the first inequality comes from Lemma 3.6 and the second inequality comes from the estimates for |®'| given
in (15)=(16) and —1 < p(¢) < 0. Thus (68) gives |;| < & (o —i—t)_% if |dy, (x; Wr(t))] = n(2).
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Next, we estimate I>. From (33) in Remark 2.1, we have
2a(Vdy) =2a(Vy*)(hs)* = (y (Vy*)?(hs)? = (hs)?.

If |d, (x; Wr(t))] < n(t), we have hy = 1 and hence I, = 0. If |d), (x; Wg(¢))| = n(¢), since |hg| < 1 by the definition,
we have

2] = (1= (1)) 197, (x.0) + p©))
< Coexp (=2 (n(1) — 1))
<(+n72
Since (68) gives 1/+/a < w/4, we obtain || < (o +1)73.

Finally, we estimate /3 and show L[u"] > 0. By computing p’ and ¢’, we have

1
L= —?@’—/f’(d>+9q)d9—%(a—i—t)_l (o +D73.
0

When @ € (0, §o] U [1 — &g, 1) for the constant 8y defined in (66), since @' < 0, the inequality (67) gives
1 3
I3 > —/f/(d> +60q)do — E(a +0)7 ' (o —I—t)_%
0

z%(a+t)‘%.

On the other hand, when ® € [8p, 1 — &g], the inequality (69) gives

NG / / X ) B
e — ) ! : n"2
3—( 2 @E[r(sl(l,?]):aoj( )= I e 0,1 2(0‘+ ) (0 +1)

w 3
> — 2.
z5 (c+1)
By combining the above estimates for Iy, I, and I3, we obtain L[u*]>0. O
3.3. Proof of Proposition 3.1

We here prove Proposition 3.1. To complete the proof, it suffices to show that the roughly generated front shown
in Lemma 3.2 is captured between the sub-solution and the super-solution given in Lemma 3.7 for all large times.

Proof of Proposition 3.1. Step 1: Let p(¢) and ¢(¢) be the functions defined in Lemma 3.7 and let o be the constant
defined in (67)—(69). We will first prove

|B(dy % p(1)) — D(dy £ p(t)| < (0 +1)72, (73)
where, for simplicity, d;, and d;, denote d, (x; Wg(t)) and d;, (x; Wg(2)) defined in (10) and (70). In the case of
|dy| <n(t), we have dNV =d,, by the definition, and thus (73) holds.

In the case of d;, > n(t), since d;, <d,, in this case and since ®(z) is monotone decreasing in z € R, we have

®(d, + p(1)) — ®(d, £ p(1)) > 0. (74)
On the other hand, since d,, > n() implies d;, > n(t), we have

®(dy + p(1) < P(n(1) £ p(1))

< Copexp(—A(n(®) — 1))
=(@+n7%,
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where the second inequality follows from (15) and —1 < p(#) < 0. Since ®(d, % p(¢)) > 0 holds obviously, this
implies

O(dy £ p(1) — P(dy  p(1)) < (0 +1) 2.
This and (74) imply (73). The case of d,, < —n(t) is proved in a similar way.
Step 2: We set § = o3 for simplicity. Since ®(—o00) = 1 and ®(+00) = 0, we can choose a positive constant M
such that

O(—M)>1 ) <I>(M)<(3

-_— 2 9 f— 2 .

Let R be the constant defined as in Lemma 3.7, and define M, = min, c¢.—1 y*(v) and M* = max -1 y*(v). Then
Lemma 3.2 implies that there exist positive constants L, T, and K such that, if ug(x) > o + n for |x| > L, it holds
that

8 s "
_Efu(va)Sl‘}'Ev x eR", (75)
ulx,T)<é, I[x|=K, (76)
R+M
u(x,T)y=1-4, |x|=< : (77
*
Then, since M,|x| < y*(x), it holds from (77) that
u(x, T)y>1-68, y*x)<R+ M. (78)
On the other hand, since M*|x| > y*(x), by choosing a large constant K’, (76) gives
u(x,T) <8, y*(x)=R+K'" (79)

Consequently, the inequalities (75), (78), and (79) imply
Py *x)—R) —8<u(x,T)<d(y*x) —R—K' —M)+68, xeR"

Then, by using the sub-solution given in Lemma 3.7, the lower bound is obtained as
w741 2 & (d, (6 Wr(®) = p(0)) = q (1)

> @ (dy (x; W) — p(t)) —q(t) — (o +1)72
> @ (dy (x; Wr(0) + 1) —2(1 +1)73/2,

where the first inequality is obtained by applying the comparison principle and the second inequality follows from
(73). Similarly, by using the super-solution given in Lemma 3.7, the upper bound is obtained as

uGr, T +1) = @ (dy (65 Wi (0) + p(0)) +4(0)

< @ (dy (v Wrikrom () + p0) +q(0) + (@ +1) 72
RK'+M)

_n=1
C

<o (dy(x; Wr(1)) — 1) +201+077,
where the last inequality follows from the second inequality of (72) in Lemma 3.5. The proof of Proposition 3.1 is
complete. O

4. Fine formation of the front

In this section, we analyze the fine formation of the front and prove Theorems 1.1 and 1.4. We first give the local
convergence result (Lemma 4.1) in Subsection 4.1. It says that, for each direction v € S§"~1 the solution converges to
the planar waves in the sense of B CIID’S(R” x R) for a time sequence 0 < #; <t < -+ — 00. In Subsection 4.2, we
prove the strict monotonicity of the solution around the front and analyze the «-level set of the solution. Subsections
4.3 and 4.4 are devoted to the proof of Theorems 1.1 and 1.4, respectively.
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4.1. Local convergence to the planar wave

The aim of this subsection is to prove Lemma 4.1 below. The key of its proof is Lemma 4.2, which characterizes
weak entire solutions of the equation (1a).

Lemma 4.1 (Local convergence to planar waves). Let the assumptions of Proposition 3.1 hold and let R be the
constant defined in Proposition 3.1. Suppose further that there exists a sequence {(x;,t;)} C R" x (0, c0) such that
0<t<th<---— oo andthat

= —>Fes ! d,(x; Wr(t) > M eR,

as i — 00. Then there exist a subsequence {(xy,, t,)} of {(xi, t;)} and a constant . € R such that

lim u(xy, + x4, +1) = D(Vy*(v) -x —ct +p) in BCLOR" x R).

loc
i—00

Proof. Step 1: We will first show that, for any fixed x € R” and any fixed ¢ € R, it holds that
lim d, (x; +x; Wr(ti +1)) =Vy*(v) - x + M —ct. (80)
1—>00
Fix x € R" and r € R arbitrarily. In what follows, we estimate the terms
dy (x;i +x; We(t; +1) =y (xi +x) — y*(xi)
+y*(xi) = p(ti: R)
+po(i; R)—pt +1; R).

