@article{AIHPC_2001__18_2_135_0,
author = {Sirakov, Boyan},
title = {Symmetry for exterior elliptic problems and two conjectures in potential theory},
journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
pages = {135--156},
year = {2001},
publisher = {Elsevier},
volume = {18},
number = {2},
mrnumber = {1808026},
zbl = {0997.35014},
language = {en},
url = {https://www.numdam.org/item/AIHPC_2001__18_2_135_0/}
}
TY - JOUR AU - Sirakov, Boyan TI - Symmetry for exterior elliptic problems and two conjectures in potential theory JO - Annales de l'I.H.P. Analyse non linéaire PY - 2001 SP - 135 EP - 156 VL - 18 IS - 2 PB - Elsevier UR - https://www.numdam.org/item/AIHPC_2001__18_2_135_0/ LA - en ID - AIHPC_2001__18_2_135_0 ER -
Sirakov, Boyan. Symmetry for exterior elliptic problems and two conjectures in potential theory. Annales de l'I.H.P. Analyse non linéaire, Tome 18 (2001) no. 2, pp. 135-156. https://www.numdam.org/item/AIHPC_2001__18_2_135_0/
[1] , A symmetry theorem for condensers, Math. Meth. Appl. Sc. 15 (1992) 315-320. | Zbl | MR
[2] , , Uniqueness of Hill's spherical vortex, Arch. Rat. Mech. Anal. 92 (1986) 91-119. | Zbl | MR
[3] , , Radial symmetry for overdetermined elliptic problems in exterior domains, Arch. Rat. Mech. Anal. 143 (1998) 195-206. | Zbl | MR
[4] , , On the method of moving planes and the sliding method, Bull. Soc. Brazil Mat. Nova Ser. 22 (1991) 1-37. | Zbl | MR
[5] , , Non-negative solutions to a semilinear Dirichlet problem in a ball are positive and radially symmetric, Comm. Partial Differential Equations 14 (8&9) (1989) 1091-1100. | Zbl | MR
[6] , , , Symmetry and related properties via the maximum principle, Comm. Math. Phys. 6 (1981) 883-901. | Zbl | MR
[7] , , Elliptic Partial Differential Equations of Second Order, Springer-Verlag, 1983. | Zbl | MR
[8] , Monotonicity and symmetry of solutions of fully nonlinear elliptic equations on unbounded domains, Comm. Partial Differential Equations 16 (1991) 585-615. | Zbl | MR
[9] , , , A strong maximum principle and a compact support principle for singular elliptic inequalities, J. Math. Pures Appl. 78 (4) (1999) 769-789. | Zbl | MR
[10] Reichel W., Radial symmetry by moving planes for semilinear elliptic BVP's on annuli and other non-convex domains, in: Bandle C. et al. (Eds.), Progress in PDE's: Elliptic and Parabolic Problems, Pitman Res. Notes, Vol. 325, pp. 164-182. | Zbl
[11] , Radial symmetry for elliptic boundary-value problems on exterior domains, Arch. Rat. Mech. Anal. 137 (1997) 381-394. | Zbl | MR
[12] , Radial symmetry for an electrostatic, a capillarity and some fully nonlinear overdetermined problems on exterior domains, Z. Anal. Anwendungen 15 (1996) 619-635. | Zbl | MR
[13] , A symmetry theorem in potential theory, Arch. Rat. Mech. Anal. 43 (1971) 304-318. | Zbl | MR
[14] , , Symmetry of ground states of quasilinear elliptic equations, Arch. Rat. Mech. Anal. 148 (4) (1999) 265-290. | Zbl | MR
[15] , , , Symmetry theorems for some overdetermined boundary-value problems on ring domains, Z. Angew. Math. Phys. 45 (1994) 556-579. | Zbl | MR
[16] , A strong maximum principle for some quasilinear elliptic equations, Appl. Math. and Optimisation 12 (1984) 191-202. | Zbl | MR






