@article{AIHPC_2000__17_6_673_0,
author = {Bosetto, Elena and Serra, Enrico},
title = {A variational approach to chaotic dynamics in periodically forced nonlinear oscillators},
journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
pages = {673--709},
year = {2000},
publisher = {Gauthier-Villars},
volume = {17},
number = {6},
mrnumber = {1804651},
zbl = {0978.37024},
language = {en},
url = {https://www.numdam.org/item/AIHPC_2000__17_6_673_0/}
}
TY - JOUR AU - Bosetto, Elena AU - Serra, Enrico TI - A variational approach to chaotic dynamics in periodically forced nonlinear oscillators JO - Annales de l'I.H.P. Analyse non linéaire PY - 2000 SP - 673 EP - 709 VL - 17 IS - 6 PB - Gauthier-Villars UR - https://www.numdam.org/item/AIHPC_2000__17_6_673_0/ LA - en ID - AIHPC_2000__17_6_673_0 ER -
%0 Journal Article %A Bosetto, Elena %A Serra, Enrico %T A variational approach to chaotic dynamics in periodically forced nonlinear oscillators %J Annales de l'I.H.P. Analyse non linéaire %D 2000 %P 673-709 %V 17 %N 6 %I Gauthier-Villars %U https://www.numdam.org/item/AIHPC_2000__17_6_673_0/ %G en %F AIHPC_2000__17_6_673_0
Bosetto, Elena; Serra, Enrico. A variational approach to chaotic dynamics in periodically forced nonlinear oscillators. Annales de l'I.H.P. Analyse non linéaire, Tome 17 (2000) no. 6, pp. 673-709. https://www.numdam.org/item/AIHPC_2000__17_6_673_0/
[1] , , , Complex dynamics in a class of reversible equations, in: Proc. of Autumn School on Nonlinear Analysis and Differential Equations, Lisbon, 1998, to appear. | Zbl | MR
[2] , Ordinary Differential Equations, De Gruyter, Berlin, 1990. | Zbl | MR
[3] , , Homoclinics: Poincaré-Melnikov type results via a variational approach, Ann. IHP, Anal. non Lin. 15 (1998) 233-252. | Zbl | MR | Numdam
[4] , Mather sets for twist maps and geodesics on tori, in: Dinamics Reported, Vol.1, Teubner, 1988, pp. 1-56. | Zbl | MR
[5] , The existence of homoclinic motions, Vest. Mosk. Univ., Matem. 38 (1983) 98-103. | Zbl | MR
[6] , , A variational construction of chaotic trajectories for a Hamiltonian system on a torus, Boll. UMI.1 (1998) 541-570. | Zbl | MR
[7] , , A global condition for quasi-random behavior in a class of conservative systems, Comm. Pure Appl. Math. 49 (1996) 285-305. | Zbl | MR
[8] , , Homoclinic solutions to periodic motions in a class of reversible equations, Calc. Var. and PDEs. 9 (1999) 157-184. | Zbl | MR
[9] , , , A variational approach to homoclinic orbits in Hamiltonian systems, Math. Annalen 288 (1990) 133-160. | Zbl | MR
[10] , , Homoclinic orbits for second order Hamiltonian systems possessing superquadratic potentials, J. AMS 4 (1991) 693-727. | Zbl | MR
[11] , , Multibump periodic solutions for a family of Hamiltonian systems, Topol. Methods in Nonlinear Anal. 4 (1995) 31-57. | Zbl | MR
[12] , Variational construction of connecting orbits, Ann. Inst. Fourier 43 (1993)1349-1386. | Zbl | MR | Numdam
[13] , Heteroclinic chains for a reversible Hamiltonian system, Nonlin. Anal. TMA 28 (1997) 871-887. | Zbl | MR
[14] , , , A global condition for periodic Duffing-like equations, Trans. AMS 351 (1999) 3713-3724. | Zbl | MR
[15] , , Homoclinic orbits in the forced pendulum system, Fields Inst. Comm. 8 (1996) 113-126. | Zbl | MR
[16] , Heteroclinics for a reversible Hamiltonian system, Ergodic Theory Dynamical Systems 14 (1994) 817-829. | Zbl | MR
[17] , Heteroclinics for a reversible Hamiltonian system, 2, Differential Integral Equations 7 (1994) 1557-1572. | Zbl | MR
[18] , Connecting orbits for a reversible Hamiltonian system, Ergodic Theory Dynamical Systems, to appear. | Zbl | MR
[19] , Existence of infinitely many homoclinic orbits in Hamiltonian systems, Math. Zeit. 209 (1992) 27-42. | Zbl | MR
[20] , Looking for the Bernoulli shift, Ann. IHP, Anal. non Lin. 10 (1993) 561- 590. | Zbl | MR | Numdam
[21] , , , On the structure of the solution set of forced pendulum-type equations, J. Differential Equations 131 (1996) 189-208. | Zbl | MR
[22] , Nondegeneracy and chaotic motions for a class of almost-periodic Lagrangian systems, Nonlin. Anal. TMA 37 (1999) 337-361. | Zbl | MR
[23] , Introduction to Applied Nonlinear Dynamical Systems and Chaos, Springer Verlag, New York, 1990. | Zbl | MR






