@article{AIHPC_2009__26_6_2111_0,
author = {Ervedoza, Sylvain and Puel, Jean-Pierre},
title = {Approximate {Controllability} for a {System} of {Schr\"odinger} {Equations} {Modeling} a {Single} {Trapped} {Ion}},
journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
pages = {2111--2136},
year = {2009},
publisher = {Elsevier},
volume = {26},
number = {6},
doi = {10.1016/j.anihpc.2009.01.005},
mrnumber = {2569888},
zbl = {1180.35437},
language = {en},
url = {https://www.numdam.org/articles/10.1016/j.anihpc.2009.01.005/}
}
TY - JOUR AU - Ervedoza, Sylvain AU - Puel, Jean-Pierre TI - Approximate Controllability for a System of Schrödinger Equations Modeling a Single Trapped Ion JO - Annales de l'I.H.P. Analyse non linéaire PY - 2009 SP - 2111 EP - 2136 VL - 26 IS - 6 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.anihpc.2009.01.005/ DO - 10.1016/j.anihpc.2009.01.005 LA - en ID - AIHPC_2009__26_6_2111_0 ER -
%0 Journal Article %A Ervedoza, Sylvain %A Puel, Jean-Pierre %T Approximate Controllability for a System of Schrödinger Equations Modeling a Single Trapped Ion %J Annales de l'I.H.P. Analyse non linéaire %D 2009 %P 2111-2136 %V 26 %N 6 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.anihpc.2009.01.005/ %R 10.1016/j.anihpc.2009.01.005 %G en %F AIHPC_2009__26_6_2111_0
Ervedoza, Sylvain; Puel, Jean-Pierre. Approximate Controllability for a System of Schrödinger Equations Modeling a Single Trapped Ion. Annales de l'I.H.P. Analyse non linéaire, Tome 26 (2009) no. 6, pp. 2111-2136. doi: 10.1016/j.anihpc.2009.01.005
[1] R. Adami, U. Boscain, Controllability of the Schroedinger equation via intersection of eigenvalues, in: Proc. of the 44rd IEEE Conf. on Decision and Control, 2005.
[2] , , , Controllability for Distributed Bilinear Systems, SIAM J. Control Optim. 20 (4) (1982) 575-597. | Zbl | MR
[3] , A Bilinear Optimal Control Problem Applied to a Time Dependent Hartree-Fock Equation Coupled With Classical Nuclear Dynamics, Portugal Math. (N.S.) 63 (3) (2006) 293-325. | Zbl | MR | EuDML
[4] , , , Regularity for a Schrödinger Equation With Singular Potentials and Application to Bilinear Optimal Control, J. Differential Equations 216 (1) (2005) 188-222. | Zbl | MR
[5] , , Constructive Solution of a Bilinear Control Problem, C. R. Math. Acad. Sci. Paris, Ser. I 342 (2) (2006) 119-124. | Zbl | MR
[6] , Local Controllability of a 1-D Schrödinger Equation, J. Math. Pures Appl. (9) 84 (7) (2005) 851-956. | Zbl | MR
[7] , Controllability of a Quantum Particle in a 1D Variable Domain, ESAIM Control Optim. Calc. Var. 14 (1) (2008) 105-147. | Zbl | MR | Numdam | EuDML
[8] , , Controllability of a Quantum Particle in a Moving Potential Well, J. Funct. Anal. 232 (2) (2006) 328-389. | MR | Zbl
[9] , , , , Implicit Lyapunov Control of Finite Dimensional Schrödinger Equations, Systems Control Lett. 56 (5) (2007) 388-395. | Zbl | MR
[10] K. Beauchard, M. Mirrahimi, Approximate stabilization of a quantum particle in a 1D infinite potential well, in: IFAC World Congress, Seoul, 2008.
[11] A.M. Bloch, R.W. Brockett, C. Rangan, The controllability of infinite quantum systems and closed subspace criteria, IEEE Trans. Automat. Control, submitted for publication.
[12] , Analyse Fonctionnelle, Collection Mathématiques Appliquées pour la Maîtrise, Masson, Paris, 1983, Théorie et applications (Theory and applications). | Zbl | MR
[13] , , , , Controllability of the Discrete-Spectrum Schrödinger Equation Driven by an External Field, Ann. Inst. H. Poincaré Anal. Non Linéaire 26 (1) (2009) 329-349. | Zbl | MR | Numdam
[14] , On the Small-Time Local Controllability of a Quantum Particle in a Moving One-Dimensional Infinite Square Potential Well, C. R. Acad. Sci. Paris, Ser. I 342 (2) (2006) 103-108. | Zbl | MR
[15] , Control and Nonlinearity, Mathematical Surveys and Monographs, vol. 136, American Mathematical Society, Providence, RI, 2007. | Zbl | MR
[16] , , Optimal Bilinear Control of an Abstract Schrödinger Equation, SIAM J. Control Optim. 46 (1) (2007) 274-287, (electronic). | Zbl | MR
[17] , , Arbitrary Control of a Quantum Electromagnetic Field, Phys. Rev. Lett. 76 (7) (1996) 1055-1058.
[18] , Lyapunov Control of a Quantum Particle in a Decaying Potential, Ann. Inst. H. Poincaré Anal. Non Linéaire 26 (5) (2009) 1743-1765. | Zbl | MR | Numdam
[19] M. Mirrahimi, Lyapunov control of a particle in a finite quantum potential well, in: IEEE Conf. on Decision and Control, 2006.
[20] , , Controllability of Quantum Harmonic Oscillators, IEEE Trans. Automat. Control 49 (5) (2004) 745-747. | MR
[21] , , , Lyapunov Control of Bilinear Schrödinger Equations, Automatica J. IFAC 41 (11) (2005) 1987-1994. | Zbl | MR
[22] V. Nersesyan, Growth of Sobolev norms and controllability of Schrödinger equation, Preprint, 2008. | Zbl | MR
[23] , , Control of Finite-Dimensional Quantum Systems: Application to a Spin- Particle Coupled With a Finite Quantum Harmonic Oscillator, J. Math. Phys. 46 (3) (2005) 032106. | Zbl | MR
[24] , , Methods of Modern Mathematical Physics. I. Functional Analysis, second ed., Academic Press Inc. (Harcourt Brace Jovanovich Publishers), New York, 1980. | Zbl | MR
[25] , Quantum Systems and Control, Arima 9 (2008) 325-357. | MR
[26] , On the Controllability of Bilinear Quantum Systems, in: Mathematical Models and Methods for Ab Initio Quantum Chemistry, Lecture Notes in Chem., vol. 74, Springer, Berlin, 2000, pp. 75-92. | Zbl | MR
[27] , , Wavefunction Controllability for Finite-Dimensional Bilinear Quantum Systems, J. Phys. A 36 (10) (2003) 2565-2576. | Zbl | MR
Cité par Sources :