Let [;, J;, and K; be the first two, the next two, and the last two terms of the right-hand side of the above. We first
estimate /;. For each i, there exists a constant 6; € [0, 1] such that

X; +6;x
L =Vy*(xi +6;x) x=Vy* | — ) -x,
i =Vy (xi +6ix) L P
where the last equality comes from the homogeneity of Vy*. By the assumptions of the lemma, we have
lim; _, oo |x;| = 00. Thus, for any fixed x € R”, we have
xi +6;x X
——— = 1lim — =v.
i—oo |x; +6;x| i—oo |x;]
Consequently, since Vy* is continuous in R” \ {0}, we have lim; _, oo [; = Vy*(v) - x. Secondly, J; is estimated simply
as lim;_, o J; = M by the assumption of the lemma. Finally, for any fixed ¢t € R, we estimate K; as
ti+t ti+t

—1
K,-:-/,d(s;R)ds:—/ (c— " )ds—>—ct asi — 0o.
p(s; R)

1 ti

By combining these estimates for /;, J;, and K;, we obtain (80).
Step 2: From Lemma 2.8, by choosing a subsequence {(xx;, #;)} C {(x;,#;)}, we have a weak entire solution in the
sense of Lemma 2.8 such that

?(R" x R) asi — oo.

u(xXg; + X, 1 +1) = w(x, 1) in BC

Letting T, R, and K be the constants given in Proposition 3.1, the upper bound for u(x, t) given in Proposition 3.1
implies

w(x, 1) =i1_i)r1;ou(xk,. +x, 0k + 1)
< lim ® (dy (vg, +x; Wr(ty +1 = T)) — K) +2(1 + 15, +1 = T) "3
1—> 00
:¢>(Vy*(v)-x+M—c(t—T)—K),
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for any fixed x € R” and any fixed ¢ € R, where we used (80) to obtain the last equality. Similarly, we obtain w(x, t) >
O(Vy*(v)-x+ M —c(t — T) + K) by using the lower bound for u(x, t) given in Proposition 3.1. Thus, Lemma 4.2
given below implies that there exists a constant u such that w(x, ) = ®(Vy*(v) - x — ¢t + w). This completes the
proof. 0O

Lemma 4.2 (Liouville type theorem). Let u(x,t) be a weak entire solution in the sense of Lemma 2.8. Suppose that
there exist v e S"~' and K > 0 such that

O(Vy*(v)-x —ct + K) <u(x,t) < @(Vy*(v) -x —ct — K), (81)
holds for any x € R" and any t € R. Then there exists a constant u € [—K, K] such that

u(x,t) =d(Vy*(v) - x —ct + ).

Lemma 4.2 implies that any weak entire solution sandwiched between two planar traveling waves is itself a planar
wave. This result generalizes, in some sense, Theorem 3.1 of [7] to anisotropic equations. The proof goes along almost
the same lines as that of [7], but for the convenience of the reader, we give it in Appendix C.

4.2. Strict monotonicity and level sets of the solution

In this subsection, we first prove the strict monotonicity of the solution u(x, t) around the front at the large time
(Lemma 4.3). Then we prove that the a-level set of the solution is a smooth hypersurface that is star-shaped with
respect to the origin (Lemma 4.4). A similar argument is used in [25] to analyze the large time behavior of disturbed
planar fronts in the isotropic Allen—Cahn equation.

Lemma 4.3 (Strict monotonicity around the front). Let the assumptions of Proposition 3.1 hold and let R be the
constant defined in Proposition 3.1. Then, for any C > 0, there exists a positive constant T such that

9
inf (--“) >0, t>T,
|dy (x; Wg())|<C v

where 0/9v means the differential along x /|x|.

Proof. Assume that the conclusion does not hold. Then there exists a sequence {(x;,#)} C R" x [0, c0) such that
0<tn <t <---— 00, that |d, (x;; Wg(;))| < C, and that

lim sup
i—00 Vi

> (), (82)

ou(x;,t;)

where v; = x;/|x;|. By choosing a subsequence, which is denoted by {(x;, #;)} again, we have

vi— e dy (i Wr(t) = M € [-C, C],
as i — o0o. Then Lemma 4.1 implies that, by choosing a subsequence again, which is also denoted by {(x;, #;)}, we
have

lim u(x; +x,4+0)=d(Vy*(v)-x —ct+p) in BCIIO’S(R” x R),
1—> 00

for a constant y € R. This implies lim; _ o0 Vu(x;, ;) = ®' (1) Vy*(v) and thus
. 8”(){?[’, ti) . / * / *
lim ————= = lim v; - Vu(x;, ;) = v - (&' (W) Vy*(v)) = &' (w)y*(v).

i—oo  dV; i—00

This contradicts (82), because ®’(z) < 0 holds for all z € R. The proof of Lemma 4.3 is complete. O

Lemma 4.4 below is a simple corollary of Proposition 3.1 and Lemma 4.3. We note that a part of Theorem 1.1
follows immediately from Lemma 4.4.
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Lemma 4.4 («-level set of the solution). Let the assumptions of Proposition 3.1 hold and let R be the constant defined
in Proposition 3.1. Then there exist a positive constant T and a smooth bounded function | : S"~' x [T, 00) — R such
that

u(x,t)=a ifand only if d),(x;WR(t))zl('ji—',t), t>T. (83)

Proof. Define § = min{w, 1 — «}/2. From Proposition 3.1, there exist positive constants C and T such that

(xeR" [ |uCx,1) —a| <8} C{x € R" | |dy (x; Wr(1)| = C},

holds for any ¢t > T. Moreover, by choosing T larger if necessary, Lemma 4.3 gives

. ou . ou
inf -] > inf —— >0, r>T.
lu—o| <8 ov ldy (x;Wr(t)|<C \ 0V

Thus, there exists a bounded function /(v, t) : sl [T, o0) — [—C, C] that satisfies (83). Here, / is smooth by the
implicit function theorem, since u(x, t) is smooth for # > 0 when Vu 5 0. The proof of Lemma 4.4 is complete. O

By virtue of Lemma 4.4, we can refine Lemma 4.1 as follows, where the constant i in Lemma 4.1 is replaced by the
specific constant K. Moreover, the convergence to a planar wave takes place for {(x;, #;)} itself, not for a subsequence.

