We consider fully nonlinear obstacle-type problems of the form
Keywords: Nonlinear elliptic equations, Nonlinear parabolic equations, Free boundaries, Regularity theory, Obstacle problems
@article{AIHPC_2016__33_5_1259_0,
author = {Indrei, Emanuel and Minne, Andreas},
title = {Regularity of solutions to fully nonlinear elliptic and parabolic free boundary problems},
journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
pages = {1259--1277},
year = {2016},
publisher = {Elsevier},
volume = {33},
number = {5},
doi = {10.1016/j.anihpc.2015.03.009},
mrnumber = {3542613},
zbl = {1352.35044},
language = {en},
url = {https://www.numdam.org/articles/10.1016/j.anihpc.2015.03.009/}
}
TY - JOUR AU - Indrei, Emanuel AU - Minne, Andreas TI - Regularity of solutions to fully nonlinear elliptic and parabolic free boundary problems JO - Annales de l'I.H.P. Analyse non linéaire PY - 2016 SP - 1259 EP - 1277 VL - 33 IS - 5 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.anihpc.2015.03.009/ DO - 10.1016/j.anihpc.2015.03.009 LA - en ID - AIHPC_2016__33_5_1259_0 ER -
%0 Journal Article %A Indrei, Emanuel %A Minne, Andreas %T Regularity of solutions to fully nonlinear elliptic and parabolic free boundary problems %J Annales de l'I.H.P. Analyse non linéaire %D 2016 %P 1259-1277 %V 33 %N 5 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.anihpc.2015.03.009/ %R 10.1016/j.anihpc.2015.03.009 %G en %F AIHPC_2016__33_5_1259_0
Indrei, Emanuel; Minne, Andreas. Regularity of solutions to fully nonlinear elliptic and parabolic free boundary problems. Annales de l'I.H.P. Analyse non linéaire, Tome 33 (2016) no. 5, pp. 1259-1277. doi: 10.1016/j.anihpc.2015.03.009
[1] The obstacle problem revisited, J. Fourier Anal. Appl., Volume 4 (1998) no. 4–5, pp. 383–402 | MR | Zbl | DOI
[2] The regularity of free boundaries in higher dimensions, Acta Math., Volume 139 (1977) no. 3–4, pp. 155–184 | MR | Zbl
[3] Solutions of fully nonlinear elliptic equations with patches of zero gradient: existence, regularity and convexity of level curves, Trans. Am. Math. Soc., Volume 354 (2002) no. 8, pp. 3095–3115 | MR | Zbl | DOI
[4] Obstacle Problems in Mathematical Physics, North-Holl. Math. Stud., Elsevier Science, 1987 http://books.google.se/books?id=B_8ep0ZHMo4C | MR | Zbl
[5] Regularity in free boundary problems, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (4), Volume 4 (1977) no. 2, pp. 373–391 | MR | Zbl | Numdam
[6] Optimal regularity for the no-sign obstacle problem, Commun. Pure Appl. Math., Volume 66 (2013) no. 2, pp. 245–262 | MR | Zbl | DOI
[7] Obstacle problems for the fully nonlinear elliptic operators, 1998 (Ph.D. thesis) | MR
[8] Regularity of a free boundary for viscosity solutions of nonlinear elliptic equations, Commun. Pure Appl. Math., Volume 54 (2001) no. 1, pp. 43–56 | MR | Zbl | DOI
[9] A general class of free boundary problems for fully nonlinear elliptic equations, Arch. Ration. Mech. Anal., Volume 213 (2014) no. 1, pp. 269–286 | MR | Zbl | DOI
[10] Estimates in the generalized Campanato–John–Nirenberg spaces for fully nonlinear elliptic equations, Duke Math. J., Volume 118 (2003) no. 1, pp. 1–17 | MR | Zbl | DOI
[11] An overview of unconstrained free boundary problems, Philos. Trans. R. Soc. A, Math. Phys. Eng. Sci. (2015) (in press) | MR | Zbl | DOI
[12] Interior a priori estimates for solutions of fully nonlinear equations, Ann. Math. (2), Volume 130 (1989) no. 1, pp. 189–213 | MR | Zbl | DOI
[13] A general class of free boundary problems for fully nonlinear parabolic equations, Ann. Mat. Pura Appl. (2014), pp. 1–12 (in press) | MR | Zbl | DOI
[14] Elliptic Partial Differential Equations of Second Order, Springer, 2001 | MR | Zbl | DOI
[15] Fully Nonlinear Elliptic Equations, Colloq. Publ. – Am. Math. Soc., vol. 43, American Mathematical Society, Providence, RI, 1995 | MR | Zbl
[16] Some examples of singularities in a free boundary, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (4), Volume 4 (1977) no. 1, pp. 133–144 | MR | Zbl | Numdam
[17] Regularity of Free Boundaries in Obstacle-Type Problems, Grad. Stud. Math., vol. 136, American Mathematical Society, Providence, RI, 2012 | MR | Zbl | DOI
[18] On viscosity solutions of fully nonlinear equations with measurable ingredients, Commun. Pure Appl. Math., Volume 49 (1996) no. 4, pp. 365–397 | MR | Zbl | DOI
[19] On the regularity theory of fully nonlinear parabolic equations. I, Commun. Pure Appl. Math., Volume 45 (1992) no. 1, pp. 27–76 | MR | Zbl | DOI
[20] Boundedly inhomogeneous elliptic and parabolic equations, Izv. Akad. Nauk SSSR, Ser. Mat., Volume 46 (1982) no. 3, pp. 487–523 (670) | MR | Zbl
Cité par Sources :






