The energy functional of linear elasticity is obtained as Γ-limit of suitable rescalings of the energies of finite elasticity. The quadratic control from below of the energy density for large values of the deformation gradient ∇v is replaced here by the weaker condition , for some . Energies of this type are commonly used in the study of a large class of compressible rubber-like materials.
@article{AIHPC_2012__29_5_715_0,
author = {Agostiniani, Virginia and Dal Maso, Gianni and DeSimone, Antonio},
title = {Linear elasticity obtained from finite elasticity by {\protect\emph{\ensuremath{\Gamma}}-convergence} under weak coerciveness conditions},
journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
pages = {715--735},
year = {2012},
publisher = {Elsevier},
volume = {29},
number = {5},
doi = {10.1016/j.anihpc.2012.04.001},
mrnumber = {2971028},
zbl = {1250.74008},
language = {en},
url = {https://www.numdam.org/articles/10.1016/j.anihpc.2012.04.001/}
}
TY - JOUR AU - Agostiniani, Virginia AU - Dal Maso, Gianni AU - DeSimone, Antonio TI - Linear elasticity obtained from finite elasticity by Γ-convergence under weak coerciveness conditions JO - Annales de l'I.H.P. Analyse non linéaire PY - 2012 SP - 715 EP - 735 VL - 29 IS - 5 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.anihpc.2012.04.001/ DO - 10.1016/j.anihpc.2012.04.001 LA - en ID - AIHPC_2012__29_5_715_0 ER -
%0 Journal Article %A Agostiniani, Virginia %A Dal Maso, Gianni %A DeSimone, Antonio %T Linear elasticity obtained from finite elasticity by Γ-convergence under weak coerciveness conditions %J Annales de l'I.H.P. Analyse non linéaire %D 2012 %P 715-735 %V 29 %N 5 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.anihpc.2012.04.001/ %R 10.1016/j.anihpc.2012.04.001 %G en %F AIHPC_2012__29_5_715_0
Agostiniani, Virginia; Dal Maso, Gianni; DeSimone, Antonio. Linear elasticity obtained from finite elasticity by Γ-convergence under weak coerciveness conditions. Annales de l'I.H.P. Analyse non linéaire, Tome 29 (2012) no. 5, pp. 715-735. doi: 10.1016/j.anihpc.2012.04.001
[1] , , Γ-convergence of energies for nematic elastomers in the small strain limit, Contin. Mech. Thermodyn. 23 no. 3 (2011), 257-274 | MR | Zbl
[2] , , Ogden-type energies for nematic elastomers, Internat. J. Non-Linear Mech. 47 (2012), 402-412
[3] , , Γ-convergence for incompressible elastic plates, Calc. Var. Partial Differential Equations 34 no. 4 (2009), 531-551 | MR | Zbl
[4] , , , Kornʼs second inequality and geometric rigidity with mixed growth conditions, arXiv:1203.1138 | MR
[5] , , , Linearized elasticity as Γ-limit of finite elasticity, Set-Valued Anal. 10 (2002), 165-183 | MR | Zbl
[6] , An Introduction to Γ-Convergence, Birkhäuser, Boston (1993) | MR
[7] , , Elastic energies for nematic elastomers, Eur. Phys. J. E 29 (2009), 191-204
[8] , , , A theorem on geometric rigidity and the derivation on nonlinear plate theory from three-dimensional elasticity, Comm. Pure Appl. Math. 55 (2002), 1461-1506 | MR | Zbl
[9] , Nonlinear Solid Mechanics: A Continuum Approach for Engineering, Wiley, Chichester (2000) | MR | Zbl
[10] , , Derivation of a rod theory for biphase materials with dislocations at the interface, arXiv:1201.4290v1 | MR | Zbl
[11] , , Gradient theory for plasticity as the Γ-limit of a nonlinear dislocation energy, http://cvgmt.sns.it/paper/1575/
[12] , Linear Γ-limits of multiwell energies in nonlinear elasticity theory, Contin. Mech. Thermodyn. 20 no. 6 (2008), 375-396 | MR | Zbl
Cité par Sources :