Lemma 4.5 (Local convergence to planar waves). Let the assumptions of Lemma 4.4 hold and let R, T, and [ :
§"~1 % [T, 00) — R be the constants, and the smooth bounded function defined in Lemma 4.4. Suppose further that
there exists a sequence {(x;, t;)} CR" x (0, 00) such that 0 < t| <t, <---— 00 and that

N e dy (xis Wr(ti)) —1 <i fi) — K €R,
|xi | |xi |

as i — 00. Then one has

lim u(x; +x,6 +1)=®(Vy*(v) -x —ct + K) in BCZIO’S(R” x R). (84)

i—00
Proof. Lemma 4.1 implies that, by choosing a subsequence {(xy;, #;)} of {(x;, #;)}, we have
loc

Tim u(xy, + x4, +1) = D(Vy*(v) - x —ct +p)  in BCLOR x R),
1—> 00

for a constant 1 € R. For each xi;, we define the point y;, € R" by

yki=<p<tki;R)+l<ﬂ,rki)) s
Ik | ()

Then u(yk,,t;) = « holds, since we have y*(yx,) = p(tx;; R) + L(x, /|1xk |, 1) and thus dy, (yi; Wr(ti)) =
[ (xk; /1xk; 1, t;). Then we have

a= lim u(yk, t;)
1—>00

) Xk Xk
= 1mu<<p(tkl,R)+l< - ’tki)> 71,”(,‘)
i—00 |xk; | y*(xr)
) Xk, Xk
lim u (xk,. + <—d,,(x,-; Wr()) +1 ( ki ,lk,-)) %, l‘k,-)
00 il ")) G

3 (Vy*(v) —Kv u)
y*(v)
=d(—K + w).
This implies 4 = K because ®(0) = « by the definition. Thus, the subsequence {(xy,, %)} satisfies (84). Moreover,

since the constant K does not depend on the choice of subsequences of {(x;, #;)}, the given sequence {(x;, #;)} itself
satisfies (84). The proof is complete. O
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4.3. Proof of Theorem 1.1

In this subsection, we complete the proof of Theorem 1.1. Before that, we prepare an auxiliary lemma that shows
the convergences of the solution u(x, #) and its gradient around the front.

Lemma 4.6 (Convergence around the front). Let the assumptions of Lemma 4.4 hold and let R, T, and | : S"~' x
[T, 00) — R be the constants, and the smooth bounded function defined in Lemma 4.4. Then, for any C > 0, one has

ux, 1) — @ (dy(x; Wr(1) —1 (ﬁ t))

Vu(x,t) — & <dy(x; Wr()) —1 <i t)) Vy*(x)

x|’

lim sup =0, (85)

1=, (x; W (1))|<C

lim sup =0. (86)

1= 4, (x; Wr(1))|<C

Proof. We only prove (86), since (85) can be proved in a similar and easier way. Assume that (86) does not hold. Then
there exist a positive constant § and a sequence {(x;, #;)} such that |d, (x;; Wr(;))| < C,that 0 <t <fp <--- — 00,
and that

Vu(xi, 1) - @ (dyoci; W) — 1 <|x_| n)) V)| 28, (87)
Xi
foralli =1,2,---. By choosing a subsequence, which is denoted by {(x;, #;)} again, we have
Xi 3 n—1 Ai 3
— —=>ve S, dy(xi;WR(t,-))—l<—,t,->—> K €R,
|xi | |xi |
as i — 0o. Then Lemma 4.5 implies that
Bim u(x; +x, 4 +1) =D(Vy*(v)-x —ct + K) in BCO(R" x R). (88)

1—> 00
This implies

ll_lfgo Vu(xi, ;) = Vi (VY (v) - x — ct + K)) |(x.0)=0,0) = D (K)Vy*(v).
However, this contradicts (87), since we have
. / Xi * / *
lim @ (dy(x,-; Wr(t;) —1 (— n)) Vy (xi) = ®(K)Vy™ (v).
i—00 |x; |

Thus we obtain (86). The proof of Lemma 4.6 is complete. O
We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. Lemma 4.4 implies that, under the assumptions of Theorem 1.1, there exist positive constants
R, T, and a bounded smooth function  : S*~! x [T, c0) — R such that (21) holds.

We next prove the convergence of u(x, t). Fix ¢ > 0 arbitrarily. Since / (x /| x|, ¢) is bounded, Proposition 3.1 implies
that there exist positive constants C and #, such that

sup
Idy (x; Wr(1))[>C,x£0

ulx,t)— o (dy(x; Wr(t)) —1 (%,t))‘ <e, t>ty.

Combining this with (85) of Lemma 4.6, we have

u(x, 1) — @ (dy(x; Wr(1) —1 (é—| z))

by choosing ¢, larger if necessary. Thus we obtain (22). Moreover, lim,_, o u(0,1) = 1 follows immediately from
Proposition 3.1.

sup
xeR1\{0}

Ssv tZt*v
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We finally prove the convergence of Vu(x,t). Fix ¢ > 0 arbitrarily. Then there exist positive constants C and ¢,
such that

sup [Vu(x, )| < f (89)
Id,, (x; W (1))|=C 2
/ X % &
sup S|\ dy(x; Wr@®) =1 —,t ) ) Vy* (X)) < =, (90)
Idy (x; WR(1))]>C, x#£0 |x] 2

for any 7 > t,. Indeed, (89) holds since Proposition 2.5 gives || Vu || co.0/2(rn «[0,00)) < 100 and since the upper and the
lower bounds given in Proposition 3.1 give

lim lim 0sC u(x,t)=0, lim lim 0SsC u(x,t) =0,
C—>00l—=>0d, (x;Wg(t))<—C C—>00l—=>0d, (x;Wr(t))=C

where osc4 = sup 4 — inf4. Moreover, (90) holds since Vy*(x) is bounded on R" \ {0} because it is positively homo-
geneous of degree zero and since |®’(z)| decays exponentially as |z] — 00 as in (15)—(16). By combining (89) with
(90), we have

X

Vu(x,t) — (d,,(x; Wr()) —1 <|—, t)) Vy*(x)

sup
x|

|dy (x; Wr()|=C, x#0

587

for any ¢ > t,. Combining this with (86) of Lemma 4.6, we obtain (23). On the other hand, (89) gives
lim;_, oo Vu (0, t) = 0. The proof of Theorem 1.1 is complete. O

4.4. Proof of Theorem 1.4

To prove Theorem 1.4, we prepare two auxiliary results. The first one implies that the weak solution u(x, ¢) of (1)
in the sense of Definition 2.4 satisfies the equation (1a) in the classical sense around the front at the large time. The
second one describes the large time behavior of u#; around the front. These results follow from the fact that Vu # 0
(and hence ap, P (Vu) are sufficiently smooth) around the front at the large time.

