@article{AIHPC_2005__22_5_609_0,
author = {Liu, Zhaoli and Wang, Zhi-Qiang},
title = {Multi-bump type nodal solutions having a prescribed number of nodal domains : {II}},
journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
pages = {609--631},
year = {2005},
publisher = {Elsevier},
volume = {22},
number = {5},
doi = {10.1016/j.anihpc.2004.10.003},
mrnumber = {2171994},
zbl = {02235971},
language = {en},
url = {https://www.numdam.org/articles/10.1016/j.anihpc.2004.10.003/}
}
TY - JOUR AU - Liu, Zhaoli AU - Wang, Zhi-Qiang TI - Multi-bump type nodal solutions having a prescribed number of nodal domains : II JO - Annales de l'I.H.P. Analyse non linéaire PY - 2005 SP - 609 EP - 631 VL - 22 IS - 5 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.anihpc.2004.10.003/ DO - 10.1016/j.anihpc.2004.10.003 LA - en ID - AIHPC_2005__22_5_609_0 ER -
%0 Journal Article %A Liu, Zhaoli %A Wang, Zhi-Qiang %T Multi-bump type nodal solutions having a prescribed number of nodal domains : II %J Annales de l'I.H.P. Analyse non linéaire %D 2005 %P 609-631 %V 22 %N 5 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.anihpc.2004.10.003/ %R 10.1016/j.anihpc.2004.10.003 %G en %F AIHPC_2005__22_5_609_0
Liu, Zhaoli; Wang, Zhi-Qiang. Multi-bump type nodal solutions having a prescribed number of nodal domains : II. Annales de l'I.H.P. Analyse non linéaire, Tome 22 (2005) no. 5, pp. 609-631. doi: 10.1016/j.anihpc.2004.10.003
[1] , , , Sign changing solutions of superlinear Schrödinger equations, Comm. Partial Differential Equations 29 (2004) 25-42. | Zbl | MR
[2] , , Homoclinic orbits for second order Hamiltonian systems possessing superquadratic potentials, J. Amer. Math. Soc. 4 (1991) 623-627. | Zbl | MR
[3] , , Homoclinic type solutions for a semilinear elliptic PDE on , Comm. Pure Appl. Math. 45 (1992) 1217-1269. | Zbl | MR
[4] , , Invariant sets of descending flow in critical point theory with applications to nonlinear differential equations, J. Differential Equations 172 (2001) 257-299. | Zbl | MR
[5] , , Multi-bump type nodal solutions having a prescribed number of nodal domains: I, Ann. I. H. Poincaré - AN 22 (2005) 597-608. | Zbl | MR | Numdam
[6] , Homoclinic solutions for a semilinear elliptic equation with an asymptotically linear nonlinearity, Calc. Var. Partial Differential Equations 20 (2004) 431-455. | Zbl | MR
Cité par Sources :





