@article{AIHPC_1999__16_2_137_0,
author = {von der Mosel, Heiko},
title = {Elastic knots in euclidean 3-space},
journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
pages = {137--166},
year = {1999},
publisher = {Gauthier-Villars},
volume = {16},
number = {2},
mrnumber = {1674767},
zbl = {0935.49023},
language = {en},
url = {https://www.numdam.org/item/AIHPC_1999__16_2_137_0/}
}
von der Mosel, Heiko. Elastic knots in euclidean 3-space. Annales de l'I.H.P. Analyse non linéaire, Tome 16 (1999) no. 2, pp. 137-166. https://www.numdam.org/item/AIHPC_1999__16_2_137_0/
[1] and , Reduction of Order for the Constrained Variational Problem and ∫ k2/2 ds, Amer. J. Math., 108, 1986, pp. 525-570 . | Zbl | MR
[2] , , and , Minimal Surfaces I (Boundary Value Problems), II (Boundary Regularity), Grundlehren der math. Wissenschaften, vols. 295-296, Springer, Berlin Heidelberg New York, 1992. | Zbl | MR
[3] , Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattisimo sensu accepti, Bousquet, Lausannae et Genevae, 1744, E 65A. O.O. Ser. I, vol. 24. | Zbl
[4] , and , On the Möbius Energy of Knots and Unknots, Annals of Math., 139 no. 1, 1994, pp. 1-50. | Zbl | MR
[5] , Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems, Annals of Math. Studies 105, Princeton Univ. Press, 1983. | Zbl | MR
[6] and , Variational Problems with Obstacles and a Volume Constraint, Math. Z. 135, 1973, pp. 55-68. | Zbl | MR
[7] , Ein singuläres bewegungsinvariantes Variationsproblem, Math. Z., 37, 1933, pp. 381-401. | Zbl | MR
[8] and , Möbius Energies for Knots and Links, Surfaces and Submanifolds, Geometric Topology, Proc. Georgia International Topology Conference, 1993, (ed. W.H. Kazez), AMS/IP Studies in Advanced Math., vol. 2, 1996, pp. 570-604. | Zbl | MR
[9] and , Knotted Elastic Curves in R3, J. London Math. Soc., (2), 30, 1984, pp. 512-520. | Zbl | MR
[10] and , Curves in the Hyperbolic Plane and Mean Curvature of Tori in 3-Space, Bull. London Math. Soc., 16, 1984, pp. 531-534. | Zbl | MR
[11] and , The Total Squared Curvature of Closed Curves, J. Differential Geometry , 20, 1984, pp. 1-22. | Zbl | MR
[12] and , Curve Straightening and a Minimax Argument for Closed Elastic Curves, Topology, 24, no. 1, 1985, pp. 75-88. | Zbl | MR
[13] , Energy of a Knot, Topology, 30, 1991, pp. 241-247. | Zbl | MR
[14] , Closed Curves of Least Total Curvature, Preprint, SFB 382 Univ. Tübingen, Report Nr. 13 (1995).
[15] , Über das Minimum des Integrals ∫s2 s1 F(x, γ, υ, κ)ds, Sitzungsber. Kaiserliche Akad. Wiss., Wien. Math.-nat. Kl., 69, 1910, pp. 1257-1326. | JFM
[16] , Théorie des distributions, Hermann, Paris, 1966. | Zbl | MR
[17] , Higher Integrability from Reverse Hölder Inequalities, Indiana Univ. Math. J., 29, no. 3, 1980, pp. 407-413. | Zbl | MR
[18] , Geometrische Variationsprobleme höherer Ordnung, Bonner Math. Schriften, 293, 1996. | Zbl | MR