Proposition 4.7 (Regularity of solutions around the front). Let the assumptions of Theorem 1.1 hold and let R, T,
andl: S""! x [T, 00) — R be the constants, and the smooth bounded function defined in Theorem 1.1. Then, for any
C > 0, there exists a constant Ty, € [T, 00) such that u € C*t%1%9/2(Q ) and that

||u||C2+9.1+9/2(QC) < 00,
holds, where Q¢ = {(x, 1) € R" x [Ty, 00) | |dy (x; Wg(2))| < C}-

Proof. Since ®'(z) < 0 holds for z € R and since Vy*(x) # 0 holds if x = 0, it follows from (23) in Theorem 1.1
that there exists a constant T € [T, oo) such that Vu(x, t) 7 0 holds on

Oc = {(x.1) eR" x [T, — 1,00) | |dy (x; Wr(1))| < C +1}.
Then, since ap, »; (p) is continuous when p # 0 and since || Vu |l co.6/2(rn x[0,00)) < 0© holds from Proposition 2.5, we
find that a,, ,, (Vu) € C?%/2(Q¢) and that

lap:p; Vi)l o2y < 00
Consequently, since the equation (1a) is rewritten as u; = Z:’ j=19pip; (Vu) + f(u), the interior Schauder estimate

gives the desired result. O

By combining Proposition 4.7 with Lemma 4.5, we obtain the convergence of u; around the front. Note that
Lemma 4.8 below implies that u, is uniformly bounded and uniformly positive around I"(¢) for all sufficiently large 7.
This fact is essential to prove Theorem 1.4.
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Lemma 4.8 (Convergence of u; around the front). Let the assumptions of Theorem 1.1 hold and let R, T, and 1 :
§"~1 % [T, 00) — R be the constants, and the smooth bounded function defined in Theorem 1.1. Then, for any C > 0,
one has

lim sup
129014, (x; Wr(1))|<C

u;(x,t) +cd’ <dy(x; Wgr(t)) —1 <i, t))’ =0.

|x|

Proof. Assume that the conclusion of the lemma does not hold. Then there exist a positive constant § and a sequence
{(xi, )} such that |d, (x;; Wr(#;))| < C,that 0 < t; <t <---— 00, and that

X
u (xi, 1) + c®’ <dy(xi; Wgr(t)) —1 <|X—l| li)) >4, ©On
1
foralli =1,2,---. By choosing a subsequence, which is denoted by {(x;, ¢;)} again, we have

L e sl dy G We(t) — 1 <ﬁ zl-) — 3K eR,
"

|xi| i

as i — oo. Define u' (x,t) = u(x; + x, t; +t). Then Lemma 4.5 implies that
lim u' (x,1) = ®(Vy*(v) -x —ct + K) in BCLO(R" x R). 92)
11— 00

Let C = |||l Loo(sn-1x[T.00)) + K + 1. From Proposition 4.7, we can choose a positive constant T € [T, 00) such
that u € C2+9119/2(Q ) and that

||“||c2+9-1+9/2(QC) < 00,

holds, where Q¢ = {(x,1) € R" x [T, 00) | |d, (x; Wg())| < C}. On the other hand, since

limsup [dy, (xi; Wr(t)| < 1] oo (51 x(7.00)) + K

i—00
we can choose a positive constant » such that
B, (x;j) x [t; —r,t; + 1] C Q¢ for all sufficiently large i,
where B, (x) is the closed ball with the center x € R” and the radius r. Then we have
it lleavonrsorea, o xi—rurp = Nl crvorsorz s, oy xiy—ra+)
< llullczro.14012¢0)»
for all sufficiently large i. Combining this with (92), we obtain
lim ' (x,1) = ®(Vy*(v)-x —ct + K) in BC*Y(B,(0) x [-r, r]).
11— 0
Consequently, we have
Him u, (x;, 1) = lim i (0, 0) = —c®'(K).
11— 0 1—> 00

However, this contradicts (91), since we have

llim cd’ (d,,(x,-; Wgr(t)) —1 (|i_l|’ tl‘)) = C(D/(K).

11— 00

The proof of the lemma is complete. O

We can also show the convergences of uy;; around the front. We omit the proof of Lemma 4.9, since it is done by
the same argument as Lemma 4.8.
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Lemma 4.9 (Convergences of uy,x; around the front). Let the assumptions of Theorem 1.1 hold and let R, T, and

1:8" 1 % [T, 00) — R be the constants, and the smooth bounded function defined in Theorem 1.1. Then, for any
C > 0, one has

lim sup U (X, 1) = i )y (1) D" (dy(x; Wr(1)) —1 (i, t))' =0.
1290 1q, (x; WR(1))|<C J x|

Proof of Theorem 1.4. We first prove the statement (i) of Theorem 1.4. Set § = min{o, 1 — «}/2. From Proposi-
tion 3.1, there exist positive constants C and T’ such that

{r eR"[u(x,1) —af <8} C {x e R [|dy (x; Wr(D)] = C},
holds for any t > T". Since ®" < 0, Lemma 4.8 implies that, by choosing T’ larger if necessary,

inf  wu(x,t)> inf u;(x,t)>0, t>T.
[u(x,)—a|<é |dy (x;Wr(t))|<C

This implies that the region {x € R" | u(x, t) > «} and hence the «-level set I'(¢) of the solution u(x, t) are monoton-
ically expanding for r > T’. Thus the statement (i) of Theorem 1.4 is proved.
We next show the statements (iii). Since x € I'(¢) implies d,, (x; Wg(?)) — [(x/|x], 1) =0, Lemma 4.8 gives

tlim u;(x,t) =—c®'(0) uniformly in x € ['(z). 93)
—>00
Similarly, (23) in Theorem 1.1 gives

tlim Vu(x,t) =®'(0)Vy*(x) uniformlyin x € T'(¢). (94)
— 00

For v € §"~!, let x, (¢) be the intersection point between I'(¢) and the half-line {£v | £ > 0}, namely, we define

Xy (1) = (p(; R) +1(v, 1)) v. 95)

y*(v)
Since x, () € I'(¢), we have u(x,(¢),t) = «. By differentiating this with respect to ¢, we have
x, (1) - Vu(x, (1), 1) + u; (x, (1), 1) = 0.
By computing x/,(¢) from (95), this implies

v\ e R
since p satisfies (8). By passing to the limit as # — oo and by using (93)—(94), we have

1 (c n-l +lt(1),t)>V'VM(Xu(l)J)‘i‘”t(xV(t)’t)=O’

lim < ! (c+Lw,D))v-Vy*(x, (@) — c) =0 uniformlyinv e sl
t—00 y*(\))
Since v - Vy*(x, (1)) = v - Vy*(v) = p*(v), this implies lim;_, oo [; (v, 1) = 0 uniformly in v € §"~!, namely, the
statement (iii) is proved.

