We prove global existence of nonnegative weak solutions to a degenerate parabolic system which models the interaction of two thin fluid films in a porous medium. Furthermore, we show that these weak solutions converge at an exponential rate towards flat equilibria.
Keywords: Degenerate parabolic system, Weak solutions, Exponential stability, Thin film, Liapunov functional
@article{AIHPC_2011__28_4_583_0,
author = {Escher, Joachim and Lauren\c{c}ot, Philippe and Matioc, Bogdan-Vasile},
title = {Existence and stability of weak solutions for a degenerate parabolic system modelling two-phase flows in porous media},
journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
pages = {583--598},
year = {2011},
publisher = {Elsevier},
volume = {28},
number = {4},
doi = {10.1016/j.anihpc.2011.04.001},
zbl = {1227.35177},
language = {en},
url = {https://www.numdam.org/articles/10.1016/j.anihpc.2011.04.001/}
}
TY - JOUR AU - Escher, Joachim AU - Laurençot, Philippe AU - Matioc, Bogdan-Vasile TI - Existence and stability of weak solutions for a degenerate parabolic system modelling two-phase flows in porous media JO - Annales de l'I.H.P. Analyse non linéaire PY - 2011 SP - 583 EP - 598 VL - 28 IS - 4 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.anihpc.2011.04.001/ DO - 10.1016/j.anihpc.2011.04.001 LA - en ID - AIHPC_2011__28_4_583_0 ER -
%0 Journal Article %A Escher, Joachim %A Laurençot, Philippe %A Matioc, Bogdan-Vasile %T Existence and stability of weak solutions for a degenerate parabolic system modelling two-phase flows in porous media %J Annales de l'I.H.P. Analyse non linéaire %D 2011 %P 583-598 %V 28 %N 4 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.anihpc.2011.04.001/ %R 10.1016/j.anihpc.2011.04.001 %G en %F AIHPC_2011__28_4_583_0
Escher, Joachim; Laurençot, Philippe; Matioc, Bogdan-Vasile. Existence and stability of weak solutions for a degenerate parabolic system modelling two-phase flows in porous media. Annales de l'I.H.P. Analyse non linéaire, Tome 28 (2011) no. 4, pp. 583-598. doi: 10.1016/j.anihpc.2011.04.001
[1] , Nonhomogeneous linear and quasilinear elliptic and parabolic boundary value problems, , (ed.), Function Spaces, Differential Operators and Nonlinear Analysis, Teubner-Texte Math. vol. 133, Teubner, Stuttgart/Leipzig (1993), 9-126
[2] J. Escher, M. Hillairet, Ph. Laurençot, C. Walker, Global weak solutions for a degenerate parabolic system modeling the spreading of insoluble surfactant, Indiana Univ. Math. J., in press.
[3] , , , A generalised Rayleigh–Taylor condition for the Muskat problem, arXiv:1005.2511v1 | Zbl
[4] J. Escher, A.-V. Matioc, B.-V. Matioc, Modelling and analysis of the Muskat problem for thin fluid layers, J. Math. Fluid Mech., doi:10.1007/s00021-011-0053-2, in press.
[5] , , Modern Methods in the Calculus of Variations: Lp Spaces, Springer Monogr. Math., Springer, New York (2007)
[6] , , A justification for the thin film approximation of Stokes flow with surface tension, J. Differential Equations 245 (2008), 2802-2845 | Zbl
[7] , Analytic Semigroups and Optimal Regularity in Parabolic Problems, Birkhäuser, Basel (1995) | Zbl
[8] B.-V. Matioc, G. Prokert, Hele-Shaw flow in thin threads: A rigorous limit result, preprint.
[9] , Compact sets in the space , Ann. Mat. Pura Appl. 4 no. 146 (1987), 65-96 | Zbl
[10] , The Porous Media Equation, Clarendon Press, Oxford (2007)
Cité par Sources :






