We consider the fractional Burgers' equation on with the critical dissipation term. We follow the parabolic De-Giorgi's method of Caffarelli and Vasseur and show existence of smooth solutions given any initial datum in .
Nous considérons l'équation de Burgers avec diffusion fractionnelle dans . Nous montrons l'existence de solutions globales regulières pour toute donnée initiale dans , en utilisant une version parabolique de la méthode de De Giorgi introduite par Caffarelli et Vasseur.
@article{AIHPC_2010__27_2_471_0,
author = {Chan, Chi Hin and Czubak, Magdalena},
title = {Regularity of solutions for the critical {\protect\emph{N}-dimensional} {Burgers'} equation},
journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
pages = {471--501},
year = {2010},
publisher = {Elsevier},
volume = {27},
number = {2},
doi = {10.1016/j.anihpc.2009.11.008},
mrnumber = {2595188},
zbl = {1189.35354},
language = {en},
url = {https://www.numdam.org/articles/10.1016/j.anihpc.2009.11.008/}
}
TY - JOUR AU - Chan, Chi Hin AU - Czubak, Magdalena TI - Regularity of solutions for the critical N-dimensional Burgers' equation JO - Annales de l'I.H.P. Analyse non linéaire PY - 2010 SP - 471 EP - 501 VL - 27 IS - 2 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.anihpc.2009.11.008/ DO - 10.1016/j.anihpc.2009.11.008 LA - en ID - AIHPC_2010__27_2_471_0 ER -
%0 Journal Article %A Chan, Chi Hin %A Czubak, Magdalena %T Regularity of solutions for the critical N-dimensional Burgers' equation %J Annales de l'I.H.P. Analyse non linéaire %D 2010 %P 471-501 %V 27 %N 2 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.anihpc.2009.11.008/ %R 10.1016/j.anihpc.2009.11.008 %G en %F AIHPC_2010__27_2_471_0
Chan, Chi Hin; Czubak, Magdalena. Regularity of solutions for the critical N-dimensional Burgers' equation. Annales de l'I.H.P. Analyse non linéaire, Tome 27 (2010) no. 2, pp. 471-501. doi: 10.1016/j.anihpc.2009.11.008
[1] , , Non-uniqueness of weak solutions for the fractal burgers equation, arXiv:0907.3695 (2009) | MR | Zbl | Numdam
[2] , , , Occurrence and non-appearance of shocks in fractal Burgers equations, J. Hyperbolic Differ. Equ. 4 no. 3 (2007), 479-499 | MR | Zbl
[3] , , , Asymptotic properties of entropy solutions to fractal burgers equation, arXiv:0903.3394 (2009) | MR | Zbl
[4] , , An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations 32 no. 7-9 (2007), 1245-1260 | MR | Zbl
[5] Luis Caffarelli, Alexis Vasseur, Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation, Ann. of Math., in press; arXiv:math/0608447 | MR
[6] , , , On the critical dissipative quasi-geostrophic equation, Indiana Univ. Math. J. 50 no. special issue (2001), 97-107 | MR | Zbl
[7] , , Behavior of solutions of 2D quasi-geostrophic equations, SIAM J. Math. Anal. 30 no. 5 (1999), 937-948 | MR | Zbl
[8] , , A pointwise estimate for fractionary derivatives with applications to partial differential equations, Proc. Natl. Acad. Sci. USA 100 no. 26 (2003), 15316-15317 | MR | Zbl
[9] , , A maximum principle applied to quasi-geostrophic equations, Comm. Math. Phys. 249 no. 3 (2004), 511-528 | MR | Zbl
[10] , , Global well-posedness and a decay estimate for the critical dissipative quasi-geostrophic equation in the whole space, Discrete Contin. Dyn. Syst. 21 no. 4 (2008), 1095-1101 | MR | Zbl
[11] , , , Finite time singularities and global well-posedness for fractal Burgers equations, Indiana Univ. Math. J. 58 no. 2 (2009), 807-821 | MR | Zbl
[12] , , A regularity criterion for the dissipative quasi-geostrophic equations, arXiv:0710.5201 (2007)
[13] , , , Global solution smoothing effect for a non-local regularization of a hyperbolic equation, J. Evol. Equ. 3 no. 3 (2003), 499-521 | MR | Zbl
[14] , , , On convergence of solutions of fractal Burgers equation toward rarefaction waves, SIAM J. Math. Anal. 39 no. 5 (2008), 1536-1549 | MR | Zbl
[15] , , , Global well-posedness for the critical 2D dissipative quasi-geostrophic equation, Invent. Math. 167 no. 3 (2007), 445-453 | MR | Zbl
[16] , , , Blow up and regularity for fractal Burgers equation, Dyn. Partial Differ. Equ. 5 no. 3 (2008), 211-240 | MR | Zbl
[17] , , Global well-posedness of the critical Burgers equation in critical Besov spaces, arXiv:0805.3465 | MR | Zbl
[18] Serge Resnick, Dynamical problems in nonlinear advective partial differential equations, PhD thesis, University of Chicago, 1995
Cité par Sources :