Finally we prove the statements (iv) and (ii). Since u(x, t) is strictly monotone decreasing along v at large time as
in Lemma 4.3, the Euclidean outward normal vector n(v, ¢) and the Euclidean normal velocity V (v, t) at x,(¢) are
given by

_ VM(Xu(t),t)’ V.1 = ur (x, (1), 1) '
[Vu(x, (1), )] IVu(x, (1), 1)]

Thus the anisotropic normal velocity V), (v, t) at x, (¢) defined in Definition 2.2 is given by

V, (1) = Vv, t) _ us (x,(2), 1) .
y(,0) ¥ (=Vulx,(1),1)

Since x,(t) € ['(¢), by using (93)-(94), we have

n(,t)=
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—c®’(0) _ c
(= O)Vy*(v))  y(Vy*(v))

where the last equality comes from (33) in Remark 2.1. On the other hand, the anisotropic mean curvature «, (v, t) at
X, (t) defined in Definition 2.2 is given by

=c¢ uniformly inv e §"7!,

Jim, ¥, 000 =

ky (v, 1) =—divVy(n(v,1))
= —divVy (=Vu(x,(t),1))
n
= Y, (VU (), )ity (6 (1), 1),
i,j=1
where, to derive the second equality, we used the fact that Vy is positively homogeneous of degree zero. Lemma 4.9
gives

tlim Uyx; (x, 1) = " (0)y, (x)y;j (x) uniformly in x € '(¢).
— 00 !

Since x, () € I'(¢), by using this and (94), we have

n
. / /" : : —1
tl_l)rgofcy v, 1) == (0)®"(0) E Yaex; (VY W)y, (v)y;“j (v) uniformly inv e §"7".
ij=l

Since yy; is positively homogeneous of degree zero, we have Y Y xj (Vy*(v))y;‘i (w)=0forevery 1 <j<n.

Thus, we obtain lim;_,  ky (v, ) = 0 uniformly in v € §"~1. The statement (vi) of Theorem 1.4 is proved. The
statement (ii) follows immediately from (iii) or (vi). The proof of Theorem 1.4 is complete. O
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Appendix A. Supplementary remarks on anisotropy

We here give supplementary remarks on the notion of anisotropy. We first recall further properties of the dual y *(x)
of y(p), and explain the relation between Euclidean normal vectors and anisotropic normal vectors. The latter will be
important in understanding the properties of planar waves of the problem (1).

A.l. Dual and convex conjugate

There is a close relation between the dual y*(x) of y (p) defined in (6) and the convex conjugate a*(x) of a(p),
namely, the Fenchel convex conjugate a*(x) defined by

a*(x) = sup (x-p—a(p)). (96)
peR?

From its definition, it is clear that a*(x) is convex and homogeneous of degree two. Furthermore the following holds:

Lemma A.1. For the dual y*(x) defined by (6) and the convex conjugate a*(x) defined by (96), one has y*(x) =
2a*(x).

The above lemma implies, among other things, that the Wulff shape is the conjugate convex set of the Frank
diagram (in the sense of Fenchel) up to dilation by a factor of two. To prove Lemma A.1, we provide two preliminary

lemmas.

Lemma A.2. The map a), : R" — R" is bijective.
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Proof. Since a is strictly convex and homogeneous of degree two and satisfies (4), there exists a positive constant C
such that

(ap(p) —ap(p2)) - (p1 — p2) = Clp1 — pal>.  p1.p2 €R”,
see Lemma 4.3 in [1] for instance. Thus, a, : R" — R" is injective, that is, p; # p> implies a,(p1) # ap(p2). To
show surjectivity, we use a homotopy argument. Choose x € R" arbitrarily and consider the equation
x=0-t)p+tay(p) with t €[0, 1]. o7

If p satisfies (97), then we have

x-p=1—=tp-p+tay(p)-p
= (1 =D)|pl* +2ta(p)
> (1—1)+2A7"n)p%,
hence |x| > min{1,2A~!}|p|, where A is the constant defined in (4). This implies that, foreachx e R" and 0 <t <1,
the equation (97) has no solution on the sphere |p| = R, if R > |x|/min{l1, 2A~'}. On the other hand, if 7 = 0, the
map (1 —#)p + ta,(p) is an identity map. Therefore, the mapping degree of (1 —#)p +ta,(p) on the ball |p| < R
with respect to the value x is 1, since R > |x|. It follows that the mapping degree of (1 —1)p + ta,(p) with respect

to the value x is equal to 1 for each 0 <t < 1. Hence (97) with t = 1 has a solution in the ball |p| < R. This proves
that a,(p) : R" — R”" is surjective. O

Lemma A.3. For the convex conjugate a*(x) of a(p) defined in (96), one has

a*(x) =a((a,) ' (x)), xeR™ (98)

Proof. Since a(p) is strictly convex and homogeneous of degree two, x - p — a(p) takes the maximum when x =
ap(p). Since a,, is bijective from Lemma A.2, by substituting p = p, 1= (ap)_l(x), we have

a*(x) = sup (x - p—a(p)) =x - px —a(py). 99)
peRn

By noting x - px =a,(px) - px =2a(py), we obtain a*(x) = a(p,), which implies (98). O

Proof of Lemma A.1. Recall that y*(x) is given by

X-p X-p

y*(x) = sup = sup .
peRn V(D) pern +/2a(p)
Differentiating x - p/+/2a(p) by p, one easily finds that the maximum of this quantity is attained if and only if
ap(p) = Cx for some (arbitrary) constant C > 0, or, equivalently, p = C(a p)’1 (x). Thus, by substituting p = p, 1=
(011,,)_1 (x), we obtain

_ X Dx _ ap(px) - Px
Y (Px) v/2a(px)

where the last equality follows from (98) of Lemma A.3. This completes the proof of Lemma A.1. O

=2a(px) = v/2a*(x),

y*(x)

Next we investigate further properties of the convex conjugate a*(x), in order to prove (33) and (34) in Section 2.

Lemma A.4. For the convex conjugate a*(x) of a(p) defined in (96), one has

at(x)=(ap) ') forx eR", ay(p) = (aX)~ (p) for p e R". (100)



618 H. Matano et al. / Ann. I. H. Poincaré — AN 36 (2019) 585-626

Proof. Letting p, := (a p)_1 (x), we differentiate the expression (99), namely,

a*(x) =x - py —a(py) =x - (ap) "' (x) — al(ay) " (x)),

and obtain

a(x) = (ap) " ) + 8 ((ap) T (0))x — 8 ((@p) " (x))ap ((ap) " (1)),

for x € R" \ {0}, where Bx((ap)_l(x)) denotes the matrix whose (i, j)-component is the x;-derivative of the jth-
component of (a 1,)_1 (x). This implies the first equality of (100) for x € R \ {0}, since the third term of the right-hand
side equals 8x((a,,)_1(x))x. When x = 0, we have a}(x) = (a,,)_l(x) =0, since it is easily found that a}(x) and
(a p)’l(x) are both homogeneous of degree one. Thus the first equality of (100) holds for all x € R". The second
equality of (100) follows immediately from the bijectivity of a, : R" — R". O

Lemma A.5. a} (x) is positive definite and satisfies

ATNEP < Y ak, (0EE S AJEP, EER”, (101)

i,j=1
for x e R"\ {0}.

