In this paper, we study the problem of asymptotic stabilization by closed loop feedback for a scalar conservation law with a convex flux and in the context of entropy solutions. Besides the boundary data, we use an additional control which is a source term acting uniformly in space.
@article{AIHPC_2013__30_5_879_0,
author = {Perrollaz, Vincent},
title = {Asymptotic stabilization of entropy solutions to scalar conservation laws through a stationary feedback law},
journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
pages = {879--915},
year = {2013},
publisher = {Elsevier},
volume = {30},
number = {5},
doi = {10.1016/j.anihpc.2012.12.003},
mrnumber = {3103174},
zbl = {06295445},
language = {en},
url = {https://www.numdam.org/articles/10.1016/j.anihpc.2012.12.003/}
}
TY - JOUR AU - Perrollaz, Vincent TI - Asymptotic stabilization of entropy solutions to scalar conservation laws through a stationary feedback law JO - Annales de l'I.H.P. Analyse non linéaire PY - 2013 SP - 879 EP - 915 VL - 30 IS - 5 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.anihpc.2012.12.003/ DO - 10.1016/j.anihpc.2012.12.003 LA - en ID - AIHPC_2013__30_5_879_0 ER -
%0 Journal Article %A Perrollaz, Vincent %T Asymptotic stabilization of entropy solutions to scalar conservation laws through a stationary feedback law %J Annales de l'I.H.P. Analyse non linéaire %D 2013 %P 879-915 %V 30 %N 5 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.anihpc.2012.12.003/ %R 10.1016/j.anihpc.2012.12.003 %G en %F AIHPC_2013__30_5_879_0
Perrollaz, Vincent. Asymptotic stabilization of entropy solutions to scalar conservation laws through a stationary feedback law. Annales de l'I.H.P. Analyse non linéaire, Tome 30 (2013) no. 5, pp. 879-915. doi: 10.1016/j.anihpc.2012.12.003
[1] , , On the attainable set for Temple class systems with boundary controls, SIAM J. Control Optim. 43 no. 6 (2005), 2166-2190 | MR | Zbl
[2] , , On the attainable set for scalar nonlinear conservation laws with boundary control, SIAM J. Control Optim. 36 no. 1 (1998), 290-312 | MR | Zbl
[3] , , Asymptotic stabilization of systems of conservation laws by controls acting at a single boundary point, Control Methods in PDE-Dynamical Systems, Contemp. Math. vol. 426, Amer. Math. Soc., Providence, RI (2007), 1-43 | MR | Zbl
[4] , , , On Lyapunov stability of linearized Saint-Venant equations for a sloping channel, Netw. Heterog. Media 4 no. 2 (2009), 177-187 | MR | Zbl
[5] , , , Dissipative boundary conditions for one-dimensional nonlinear hyperbolic systems, SIAM J. Control Optim. 47 no. 3 (2008), 1460-1498 | MR | Zbl
[6] , , , First order quasilinear equations with boundary conditions, Comm. Partial Differential Equations 9 (1979), 1017-1034 | MR | Zbl
[7] , , On the boundary control of systems of conservation laws, SIAM J. Control Optim. 41 no. 2 (2002), 607-622 | MR | Zbl
[8] , Global controllability of non-viscous and viscous Burgers type equations, SIAM J. Control Optim. 48 no. 3 (2009), 1567-1599 | MR | Zbl
[9] , Global asymptotic stabilization for controllable systems without drift, Math. Control Signals Systems 5 no. 3 (1992), 295-312 | MR | Zbl
[10] , Control and Nonlinearity, Math. Surveys Monogr. vol. 136, Amer. Math. Soc., Providence, RI (2007) | MR
[11] , Generalized characteristics and the structure of solutions of hyperbolic conservation laws, Indiana Univ. Math. J. 26 no. 6 (1977), 1097-1119 | MR | Zbl
[12] , Hyperbolic Conservation Laws in Continuum Physics, Grundlehren Math. Wiss. vol. 325, Springer-Verlag, Berlin (2005) | MR | Zbl
[13] , Differential equations with discontinuous right-hand side, Mat. Sb. (N.S.) 51 no. 93 (1960), 99-128 | MR | Zbl
[14] , On the controllability of the 1-D isentropic Euler equation, J. Eur. Math. Soc. 9 no. 3 (2007), 427-486 | MR | EuDML | Zbl
[15] , , On the uniform controllability of the Burgers equation, SIAM J. Control Optim. 46 no. 4 (2007), 1211-1238 | MR | Zbl
[16] , Lectures on Nonlinear Hyperbolic Differential Equations, Math. Appl. vol. 26, Springer-Verlag, Berlin (1997) | Zbl
[17] , On the controllability of the Burgers equation, ESAIM Control Optim. Calc. Var. 3 (1998), 83-95 | EuDML | Zbl | Numdam
[18] , Controllability and Observability for Quasilinear Hyperbolic Systems, AIMS Ser. Appl. Math. vol. 3, American Institute of Mathematical Sciences (AIMS)/Higher Education Press, Springfield, MO/Beijing (2010) | Zbl
[19] , Etude du problème mixte pour une équation quasi-linéaire du premier ordre, C. R. Acad. Sci. Paris Sér. A 285 (1977), 351-354 | Zbl
[20] , On the convergence of the Godounovʼs scheme for first order quasi linear equations, Proc. Japan Acad. 52 no. 9 (1976), 488-491
[21] , First order quasilinear equations with several independent variables, Mat. Sb. (N.S.) 81 no. 123 (1970), 228-255
[22] , , , , Weak and Measure-Valued Solutions to Evolutionary PDEs, Chapman & Hall, London (1996) | Zbl
[23] , Discontinuous solutions of nonlinear differential equations, Amer. Math. Soc. Transl. Ser. 2 26 (1963), 95-172 | Zbl
[24] , Initial–boundary value problem for a scalar conservation law, C. R. Acad. Sci. Paris Sér. I Math. 322 no. 8 (1996), 729-734 | Zbl
[25] , Exact controllability of scalar conservation laws with an additional control in the context of entropy solutions, SIAM J. Control Optim. 50 no. 4 (2012), 2025-2045 | Zbl
[26] , , The global solution of the scalar nonconvex conservation law with boundary condition, J. Partial Differ. Equ. 11 no. 1 (1998), 1-8 | Zbl
[27] , Comparison properties for scalar conservation laws with boundary conditions, Nonlinear Anal. 28 no. 4 (1997), 633-653 | Zbl
Cité par Sources :






