@article{AIHPC_2008__25_4_659_0,
author = {Wang, Changyou and Yu, Yifeng},
title = {${C}^{1}$-regularity of the {Aronsson} equation in ${R}^{2}$},
journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
pages = {659--678},
year = {2008},
publisher = {Elsevier},
volume = {25},
number = {4},
doi = {10.1016/j.anihpc.2007.03.003},
mrnumber = {2436787},
zbl = {1179.35124},
language = {en},
url = {https://www.numdam.org/articles/10.1016/j.anihpc.2007.03.003/}
}
TY - JOUR
AU - Wang, Changyou
AU - Yu, Yifeng
TI - ${C}^{1}$-regularity of the Aronsson equation in ${R}^{2}$
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2008
SP - 659
EP - 678
VL - 25
IS - 4
PB - Elsevier
UR - https://www.numdam.org/articles/10.1016/j.anihpc.2007.03.003/
DO - 10.1016/j.anihpc.2007.03.003
LA - en
ID - AIHPC_2008__25_4_659_0
ER -
%0 Journal Article
%A Wang, Changyou
%A Yu, Yifeng
%T ${C}^{1}$-regularity of the Aronsson equation in ${R}^{2}$
%J Annales de l'I.H.P. Analyse non linéaire
%D 2008
%P 659-678
%V 25
%N 4
%I Elsevier
%U https://www.numdam.org/articles/10.1016/j.anihpc.2007.03.003/
%R 10.1016/j.anihpc.2007.03.003
%G en
%F AIHPC_2008__25_4_659_0
Wang, Changyou; Yu, Yifeng. ${C}^{1}$-regularity of the Aronsson equation in ${R}^{2}$. Annales de l'I.H.P. Analyse non linéaire, Tome 25 (2008) no. 4, pp. 659-678. doi: 10.1016/j.anihpc.2007.03.003
[1] , Minimization problems for the functional sup , Ark. Mat. 6 (1965) 33-53. | Zbl | MR
[2] , Minimization problems for the functional sup . II, Ark. Mat. 6 (1966) 409-431. | Zbl | MR
[3] , Minimization problems for the functional sup . III, Ark. Mat. 7 (1969) 509-512. | Zbl | MR
[4] , Extension of functions satisfying Lipschitz conditions, Ark. Mat. 6 (1967) 551-561. | Zbl | MR
[5] , On the partial differential equation , Ark. Mat. 7 (1968) 395-425. | Zbl | MR
[6] , On certain singular solutions of the partial differential equation , Manuscripta Math. 47 (1-3) (1984) 133-151. | Zbl | MR
[7] , , , A tour of the theory of absolutely minimizing functions, Bull. Amer. Math. Soc. (N.S.) 41 (4) (2004) 439-505, (electronic). | Zbl | MR
[8] , Viscosity solutions and analysis in , in: Nonlinear Analysis, Differential Equations and Control, Montreal, QC, 1998, NATO Sci. Ser. C Math. Phys. Sci., vol. 528, Kluwer Acad. Publ., Dordrecht, 1999, pp. 1-60. | Zbl | MR
[9] , , Minimizing the -norm of the gradient with an energy constraint, Comm. Partial Differential Equations 30 (10-12) (2005) 1741-1772. | Zbl | MR
[10] , , , Lower semicontinuity of functionals, Ann. Inst. H. Poincaré Anal. Non Linéaire 18 (4) (2001) 495-517. | Zbl | MR | Numdam
[11] , , , The Euler equation and absolute minimizers of functionals, Arch. Ration. Mech. Anal. 157 (4) (2001) 255-283. | Zbl | MR
[12] , An efficient derivation of the Aronsson equation, Arch. Ration. Mech. Anal. 167 (4) (2003) 271-279. | Zbl | MR
[13] M. Crandall, The infinity-Laplace equation and the elements of calculus of variations in L-infinity, in: CIME Lecture Notes, in press.
[14] M. Crandall, The continuous gradient flow for the infinity-Laplace equation, Private communication.
[15] M. Crandall, L.C. Evans, A remark on infinity harmonic functions, in: Proceedings of the USA-Chile Workshop on Nonlinear Analysis, Via del Mar-Valparaiso, 2000 (electronic), Electron. J. Differ. Equ. Conf., 6, pp. 123-129. | Zbl | MR
[16] , , , Optimal Lipschitz extensions and the infinity Laplacian, Calc. Var. Partial Differential Equations 13 (2) (2001) 123-139. | Zbl | MR
[17] , , , User's guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc. (N.S.) 27 (1) (1992) 1-67. | Zbl | MR
[18] , , , Generalized cone comparison principle for viscosity solutions of the Aronsson equation and absolute minimizers, Comm. Partial Differential Equations 31 (7-9) (2006) 1027-1046. | MR
[19] , Uniqueness of Lipschitz extensions: minimizing the sup norm of the gradient, Arch. Ration. Mech. Anal. 123 (1) (1993) 51-74. | Zbl | MR
[20] , Quasi-convexity and the lower semicontinuity of multiple integrals, Pacific J. Math. 2 (1952) 25-53. | Zbl | MR
[21] , -regularity for infinity harmonic functions in dimensions two, Arch. Ration. Mech. Anal. 176 (3) (2005) 351-361. | Zbl | MR
[22] , -variational problems and the Aronsson equations, Arch. Ration. Mech. Anal. 182 (1) (2006) 153-180. | Zbl | MR
Cité par Sources :





