@article{AIHPC_2000__17_2_193_0,
author = {Hogan, Jeff and Li, Chun and McIntosh, Alan and Zhang, Kewei},
title = {Global higher integrability of jacobians on bounded domains},
journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
pages = {193--217},
year = {2000},
publisher = {Gauthier-Villars},
volume = {17},
number = {2},
mrnumber = {1753093},
zbl = {1008.42014},
language = {en},
url = {https://www.numdam.org/item/AIHPC_2000__17_2_193_0/}
}
TY - JOUR AU - Hogan, Jeff AU - Li, Chun AU - McIntosh, Alan AU - Zhang, Kewei TI - Global higher integrability of jacobians on bounded domains JO - Annales de l'I.H.P. Analyse non linéaire PY - 2000 SP - 193 EP - 217 VL - 17 IS - 2 PB - Gauthier-Villars UR - https://www.numdam.org/item/AIHPC_2000__17_2_193_0/ LA - en ID - AIHPC_2000__17_2_193_0 ER -
%0 Journal Article %A Hogan, Jeff %A Li, Chun %A McIntosh, Alan %A Zhang, Kewei %T Global higher integrability of jacobians on bounded domains %J Annales de l'I.H.P. Analyse non linéaire %D 2000 %P 193-217 %V 17 %N 2 %I Gauthier-Villars %U https://www.numdam.org/item/AIHPC_2000__17_2_193_0/ %G en %F AIHPC_2000__17_2_193_0
Hogan, Jeff; Li, Chun; McIntosh, Alan; Zhang, Kewei. Global higher integrability of jacobians on bounded domains. Annales de l'I.H.P. Analyse non linéaire, Tome 17 (2000) no. 2, pp. 193-217. https://www.numdam.org/item/AIHPC_2000__17_2_193_0/
[1] , Sobolev Spaces, Academic Press, New York, 1975. | Zbl | MR
[2] , , W1,p-quasiconvexity and variational problems for multiple integrals, J. Funct. Anal. 58 (1984) 225-253. | Zbl | MR
[3] , , Interpolation of Operators, Academic Press, Boston, 1988. | Zbl | MR
[4] , , , Integrability for the Jacobian of orientation-preserving mappings, J. Funct. Anal. 115 (2) (1993) 425-431. | Zbl | MR
[5] , , , Hp Theory on a smooth domain in RN and elliptic boundary problems, J. Funct. Anal. 114 (1993) 286-347. | Zbl | MR
[6] , , , , Compensated compactness and Hardy spaces, J. Math. Pures Appl. 72 (1993) 247-286. | Zbl | MR
[7] , Weak continuity and weak lower semicontinuity of nonlinear functionals, in: Lect. Notes Math., Vol. 922, Springer, Berlin, 1982. | Zbl | MR
[8] , , On a partial differential equation involving the Jacobian determinant, Ann. Inst. H. Poincaré Anal. Non Lineaire 7 (1990) 1-26. | Zbl | MR | Numdam
[9] , , Convex Analysis and Variational Problems, North-Holland, Amsterdam, 1976. [10] , , , Limits on the improved integrability of the volume forms, Indiana Univ. Math. J. 44 (1995) 305-339. [11] , Integrability theory of the Jacobians, Vorlesungsreihe Rheinische Friedrich-Wilhelms-Universität Bonn 36 (1995). | MR
[12] , , On the integrability of the Jacobian under minimal hypotheses, Arch. Rational Mech. Anal. 119 (1992) 129-143. | Zbl | MR
[13] , , On weak convergence in H1 (Rd), Proc. Amer. Math. Soc. 120 (1994) 137-138. | Zbl | MR
[14] , Espaces de traces ses espaces de Sobolev-Orlicz, J. de Math. Pures et Appl.53 (1974) 439-458. | Zbl | MR
[15] , The cotype of operators from C(K), Ph.D. Thesis, Cambridge, 1989.
[16] , Comparison of Orlicz-Lorentz spaces, Studia Math. 103 (1993) 161-189. | Zbl | MR
[17] , Higher integrability of determinants and weak convergence in L1, J. Reine Angew. Math. 412 (1990) 20-34. | Zbl | MR
[18] , Fractional integration in Orlicz spaces. I, Trans. Amer. Math. Soc. 115 (1965) 300-328. | Zbl | MR
[19] , , , On weak continuity and the Hodge decomposition, Trans. Amer. Math. Soc. 303 (1987) 609-618. | Zbl | MR
[20] , , A characterization of the weakly continuous polynomials in the method of compensated compactness, Trans. Amer. Math. Soc. 310 (1988) 405-417. | Zbl | MR
[21] , A primer on Hardy spaces, and some remarks on a theorem of Evans and Müller, Comm. Partial Differential Equations 19 (1994) 277-319. | Zbl | MR
[22] , Note on the class L log L, Studia Math. 32 (1969) 305-310. | Zbl | MR
[23] , Singular Integrals and Differentiability Properties of Functions, Princeton University Press, Princeton, 1970. | Zbl | MR
[24] the Jacobian determinant in Sobolev spaces, Ann. Inst. Henri Poincare (Analyse non lineaire) 11 (3) (1994) 275-296. | Zbl | MR | Numdam