Proof. From the first equality of (100), we have x = a,(a}(x)), namely, x; = ap, (a;(x)) for 1 <i < n. By differen-
tiating this with respect to x;, we have

n
8ij = D app (@5 (0)ag,,, (),

k=1

where §;; = 1if i = j and §;; = 0 if i # j. This means that the Hessian matrix of a* at x is the inverse of the
Hessian matrix of a at a}(x). We here note that x # 0 if and only if a} (x) # 0 since we have a}(x) = (a p)_1 (x) from
Lemma A.4 and since a, is bijective from Lemma A.2 and satisfies a,(0) = 0 by the homogeneity of degree two.
Consequently, since a,, is positive definite and satisfies (4) for all p # 0 by the assumptions, a}, is positive definite
and satisfies (101) forall x #20. O

Remark A.6. The equalities (100) in Lemma A .4 give

x=ap(a;(x)) forx eR", p=aj(ap(p)) for peR".

On the other hand, the identities y (p) = +/2a(p) and y*(x) = 4/2a*(x) imply a,(p) =y (p)Vy(p) and af(x) =
y*(x)Vy*(x). Combining these, we obtain
x =y )y (Vy*())Vy (Vy*(x)), (102)
p=yP@)Y* Vy(p)HVy*(Vy(p)). (103)
Now we take an inner product of (103) with the vector Vy (p), and apply the identities (32), to obtain

y() =v(p) (r* Ty ()’

This implies y*(Vy (p)) = 1. Similarly we obtain y(Vy*(x)) = 1, which proves (33). Substituting (33) into (102)
and (103) establishes the identities (34).

A.2. Euclidean and anisotropic normal vectors

We here explain the relation between the Euclidean normal vectors and the anisotropic normal vectors on any given
surface.

Let us start with studying the two notions of normal vectors on the surface of the Wulff shape, d W;. By noting that
(33) in Remark 2.1 implies
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n,(x)

Y, (x) = x ' n, Y,

n,(x)

i

()

Fig. 3. (Left) Wulff shape W and its Gauss map Vy™* : v, = x > ny and the inverse Gauss map Vy : ny + v, = x. Note that the vector
vy (x)(= x) is normal to dWj at x in the anisotropic metric y*, since W] is the unit sphere in this metric. (Right) Euclidean normal vector ny
and the anisotropic normal vector v, to the boundary of a general domain €.

Vy(p)edWr ={x eR" [y*(x) =1},
Vy*(x)edFi={peR"|y(p) =1},
if p # 0 and x # 0, we consider the restrictions
Vylor : 0F1 — oWy, VJ/*|8W1 oW — 0F].
Then we find that
Vylor) ™ =Vy*ow. (V¥ law) ™ =Vylor,. (104)

Indeed, since Vy and Vy* are both positively homogeneous of degree zero, (34) in Remark 2.1 gives

v (v (5 ) =56 o (7 ()= 57
"GO Ty YUY ) T v

for any p, x € R" \ {0}. This implies (104), since p/y(p) € dF; and x/y*(x) € dW;. From (104), we find that the
Euclidean normal vector and the anisotropic normal vector are connected by the bijections Vy |3F, and Vy*|aw, .

Remark A.7 (Conversion of normal vectors). The anisotropic signed distance function for dW; is given by
dy (x; W1) = y*(x) — 1. At each point x € dW;, we consider the Euclidean outward (not necessarily unit) normal
vector ny, (x) and the anisotropic outward normal vector v, (x) for d W; given by

ny (x) =Vd, (x; W1), vy (x) =Vy(ny(x)).

Here, y (n, (x)) = 1 follows from (35) and y*(v, (x)) = 1 follows from the first formula of (33). Thus, we have
ny(x) € 0F; and vy, (x) € dWj. Moreover, we have

vy (x) = Vy (Vdy (x; W1)) = Vy (Vy*(x)) = x, xedWp,

Y
where the second equality from the last comes from the second formula of (34). Consequently, (104) implies that, at
each point x € W7y,

Vy maps ny,(x) € 9F; to v, (x) =x € Wy,
Vy* maps v, (x) =x € dW; to n,(x) € IF].

In other words, Vy and Vy™* can be regarded as the inverse Gauss map and the Gauss map for d W1, respectively. See
Fig. 3 (left).

Now that the relation between the two notions of normal vectors on d W1 has become clear, one can naturally extend
this observation to understand the relation of the two notions of normal vectors on the boundary of general smooth
domain 2. More precisely, given any boundary point y on 9€2, we consider a translation of W that is tangent to 92
at y from inside (see Fig. 3 (right)). The point of tangency on the shifted Wulff shape determines a position x on d W1,
and consequently the two outward normal vectors n,, (x) and v, (x) as before. This defines the two outward normal
vectors at y € 9€2.
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Euclidean normal

vr¥w) VY v) , half line:{&v)

Anisotropic normal
14

planar wave

e WR(t)
Fig. 4. The planar wave whose Euclidean normal is parallel to Vy*(v).
A.3. Wulff shape and planar waves
For each v € §”~!, the equation (1a) has a planar wave solution of the form
u(x,t) =d(Vy*(v) - x —ct). (105)
Indeed, this satisfies the equation (la), since we have u; = —c®’ and diva,(Vu) = ®”. Note that, since a,(p) =

y(p)Vy (p) by the definition and since Vu = &' Vy*(v), we have
diva,(Vu) =div [y (®'Vy* () Vy (@' Vy*(v)]
=div[®'y (Vy* () Vy (Vy*(v)]

v
=div | ®’
|: )/*(V)]

— CD//VJ/*(U) .

v
y*(v)

— q)//
where the second equality comes from the homogeneity of y, the third one comes from the second formulas of
(33)—(34), and the last one comes from the homogeneity of y*.

Clearly, the Euclidean normal of the planar wave (105) is parallel to Vy*(v) and it propagates in this direction
with the speed ¢/|Vy*(v)| in the usual Euclidean distance. On the other hand, the anisotropic normal vector of this
planar wave is parallel to v, along which the planar wave moves with the speed ¢/y*(v) in the Euclidean distance and
¢ in the anisotropic distance.

Let x, (¢) be the intersection point between the half line {£v | £ > 0} and the expanding Wulff shape Wg(¢), namely,
xy(t) = p(t; R)v/y*(v). Then the a-level set of a translation of the planar wave (105) is tangential to Wg(¢) at x,,(¢),
because the Euclidean normal of dWg(¢) at x,,(¢t) is Vy*(v). The moving speed of x,(t) along v in the anisotropic
metric is not ¢ but p(z; R), however lim,_. o o’ (¢; R) = ¢ holds obviously. Namely, the asymptotic shape and the
speed of dWr(¢) around x,(¢) at the large time are described by those of the level set of the planar wave (105). See
Fig. 4.

