@article{AIHPC_1998__15_3_301_0,
author = {Allaire, Gr\'egoire and Francfort, Gilles},
title = {Existence of minimizers for non-quasiconvex functionals arising in optimal design},
journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
pages = {301--339},
year = {1998},
publisher = {Gauthier-Villars},
volume = {15},
number = {3},
mrnumber = {1629349},
zbl = {0913.49008},
language = {en},
url = {https://www.numdam.org/item/AIHPC_1998__15_3_301_0/}
}
TY - JOUR AU - Allaire, Grégoire AU - Francfort, Gilles TI - Existence of minimizers for non-quasiconvex functionals arising in optimal design JO - Annales de l'I.H.P. Analyse non linéaire PY - 1998 SP - 301 EP - 339 VL - 15 IS - 3 PB - Gauthier-Villars UR - https://www.numdam.org/item/AIHPC_1998__15_3_301_0/ LA - en ID - AIHPC_1998__15_3_301_0 ER -
%0 Journal Article %A Allaire, Grégoire %A Francfort, Gilles %T Existence of minimizers for non-quasiconvex functionals arising in optimal design %J Annales de l'I.H.P. Analyse non linéaire %D 1998 %P 301-339 %V 15 %N 3 %I Gauthier-Villars %U https://www.numdam.org/item/AIHPC_1998__15_3_301_0/ %G en %F AIHPC_1998__15_3_301_0
Allaire, Grégoire; Francfort, Gilles. Existence of minimizers for non-quasiconvex functionals arising in optimal design. Annales de l'I.H.P. Analyse non linéaire, Tome 15 (1998) no. 3, pp. 301-339. https://www.numdam.org/item/AIHPC_1998__15_3_301_0/
[1] , , and , Shape optimization by the homogenization method, Num. Math., Vol. 76, 1997, pp. 27-68. | Zbl | MR
[2] and , Optimal bounds on the effective behavior of a mixture of two well-ordered elastic materials, Quat. Appl. Math., Vol. 51, 1993, pp. 643-674. | Zbl | MR
[3] , Optimal bounds and microgeometries for elastic two-phase composites, SIAM, J. Appl. Math., Vol. 47, 6, 1987, pp. 1216-1228. | Zbl | MR
[4] and , Fine phase mixtures as minimizers of energy, Arch. Rat. Mech. Anal., Vol. 100, 1, 1987, pp. 13-52. | Zbl | MR
[5] and , W1,p quasiconvexity and variational problems for multiple integrals, J. Func. Anal., Vol. 58, 1984, pp. 225-253. | Zbl | MR
[6] , Direct Methods in the Calculus of Variations, Springer Verlag, Berlin Heidelberg (1989). | Zbl | MR
[7] and , Existence of minimizers for non quasiconvex integrals, Arch. Rational Mech. Anal., Vol. 131, 1995, pp. 359-399. | Zbl | MR
[8] and , The local character of G-closure, to appear.
[9] and , Relaxation in BV versus quasiconvexification in W1,p; a model for the interaction between fracture and damage, Calculus of Variations, Vol. 3, 4, 1995, pp. 407-446. | Zbl | MR
[10] and , A-quasiconvexity: a necessary and sufficient condition for Lp weak lower semicontinuity under p.d.e. constraints, to appear.
[11] and , Optimal design and relaxation of variational problem I, II, III, Comm. Pure and Appl. Math., Vol. 39, 1986, pp. 353-377. | Zbl | MR
[12] , Periodic solutions and homogenization of nonlinear variational problems, Ann. Mat. Pura Appl., Vol. 1178, 1978, pp. 139-152. | Zbl | MR
[13] , On the trace of a matrix product, Math. Nachr. Vol. 20, 1959, pp. 171-174. | Zbl | MR
[14] , Contre-exemples pour divers problèmes où le contrôle intervient dans les coefficients, Ann. Mat. Pura Appl., Vol. 112, 1977, pp. 49-68. | Zbl | MR
[15] and , H-convergence, to appear in Topics in the mathematical modeling of composite materials, R. V. Koh, ed., series: Progress in Nonlinear Differential Equations and their Applications, Birkhaüser, Boston (french version: mimeographed notes, séminaire d'Analyse Fonctionnelle et Numérique de l'Université d'Alger, 1978. | Zbl | MR
[16] and , Calcul des variations et Homogénéisation, Les Méthodes de l'Homogénéisation Théorie et Applications en Physique, Coll. Dir. Études et Recherches EDF, Eyrolles, 1985, pp. 319-369. | MR
[17] , Estimations fines de coefficients homogénéisés, Ennio de Giorgi Colloquium, P. Krée ed., Pitman Research Notes in Math., Vol. 125, 1985, pp. 168-187. | Zbl | MR






