@article{AIHPC_2003__20_1_37_0,
author = {Shargorodsky, E. and Toland, J. F.},
title = {A {Riemann-Hilbert} problem and the {Bernoulli} boundary condition in the variational theory of {Stokes} waves},
journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
pages = {37--52},
year = {2003},
publisher = {Elsevier},
volume = {20},
number = {1},
zbl = {1045.35113},
mrnumber = {1958161},
language = {en},
url = {https://www.numdam.org/item/AIHPC_2003__20_1_37_0/}
}
TY - JOUR AU - Shargorodsky, E. AU - Toland, J. F. TI - A Riemann-Hilbert problem and the Bernoulli boundary condition in the variational theory of Stokes waves JO - Annales de l'I.H.P. Analyse non linéaire PY - 2003 SP - 37 EP - 52 VL - 20 IS - 1 PB - Elsevier UR - https://www.numdam.org/item/AIHPC_2003__20_1_37_0/ LA - en ID - AIHPC_2003__20_1_37_0 ER -
%0 Journal Article %A Shargorodsky, E. %A Toland, J. F. %T A Riemann-Hilbert problem and the Bernoulli boundary condition in the variational theory of Stokes waves %J Annales de l'I.H.P. Analyse non linéaire %D 2003 %P 37-52 %V 20 %N 1 %I Elsevier %U https://www.numdam.org/item/AIHPC_2003__20_1_37_0/ %G en %F AIHPC_2003__20_1_37_0
Shargorodsky, E.; Toland, J. F. A Riemann-Hilbert problem and the Bernoulli boundary condition in the variational theory of Stokes waves. Annales de l'I.H.P. Analyse non linéaire, Tome 20 (2003) no. 1, pp. 37-52. https://www.numdam.org/item/AIHPC_2003__20_1_37_0/
[1] , Some remarks on the theory of surface waves of finite amplitude, Soviet Math. Dokl. 35 (3) (1987) 599-603, See also loc. cit. 647-650. | Zbl | MR
[2] , , , The regularity and local bifurcation of Stokes waves, Arch. Rational Mech. Anal. 152 (3) (2000) 207-240. | Zbl | MR
[3] , , , The sub-harmonic bifurcation of Stokes waves, Arch. Rational Mech. Anal. 152 (3) (2000) 241-270. | Zbl | MR
[4] , , , , Analytic description of the free surface dynamics of an ideal fluid (canonical formalism and conformal mapping), Phys. Lett. A 1 (1996) 73-79.
[5] , Boundary Value Problems, Pergamon Press, Oxford, 1966. | Zbl | MR
[6] , Bounded Analytic Functions, Academic Press, New York, 1981. | Zbl | MR
[7] , Introduction to Hp Spaces, Cambridge University Press, Cambridge, 1999. | Zbl | MR
[8] , A note on harmonic functions and a hydrodynamic application, Proc. Amer. Math. Soc. 3 (1952) 111-113. | Zbl | MR
[9] , , Analysis, Graduate Studies in Mathematics, 14, American Mathematical Society, Providence, RI, 1997. | Zbl | MR
[10] , The Stokes and Krasovskii conjectures for the wave of greatest height, in: Studies in Applied Math., 98, 1997, pp. 311-334, In pre-print-form: Univ. of Wisconsin Mathematics Research Center Report Number 2041, 1979 (sic). | Zbl | MR
[11] , Singular Integral Equations, Wolters-Noordhoff Publishing, Groningen, 1972. | Zbl | MR
[12] , Non-uniqueness of solutions of the problem of solitary waves and bifurcation of critical points of smooth functionals, Math. USSR Izvestiya 38 (2) (1992) 333-357. | Zbl
[13] , Real and Complex Analysis, McGraw-Hill, New York, 1986. | Zbl
[14] , Stokes waves, Topological Methods in Nonlinear Analysis 7 (1996) 1-48, Topological Methods in Nonlinear Analysis 8 (1997) 412-414. | Zbl | MR
[15] , Regularity of Stokes waves in Hardy spaces and in spaces of distributions, J. Math. Pure Appl. 79 (9) (2000) 901-917. | Zbl | MR
[16] , On a pseudo-differential equation for Stokes waves, Arch. Rational Mech. Anal. 162 (2002) 179-189. | Zbl | MR
[17] , Real-Variable Methods in Harmonic Analysis, Academic Press, Orlando, 1986. | Zbl | MR
[18] , Trigonometric Series I & II, Cambridge University Press, Cambridge, 1959. | Zbl | MR