Finally, we remark that (105) can be rewritten as follows: for each n € $7=1 the equation (la) has a planar wave
solution of the form

u(x,z)=q><L.x—cz>, (106)
y(n)
that propagates in the direction n € §"~! with the speed cy (n) in the Euclidean distance. Indeed, since Vy*law, :

W — 9 F is a bijection, for any Euclidean unit vector n we can find v € $*~! such that n = Vy*(v)/|Vy* ().
Substituting this into (105) and using the homogeneity of y along with (33), we obtain

n Vy*(v) N
= =V .
- y ey W
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-Wx(t) Wr(t)

Fig. 5. Spreading fronts in the case where a(p) is positively homogeneous. (left) the Wulff shape W1 ; (center) the case of ®' < 0; (right) the case
of & > 0.

Appendix B. Positive homogeneity

By the homogeneity of a(p), we have a(—p) = a(p). Thus, the Frank diagram and the Wulff shape are both
symmetric with respect to the origin. On the other hand, if we only assume that a(p) is positively homogeneous of
degree two, namely, if a(p) satisfies

a(Ap) = Aza(p), A>0,

a(p) is not necessarily symmetric. Nonetheless, all the main results of the present paper remain valid with only a
minor modification. More precisely, assume that a(p) is positively homogeneous of degree two, then the conclusions
of Theorems 1.1 and 1.4 and Corollary 1.2 remain true if we make either one of the following modifications:

(a) 0WR(t) and dy, (x; Wg(¢)) are replaced by d(—Wg(?)) and d, (x; —Wg(t)), respectively, where —Wg(t) :={x €
R" [ —x € Wr()};

(b) Condition (3) is replaced by fol f(s)ds < 0, ® satisfies ®(—o00) = 0 and &(400) = 1 instead of (14b), and the
conditions (17)-(19) are replaced by

sup up(x) <—m, maxug(x)<a—mn, liminfug(x)> .
XeRn |x|<L |x]—00

Statement (a) implies that the position of the spreading front roughly coincides with the boundary of the symmetric
image (with respect to the origin) of the expanding Wulff shape. On the other hand, statement (b) implies that Theo-
rem 1.1 holds for “reverse” fronts, where the value of u is smaller behind the expanding front, and the front is facing
the inward direction (see Fig. 5). The reason why we need modification (a) or (b) is the following. In the original
setting of Theorem 1.1, in which the front is facing outward, the normal velocity and Vu have opposite signs. There-
fore, one needs to consider either the Wulff shape associated with the function a(—p) as in (a) above, or consider
propagation of a reverse front as in (b) above, in which the normal velocity and Vu have roughly the same sign. We
note that the behavior of reverse fronts can be analyzed by simply setting v = 1 — u and rewriting the equation (1a) as

v =div (—ap(=Vv)) — (1 —v) =diva,(Vv) + f(v),
where @(p) = a(—p) and f(s) = — f(1 — ) satisfying [, f(s)ds <O0.

Appendix C. Proof of Lemma 4.2

The aim of this section is to prove Lemma 4.2, which is a Liouville type theorem for entire solutions of the
Allen—Cahn equation. As we mentioned, this result is an anisotropic extension of Theorem 3.1 in [7]. We first state
the strong maximum principle for weak entire solutions of the anisotropic Allen—Cahn equation.

Lemma C.1 (Strong maximum principle). Let Q2 be a (not necessarily bounded) sub-domain of R". Let u= (x,t) and
ut(x,t) be a weak entire sub-solution and a weak entire super-solution of (1a), namely, the functions that belong to
BCLO(R" x R) and satisfy
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j:// —uF g +a,(VuF) - Vo — fuF)pdxdt >0,
R R~
for any non-negative ¢ € Cf)’o (2 x R). If there exists a point (x4, t,) € Q x R such that u™ (xy, t,) = u™ (x«, ) and
that
u”(x,t) <utx,n), (1) €Qx (—o0, ],

then u™ =u™ holds on Q x (—00, t,].

Proof. By setting w =e¢~M'(u™ — u™), we have

a
wi— Y o (i Dwx)) = (B 1) = M)w <0,
i,j=l

in the weak sense in 2 x R, where A;; and B are defined by
1 1
Ajj(x,t) :/a,,,.,,j (Vut +6V@wu™ —u"))dd, Bx,t)= f flut+0w —ut))do.
0 0

We note that A;; € L°(R" x R) and is positively definite. Since u® are both bounded by the assumption, we can
choose M large enough to satisfy B(x, ) — M < 0 and apply the strong maximum principle for weak solutions given
by Theorem 6.25 in [24]. Consequently, if w(x, z.) = 0 holds, we have w = 0 on 2 x (—0o0, t,]. This completes the
proof. O

Lemma C.2 below implies the uniqueness (up to shift) of traveling wave solution of the Allen—Cahn equation on
R in the sense of weak solutions. Note that the function u(x) in Lemma C.2 is not BC2(R) but BC(R).

Lemma C.2 (Uniqueness of traveling wave). Suppose that the constant ¢ and the function u € BC'(R) satisfy
u(—o0) =1, u(+o00) =0, and
u +cu' 4+ fu)=0, xekR,

in the weak sense. Then there exists a constant . € R such that

ux)=dx+pn), xek

Lemma C.2 can be proved in essentially the same way as the proof of Theorem 2.1 in [9]. The only difference
is to replace the usual strong maximum principle for the classical solutions by that for the weak solutions given in
Lemma C.1. So we omit the proof.

We now prove Lemma 4.2. The argument is only a slight modification of the proof of Theorem 3.1 in [7].

Proof of Lemma 4.2. Step 1: Let ¢; = (1,0,---,0) € R" and choose Q € SO(n) satisfying Qe; = Vy*(v)/
[Vy*(v)|. We define the function v(z, t) by

v(z,t) =u(x,t), where x = Q <z + |V)/C+(v)|el) .

In what follows, we use the notation z = (z1,z’) € R”, where 7/ = (z2, -+, zn) € R"~!. Then v(z, 1) is a weak entire
solution of
c
v:div( -1 Vv>+—v + f(v), eR", 1t eR, 107
t 07 ap(QV)) ot f), 2 (107)

in the sense of Lemma 2.8. By noting that

Vy*() - Qer =|Vy ()], Vy*()- Q@ —zie1) =0,
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we have Vy*(v) - x = |Vy*(v)|z1 + ct. Thus, the inequality (81) is reduced to

O(Vy*(W)|z1 + K) <v(z,t) < D(|Vy*(v)|z1 — K), zeR", teR. (108)
Step 2: Fix £ e R"~! and 7 € R arbitrarily. We define the function v° (z, ) by

Vi (z,t)=v(z1 —0,7 +&,t+71).

