We consider immersions admitting uniform representations as a λ-Lipschitz graph. In codimension 1, we show compactness for such immersions for arbitrary fixed and uniformly bounded volume. The same result is shown in arbitrary codimension for .
@article{AIHPC_2012__29_4_545_0,
author = {Breuning, Patrick},
title = {Compactness of immersions with local {Lipschitz} representation},
journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
pages = {545--572},
year = {2012},
publisher = {Elsevier},
volume = {29},
number = {4},
doi = {10.1016/j.anihpc.2012.02.001},
mrnumber = {2948288},
zbl = {1254.53010},
language = {en},
url = {https://www.numdam.org/articles/10.1016/j.anihpc.2012.02.001/}
}
TY - JOUR AU - Breuning, Patrick TI - Compactness of immersions with local Lipschitz representation JO - Annales de l'I.H.P. Analyse non linéaire PY - 2012 SP - 545 EP - 572 VL - 29 IS - 4 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.anihpc.2012.02.001/ DO - 10.1016/j.anihpc.2012.02.001 LA - en ID - AIHPC_2012__29_4_545_0 ER -
%0 Journal Article %A Breuning, Patrick %T Compactness of immersions with local Lipschitz representation %J Annales de l'I.H.P. Analyse non linéaire %D 2012 %P 545-572 %V 29 %N 4 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.anihpc.2012.02.001/ %R 10.1016/j.anihpc.2012.02.001 %G en %F AIHPC_2012__29_4_545_0
Breuning, Patrick. Compactness of immersions with local Lipschitz representation. Annales de l'I.H.P. Analyse non linéaire, Tome 29 (2012) no. 4, pp. 545-572. doi: 10.1016/j.anihpc.2012.02.001
[1] , Lineare Funktionalanalysis, Springer, Berlin, Heidelberg (2002)
[2] , , Grassmann manifolds and the Grassmann image of submanifolds, Russian Math. Surveys 46 no. 2 (1991), 45-95 | MR | Zbl
[3] P. Breuning, Immersions with local Lipschitz representation, dissertation, Freiburg, 2011.
[4] , Immersions with bounded second fundamental form, arXiv:1201.4562v1 (2011) | MR
[5] , , Introduction to Differential Topology, Cambridge University Press, New York (1982) | MR
[6] , Immersions with bounded curvature, Geom. Dedicata 33 (1990), 153-161 | MR | Zbl
[7] , On hypersurfaces in with integral bounds on curvature, J. Geom. Anal. 11 (2000), 17-41 | MR
[8] , , , Riemannsche Geometrie im Großen, Lecture Notes in Math. vol. 55, Springer, Berlin, Heidelberg, New York (1968) | MR | Zbl
[9] , , How to conjugate -close group actions, Math. Z. 132 (1973), 11-20 | MR | EuDML | Zbl
[10] , Differential Topology, Grad. Texts in Math. vol. 33, Springer, New York (1976) | MR | Zbl
[11] , Riemannian Geometry and Geometric Analysis, Springer, Berlin, Heidelberg (2002) | MR | Zbl
[12] , , Bernstein type theorems for higher codimension, Calc. Var. Partial Differential Equations 9 no. 4 (1999), 277-296 | MR | Zbl
[13] , Riemannian center of mass and mollifier smoothing, Comm. Pure Appl. Math. 30 (1977), 509-541 | MR | Zbl
[14] , A compactness theorem for surfaces with -bounded second fundamental form, Math. Ann. 270 (1985), 223-234 | MR | EuDML | Zbl
[15] , Introduction to Smooth Manifolds, Grad. Texts in Math. vol. 218, Springer, New York (2003) | MR
[16] , Zur Riemannschen Geometrie in Grassmannschen Mannigfaltigkeiten, Math. Z. 76 (1961), 334-366 | MR | EuDML | Zbl
[17] , Sectional curvatures of Grassmann manifolds, Proc. Natl. Acad. Sci. USA 60 (1968), 75-79 | MR | Zbl
Cité par Sources :