From (108) and the monotonicity of ®, we have v < v on R” x R if ¢ is large enough. For the same reason, we have
v>v? on R” x R if ¢ is sufficiently negative. Thus the constant o, below is well-defined:

a*zinf{a eR|v(z, 1) Sv”,(z,t) on R” x R for all cr/zo}.

Then v < v on R"” x R from the continuity of v. Our goal is to show that o, = 0, from which the conclusion of the
lemma easily follows. This will be done in the next two steps.
Step 3: Since f is of the bistable type as specified in (2), we can choose a positive constant &y that satisfies

f($)<0, s€[0,280]U[1—380, 1+ 8] (109)

Since ®(—o00) =1 and ®(400) = 0, the upper and the lower bounds for v in (108) imply that there exists a positive
constant M such that

v<vir <y if zy>M—1, (110)
v*E>v>1-6§ if 71 <—(M —2). (111)
In what follows, setting Dy; = [—M, M] X R"! x R, we will show

inf (v (z1,2, 1) —v(z1,2/, 1) =0. (112)

(z1,2/,)€DM

Assume that (112) does not hold. Then we can choose a constant 79 € (0, 1] such that
v<v%7" on Dy, (113)
for any n € [0, no]. Fix n € [0, no] arbitrarily. Then, since n < 1, (110) and (111) give
v, v* 1€ (0,80] if z1>M —1, (114)
v, v e[l =6, 1) if z; <—(M —1). (115)

By combining these inequalities with (113), we have v < v”*~7 4 §g on R” x R. Thus, we can define the constant
8x €10, 0] by

Sx=inf{§ e R|v(z,1) <v™ "(z,1) + §on R" x R}.

Assume §, > 0. Then there exist a sequence {(z] ;, zg, t;)} and a constant z|  such that

Iim (v (21, 20, 1) + 8 — v(z1,i, 2}, 1)) =0, (116)
1—> 00
lim z1,; =21,00, (117)
1—>00
21,001 = M, (118)

where (117) follows from the boundedness of {z; ;}. Indeed, by virtue of (108), we have lim|;, | 0o (vV7* 77+ 85 —v) =
8x uniformly in 7/ € R"~! and r € R. This implies that the set {z 1.i} C R is bounded. Moreover, (118) follows from
(113).

From Lemma 2.8, by choosing a subsequence, which is denoted by {(z1,;, zg, t;)} again, we obtain a weak entire
solution w(z1, z’, 1) of (107) such that v(z1, 2’ + 2}, t + 1) = w(z1, 2/, 1) as i — oo in BCII(;?(]R x R"~1 x R). Then,
we have
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w(z1,7,t) = lim v(z1, 2 + 2}, t + 1)
11— 00
< lim v* (21,2 + 2/, t + ;) + 8
I—> 00
ZW*(Zlaz/,t)+5*,
where w*(z1,7/,t) ;== w(z1 — 0% + 1,7 + &, + 7). On the other hand, since (114) and (115) imply
O<w <w* 4+8,<28 if z1 >M—1,
-8 <w* <w* +8, <1+ if z1 <—(M —1),
the inequality (109) gives

Llw* +8,] = w — div, (Q*‘a,,(QVZw*)) _ 5 f(w* 48y

c
— W
Vy*)l =
= fw") — f(w*+38) = 0,

in the weak sense of Lemma C.1 if 71| > M — 1. We now apply the strong maximum principle in the region |z| >
M — 1 to derive a contradiction. From (116)—(118), we have

W (21,00, 0, 0) + 8 = w (21,00, 0, 0), (119)
where 71 o is as defined in (117) (hence it satisfies |z] 00| > M > M — 1). On the other hand, from (113), we have
W*z=m—1 = Wl =p—1 and w*|;; =—y4+1 > w|;,=—m+1; hence

W Silzy =M1 > Wl =m—1, W Sl =M1 > Wl =M1 (120)

In the case where z1 oo > M (resp. 21,00 < —M), the statements (119)—(120) contradict the strong maximum principle
(Lemma C.1) in the region 71 > M — 1 (resp. z; < —M + 1). Thus, we obtain §,. = 0, but it contradicts the minimality
of o,. This contradiction establishes (112).

Step 4: From (112), there exist a sequence {(z1,;, z;, t;)} and a constant z]  such that

Iim (v (21,0, 2}, 1) — v(z1,i. 25, 1)) =0,
11— 00

Iim z1; = 21,00,
11— 00
|Zl,oo| <M.
From Lemma 2.8, by choosing a subsequence, which is denoted by {(z1,;, zg, t;)} again, we obtain a weak entire
solution w(z1,z’, 1) such that v(zy, 2 + 2}, t + 1) = w(z1, 2, 1) asi — oo in BC}O’B(R x R"~1 x R). Then, we have
w(z1,Z, 1) = lim v(z1, 2" + 2/, 1 + 1)
I—> 00
< lim v™*(z1, 2 + 2, t + 1)
I—> 00

=w*(z1,7,1),

where w*(z1,7/,t) ;== w(z1 —o*, 7/ +&,t + ). Moreover, we have
W(Z1,00,0,0) = lim v(z1,7, 2}, ) = lim v7* (21,4, 2}, ;) = wW* (21,00, 0, 0).
11— 00 11— 00

Thus, the strong maximum principle given in Lemma C.1 implies w = w* for t < 0. Then w = w* holds for t € R by
virtue of the uniqueness of the solution, which follows from the comparison principle given in Proposition 2.6 since
Lemma 2.8 implies w € C!T%:9/2(R" x R). Consequently, the equality

w(zi, 2 ) =w* (@, 7, ) =w(z —o*, 7 +&1+7) onRx R xR,
gives

w(0,0,0) = w(—ko™, k&, kt) forall k € Z.
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This is a contradiction when o * # 0, because
lim w(—ko* k& k) =1, lim w(—ko*, k& kt)=—1, ifo,>0,
k——o00 k——+o00

while

lim w(—ko*, k& kt)=—1, lim w(—ko* k& kt)=1, ifo, <.
k— 00

k——o00

Thus we obtain o* = 0, namely, we have
(1.7 ) < vz, 7 +E1+1), onRxR"™ xR

Since & € R”~! and 7 € R are both arbitrary, v is independent of both z" and ¢, namely, v = v(z1). Thus, from (107),
it satisfies

c
Wyrwp s ey I ek

in the weak sense. Consequently, Lemma C.2 implies that there exists a constant x such that

V@) =e(Vy Wz +wp), z1€R.
This completes the proof of Lemma 4.2. O
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